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Whole genome and exome sequencing is a standard tool for the diagnosis of patients suf-

fering from rare and other genetic disorders. The interpretation of the tens of thousands of

variants returned from such tests remains a major challenge. Here we focus on the problem

of prioritising variants with respect to the observed disease phenotype. We hypothesise that

linking patterns of gene expression across multiple tissues to the phenotypes will aid in

discovering disease causing variants. To test this, we construct classifiers that learn

associations between tissue-specific gene expression and disease phenotypes. We find that

using Genotype-Tissue Expression project (GTEx) expression data in conjunction with

disease agnostic variant prioritisation methods (CADD or MetaSVM) results in consistent

improvements in classification accuracy. Our method represents a previously overlooked

avenue of utilising existing expression data for clinical diagnostics, and also opens the door to

use of other functional genomic data sets in the same manner.
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C linical genome and exome sequencing has become
widely adopted for diagnosis of genetic diseases since
becoming commercially available in 20111. Despite

considerable efforts in this area, the majority of patients remain
undiagnosed2,3. Whole genome sequencing (WGS) has many
benefits over whole exome sequencing (WES) due to coverage
of the entire genome versus the protein-coding genome. Entire
genome coverage allows reliable detection of copy number
variation and of variants in non-coding regions, both of which
have been associated with disease4. In addition, WGS does not
rely on capture technologies and hence offers better coverage in
protein coding and GC rich regions compared with WES5.
These advantages have seen WGS adopted as the default choice
for genetic diagnoses in the United Kingdom6, but regardless of
the technology used the problem of discovering the causative
variants remains the same.

When calling variants from WES, 60,000–100,000 variants are
found on average7. The vast majority of these variants are benign
and unrelated to the patient’s disease. The challenge is therefore
to discover the few variants which are likely to cause the disease
for further investigations. This prioritisation task is achieved
through a series of filtering steps. Common steps include, filtering
by allele frequency in large sequencing cohorts and by the pre-
dicted impact of the variant on the protein sequence8. After fil-
tering, the remaining variants are ranked by consulting disease-
variant (e.g. ClinVar9) and disease-gene databases (e.g. OMIM10)
to determine whether any variants have been previously reported
to be associated with the disease under study or a similar disease.
Further refinements to the list of candidate variants can be
achieved through use of in-silico variant prioritisation tools11,12.

To predict the pathogenicity or deleteriousness of variants,
variant prioritisation tools use a number of features. They can be
grouped into three main categories: (1) tools based on genome
conservation, (2) tools predicting the effect of variants on protein
function and (3) meta prediction tools combining multiple pre-
dictions. Currently, it is common practice to train and assess
these methods based on the complete set of known disease

causing variants. However, we recently demonstrated that the
performance of these tools, including the performance of the best
methods, varies considerably when applied to variants causing
different diseases13. This result suggests that developing classifiers
for variants in specific disease groups can improve prediction
accuracy.

Variants that affect a cell’s core set of specific genes can disrupt
normal protein function, leading to pathogenic cell types and
ultimately disease. Hence, if we are trying to identify causal
variants for a patient with a neurological phenotype we should
prioritise variants in neuronal genes higher than other variants.
While we currently do not have a complete compendium of cell-
type-specific gene expression across all conditions (e.g. popula-
tions, temporal, gender specific etc.), recent large scale consortia
projects have amassed a considerable amount of data that could
be used in this context14,15. Furthermore, we anticipate that
projects including the Human Cell Atlas16 will continue to pro-
vide data, further increasing our understanding of cell-type-
specific gene expression and regulation.

Figure 1 illustrates the rationale behind the use of tissue and
cell-specific gene expression for a disease phenotype associated
with the brain. In silico predictions of pathogenicity from var-
iant prioritisation tools are not phenotype aware, so there is an
opportunity to improve these predictions. In our example, some
pathogenic variants are predicted to be benign (P1, P5 and P10)
and some benign variants are predicted to be pathogenic (B3, B8
and B11). If instead we train classifiers in a phenotype aware
manner, we expect there to be associations between pathogenic
variants and the expression pattern of the gene harbouring the
variant. In our illustrative example, we see that pathogenic
variants are associated with gene expression in brain tissue and
neuron cells. This association becomes apparent because we
have reduced the training set to pathogenic variants within
genes that are associated with the brain-specific phenotype. In
this manner we expect expression data to improve causative
variant classification when combined with disease-specific
classifiers.

P1
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P3
P4
P5
P6
P7
P8
P9
P10
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P12
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B4
B5
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B9
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Fig. 1 Rationale for use of tissue and cell-specific gene expression for prioritisation of variants associated with a brain disease phenotype. Pathogenic
variants are coloured magenta and benign variants are coloured blue (first column). The second column shows in silico predictions of variant pathogenicity,
where increasing magenta intensity indicates stronger probability of pathogenicity and increasing blue intensity indicates stronger probability of being
benign. The remaining columns in order represent heart tissue, kidney tissue, lung tissue, brain tissue, red blood cells, neurons and T cells. The green colour
scale represents gene expression, where increasing colour intensity indicates higher expression values.
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Here we construct random forest classifiers for phenotypic
abnormality terms found in the Human Phenotype Ontology
(HPO)17. The classifiers include variant prioritisation scores
in conjunction with tissue or cell-specific gene expression
from the Genotype-Tissue Expression project (GTEx)15 or the
Functional ANnoTation Of the Mammalian genome con-
sortium (FANTOM)14,18. We assess whether inclusion of gene
expression leads to improvements in variant classification
compared with using established variant prioritisation scores
on their own. We call our method VARiant Prioritisation by
Phenotype (VARPP) and test 1879 disease phenotypes.

Results
Performance of VARPP. We assessed the performance of
VARPP using auPRC and PP100 (as described in “Methods”)
against use of the variant prioritisation tools alone (Table 1,
Supplementary Data 1). Performance gains are greater for
VARPP using GTEx tissue expression or specificity, when com-
pared with VARPP using FANTOM5 cell expression or specifi-
city. In addition, VARPP classifiers including CADD outperform
the respective VARPP classifiers including MetaSVM in terms of
auPRC. The auPRC quantifies the ability of VARPP to correctly
identify all pathogenic and benign variants, and under this sce-
nario CADD is the superior choice when compared with
MetaSVM. The opposite is true for PP100, where VARPP clas-
sifiers including MetaSVM outperform the respective VARPP
classifiers including CADD. In a clinical diagnostic setting, the
PP100 is the more useful measure, as it describes the ability to
enrich for pathogenic variants within the top 100 rankings.

VARPP using GTEx expression data outperforms CADD and
MetaSVM alone for most HPO terms when assessed using the

PP100, but for the auPRC VARPP only outperformed CADD not
MetaSVM (Table 1, Supplementary Data 1, Supplementary
Fig. 1). For the auPRC we see an improvement across 1314
(70%) HPO terms for VARPP including CADD, versus using
CADD alone. VARPP including MetaSVM performs worse for
1158 (62%) terms when compared with using MetaSVM alone.
Though VARPP including MetaSVM did not show improvement
for the majority of HPO terms based on the auPRC, it did based
on the PP100 (1474 [78%] of terms improve), as did VARPP
using CADD (1030 [55%] of terms improve).

When considering specificity rather than magnitude of
expression, we see similar performance for VARPP including
CADD, whereas VARPP including MetaSVM shows perfor-
mance gains (Table 1, Supplementary Data 1, Fig. 2, Supple-
mentary Fig. 2). We see improvement in the auPRC across 1251
(67%) terms for VARPP including MetaSVM, versus using
MetaSVM alone. VARPP using MetaSVM also performs very
well for the PP100 (1645 [88%] of HPO terms improve).
For VARPP incorporating CADD we see very similar perfor-
mance for the auPRC (1306 [70%] of HPO terms improve) and
the PP100 (1057 [56%] of HPO terms improve) to that seen
when using expression. We further note that improvements are
consistent for VARPP including MetaSVM if instead we use the
proportion of true pathogenic variants in the top 50 or 200
predictions of pathogenicity (PP50= 1664 [89%] of HPO terms
improve; PP200= 1467 [78%] of HPO terms improve). This is
also the case for VARPP including CADD for the PP200 (1198
[64%] of HPO terms improve), but there are fewer improve-
ments for the PP50 (776 [41%] of HPO terms improve) due to
HPO terms where true pathogenic variants in the top 50 have
CADD scores close to 1 (i.e. there is little opportunity for

Table 1 Performance of VARPP versus use of variant prioritisation tools alone.

VARPP auPRC n (%)a Difference (CI) t (df) P value PP100 n (%)b Difference (CI) t (df) P value

GTEx expression+ CADD 1314 (70%) 0.042 (0.038 to 0.046) 21.6 (1878) <0.001 1030 (55%) 0.051 (0.044 to 0.057) 15.0 (1878) <0.001
GTEx expression+MetaSVM 721 (38%) −0.005 (−0.001 to −0.009) −2.7 (1878) 0.006 1474 (78%) 0.062 (0.058 to 0.067) 25.7 (1878) <0.001
GTEx specificity+ CADD 1306 (70%) 0.042 (0.038 to 0.046) 21.4 (1878) <0.001 1057 (56%) 0.051 (0.045 to 0.057) 16.7 (1878) <0.001
GTEx specificity+MetaSVM 1251 (67%) 0.031 (0.027 to 0.036) 14.6 (1878) <0.001 1645 (88%) 0.096 (0.092 to 0.100) 43.7 (1878) <0.001
FANTOM5 expression+ CADD 705 (38%) −0.013 (−0.009 to −0.016) −6.7 (1878) <0.001 797 (42%) 0.011 (0.005 to 0.017) 3.7 (1878) 0.0002
FANTOM5 expression+MetaSVM 189 (10%) −0.071 (−0.067 to −0.075) −34.8 (1878) <0.001 1127 (60%) 0.015 (0.010 to 0.020) 6.4 (1878) <0.001
FANTOM5 specificity+ CADD 581 (31%) −0.026 (−0.022 to −0.030) −13.6 (1878) <0.001 637 (34%) −0.015 (−0.009 to −0.021) −4.7 (1878) <0.001
FANTOM5 specificity+MetaSVM 264 (14%) −0.058 (−0.053 to −0.063) −24.1 (1878) <0.001 1286 (68%) 0.027 (0.021 to 0.032) 9.7 (1878) <0.001

aNumber and percentage of HPO terms where VARPP performed better for the auPRC than the variant prioritisation tool alone. auPRC mean difference, 95% confidence intervals (CI), t statistic, degrees
of freedom (df) and P value are from a Student’s paired t test
bNumber and percentage of HPO terms where VARPP performed better for the PP100 than the variant prioritisation tool alone. PP100 mean difference, 95% confidence intervals (CI), t statistic, degrees
of freedom (df) and P value are from a Student’s paired t test
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Fig. 2 Performance of VARPP classifiers across 1879 HPO Phenotypic Abnormality terms. a Agreement scatter plot comparing the PP100 for VARPP
including CADD+GTEx specificity (y axis) versus the PP100 for CADD scores alone (x axis). b Agreement scatter plot comparing the PP100 for VARPP
including MetaSVM+GTEx specificity (y axis) versus the PP100 for MetaSVM scores alone (x axis). The red line is the line of identity.
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VARPP to improve on predictions of variant pathogenicity in
these scenarios).

Performance for both FANTOM5 expression and to a lesser
extent specificity (Table 1, Supplementary Data 1, Supplementary
Figs. 3 and 4), preclude use of these data sets in VARPP. We
believe this is due to the small sample sizes assayed for each cell
type and anticipate that larger data sets (such as those currently
being generated by the Human Cell Atlas) will be required. In
summary, we find GTEx expression data superior to FANTOM5
expression data when prioritising variants for the disease
phenotypes considered here. In addition, we find specificity of
gene expression to be preferred over magnitude of expression.
Therefore, results henceforth will focus on VARPP using GTEx
specificity. In practice we would not restrict our use of VARPP to
a particular data set, instead we would use VARPP in
combination with the data sets that show the best performance
for the particular phenotype(s) being investigated and we provide
Supplementary Data 1 for this purpose.

Performance of VARPP by disease group. To determine whe-
ther performance differs by distinct disease groups, we plotted
results for each HPO term grouped by the broad disease category
the term belongs to (Fig. 3, Supplementary Figs. 5–8). The auPRC
for VARPP including CADD, versus use of CADD alone, shows
improvement (>0.2) for many of the terms associated with
Abnormality of the integument, Abnormality of the cardiovas-
cular system, Abnormality of blood and blood-forming tissues
and Abnormality of metabolism/homoeostasis (Supplementary
Fig. 5). For VARPP including MetaSVM, improvement is most
evident for Abnormality of metabolism/homoeostasis (Supple-
mentary Fig. 6). When considering the PP100, VARPP including
CADD showed improvement (>0.25) over use of CADD
alone, for many of the terms associated with Abnormality of the
nervous system, Abnormality of the skeletal system, Abnormality
of the integument, Abnormality of metabolism/homoeostasis,
Abnormality of the digestive system and Abnormality of limbs
(Fig. 3, Supplementary Fig. 7). VARPP including MetaSVM
showed improvement for most HPO terms (88%), hence con-
sistent improvement is seen across many of the disease groups
(Fig. 3, Supplementary Fig. 8). Therefore, improvement is
achieved across a broad range of disease phenotypes, particularly
for the PP100. These results will be useful for determining
the best variant prioritisation method to use for particular
HPO terms.

Random forest variable importance. Random forest classifiers
return variable importances that quantify the importance of each
predictor in predicting the outcome. This allows us to determine
which GTEx tissues are most associated with each disease phe-
notype (Supplementary Data 2). We examined variable impor-
tance across the tissues for the top 30 improved HPO terms
(Supplementary Figs. 9–12). The top improved terms (auPRC) for
VARPP including CADD revealed several biological associations
(Supplementary Fig. 9). In particular, the two most important
tissues for restrictive cardiomyopathy and syncope (fainting) are
heart (atrial appendage) and heart (left ventricle). Restrictive
cardiomyopathy is a disease of the heart muscle and syncope is
caused by a drop in heart rate and blood pressure. Fibroblasts
derived from skin samples were associated with thin skin, dermal
atrophy, abnormality of the sclera, blue sclerae, dilatation of the
ascending aorta and aortic dilatation. Fibroblasts are found in
connective tissue throughout the body including both the sclera
and aorta. The most important tissue for abnormality of iron
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Fig. 3 Performance of VARPP classifiers by disease group. a Agreement
scatter plots comparing the PP100 for VARPP including CADD+GTEx
specificity (y axis) versus the PP100 for CADD scores alone (x axis).
b Agreement scatter plots comparing the PP100 for VARPP including
MetaSVM+GTEx specificity (y axis) versus the PP100 for MetaSVM
scores alone (x axis). The red line is the line of identity.
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homoeostasis is whole blood and erythropoiesis (red blood cell
production) is the greatest consumer of iron. Moreover, one of
the possible symptoms of food intolerance is skin rash and skin is
seen to be the most important tissue for this term. Lactic acidosis
can be caused by heart disease due to reduced blood and oxygen
flow, and the most important tissues for this term are heart
(left ventricle) and artery (tibial). Veins and arteries have a similar
anatomical structure consisting of three layers and we find that
venous abnormality is most associated with artery (tibial). Cya-
nosis is visible as a bluish discolouration of the extremities and
mucous membranes due to lack of oxygen in the blood. Acro-
cyanosis is the same condition but is specific to the extremities.
For both terms we see associations with adipose (subcutaneous)
and artery (coronary). Adipose (subcutaneous) is a component of
the skin where the bluish discolouration is observed and artery
(coronary) is involved in blood circulation. In addition to these
associations, cyanosis is also associated with oesophagus (gas-
troesophageal junction) which is lined with a mucous membrane.
When considering the top improved terms based on the top 100
(Supplementary Fig. 11) we see some of the aforementioned
associations (blue sclera, dilatation of the ascending aorta and
lactic acidosis) and also a number of relevant terms associated
with whole blood (hypochromic anaemia, thrombophlebitis,
microcytic anaemia, abnormality of transition element cation
homoeostasis, abnormality of iron homoeostasis, leukocytosis).

Variable importances from VARPP including MetaSVM
(Supplementary Figs. 10 and 12) show weaker associations than
VARPP including CADD. This suggests that improvements in
performance are due to associations across multiple tissues.

We also examined the HPO term assigned the highest variable
importance for each tissue, which revealed plausible biological
associations in adrenal gland, brain (basal ganglia), brain (other),
heart (atrial appendage), heart (left ventricle), kidney, liver,
muscle, pituitary, salivary gland, skin, spleen, vagina and whole
blood (Supplementary Table 1). In summary, VARPP reveals
associations between disease phenotypes and biologically relevant
tissues. This is an encouraging result for our approach, and we
plan to widen our scope to other functional genomic data sets
(and combinations of these data sets) in future work.

Performance in simulated disease exomes. We randomly spiked
ClinVar pathogenic variants into healthy exomes sequenced as
part of the 1000 Genomes Project to assess how our approach
performs when attempting to identify a single causal variant,
amongst benign individual variation. Most spike-in variants
were ranked higher than or equal to both CADD (2043/3079=
66%) and MetaSVM (1308/2046= 64%) alone when using
rankings from VARPP (Supplementary Fig. 13, Supplementary
Data 3). Practically, entire sets of ranked variants will not be
examined as resource limitations will restrict the number of
variants that can be functionally validated. Therefore, we
investigated to what extent the spike-in variants appeared within
the top 50 ranked variants. 66% (2044/3079) of the spike-in
variants were ranked in the top 50 for VARPP including CADD,
versus 57% (1777/3101) when using CADD alone. A similar
percentage of spike-in variants were ranked in the top 50 for
VARPP including MetaSVM (1516/2046= 74%) compared with
MetaSVM alone (1545/2058= 75%). Importantly though, if we
restrict results to variants that have a rank of 50 or lower with
either VARPP or the variant prioritisation tool, we find that 74%
(1664/2236) of spike-in variants were ranked higher than or
equal to CADD and 70% (1141/1624) of variants were ranked
higher than or equal to MetaSVM. These results show great
utility for the use of VARPP in clinical settings where the focus
will be on a small set of top candidate variants. We envisage that

the VARPP ranking can be used alongside rankings from other
recommended variant prioritisation tools13, as per the American
College of Medical Genetics and Genomics recommendation to
consult multiple in silico prediction tools19.

Discussion
We find that use of specificity of tissue gene expression in disease-
specific classifiers does improve variant pathogenicity prediction
(Table 1, Fig. 2, Supplementary Fig. 2). Use of magnitude of gene
expression in tissues also results in performance gains (Table 1,
Supplementary Fig. 1), but not to the extent seen for specificity of
expression. Neither cell-type-specific gene expression or specifi-
city showed consistent utility for improving predictions of variant
pathogenicity (Table 1, Supplementary Figs. 3 and 4). This is
contrary to what we expected prior to conducting this study. We
anticipated that cell-specific data would be of more use than
tissue-specific data because the finer resolution should better
characterise genome function. The most likely reason is that
FANTOM5 assayed much smaller sample sizes per cell type
(typically no more than three) in comparison to GTEx tissues
(typically hundreds). We averaged expression across each tissue
or cell-type group and this estimate will be more accurate in
GTEx than in FANTOM5 due to the larger sample sizes. This
additional noise in the FANTOM5 data will make it more difficult
to detect associations with pathogenic variants. Another expla-
nation for these results could be that expression at the whole
tissue level is more biologically relevant to diseases than the
expression in individual cell types. In many instances we have no
knowledge about the mechanisms that lead to a particular disease
phenotype, so we expect varying success across different func-
tional genomic data sets.

Specificity of tissue gene expression was preferred to magnitude
of expression for VARPP including MetaSVM, but performance
was similar for either measure when considering VARPP
including CADD (Table 1, Fig. 2 and Supplementary Figs. 1 and
2). Neither CADD nor MetaSVM (or the nine existing variant
prioritisation scores included in the MetaSVM ensemble classi-
fier) used GTEx expression data in their classifiers so this result is
not due to overfitting or collinearity. Rather, we believe this is due
to CADD and MetaSVM scores being based on different meth-
odologies and hence each score interacts differently with the
functional genomics data sets used in the classifiers. Practically,
we expect specificity to be the more biologically meaningful
measure for our approach and will adopt this in future work.

Further to the performance of VARPP, we acknowledge that our
strategy of selecting variants with minor allele frequencies of at
least 0.01 as our benign set of variants could bias performance
estimates of VARPP, because benign variants with minor allele
frequencies <0.01 may differ in their distribution of CADD and
MetaSVM scores. Whether this could lead to over or under-
estimation of VARPPs performance is impossible to assess due to
lack of reliable annotation for rare benign variants. Any bias would
be minimal though, due to our large sample of benign variants, and
our strategy is preferable to avoid inclusion of rare functional
variants. Furthermore, the confidence intervals presented in
Table 1 may be too narrow given the overlap of genes and variants
across HPO terms. Finally, the higher proportion of missing scores
for MetaSVM (15.2% across all pathogenic and benign variants) in
contrast to CADD (0.03%), means comparisons across VARPP
classifiers is imperfect. This also needs to be considered when using
VARPP to predict pathogenicity of an individual patient’s variants,
as less will be scored for VARPP classifiers including MetaSVM
compared with VARPP classifiers including CADD.

Relevant tissues were associated with the most improved terms
for VARPP including CADD (Supplementary Figs. 9 and 11), but
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less so for VARPP including MetaSVM (Supplementary Figs. 10
and 12). When considering the HPO term associated with the
maximum variable importance for each tissue, the terms are often
biologically relevant (Supplementary Table 1). We used the per-
mutation importance measure and this is not ideal for our pur-
poses given the imbalance between pathogenic and benign variants
as it is based on overall prediction accuracy. In our case, even if the
tissue is quite important for prediction of pathogenic variants,
the variable importance will be dominated by benign variants due
to the imbalance. Hence, the magnitude of variable importances
across the tissues was very small (maximum= 0.006 for VARPP
including CADD; maximum= 0.005 for VARPP including
MetaSVM). A more suitable measure of variable importance would
be based on the auPRC rather than accuracy, but development of
such a measure was beyond the scope of this study. As expected,
the maximum variable importances for CADD and MetaSVM
were larger (0.13 for CADD; 0.17 for MetaSVM), given that these
scores were developed specifically for the task of separating
pathogenic and benign variants. Despite the aforementioned lim-
itations, we believe the importance measure used here is capable of
highlighting a tissue’s importance relative to other tissues.

VARPP performs well when attempting to identify a single
pathogenic variant in an individual exome (Supplementary
Fig. 13). Our aim in developing VARPP was to improve ranking
of causal variants for patients and these results support the utility
of our approach. We will improve implementation of VARPP
including offering actual impurity reduction (AIR) variable
importance20 and variable importance p values21,22, as additional
sources of evidence for determining variable importance. We are
also currently working on improving run times for VARPP and
on separate functions for training and prediction, for the con-
venience of users who would like to use the same random forest
repeatedly for predictions on new data.

We have only considered gene expression here, but our
approach can use any type of functional genomics data provided
that many conditions, tissues and/or time points are sampled.
We plan to expand our approach to the non-coding regions of
the genome, as this will be essential to fully elucidate disease
mechanisms. Given the encouraging results for gene expression, we
envisage additional gains can be made by considering data sets that
assay regulators of gene expression such as promoters, enhancers
and non-coding RNA to name a few. Many of these data sets will
also allow for more precise spatial mapping of functional data to
variants, compared with the mapping of gene expression per-
formed in our study. Including such data sets simultaneously in
VARPP is also desirable but further work is required to determine
whether batch effects (due to differing technologies) would dom-
inate biological signals. Initiatives like the Human Cell Atlas are
bringing us closer to understanding cellular function and how this
function is affected by disease. Development of novel in silico
approaches work hand in hand with these large data sets and will
continue to be essential for understanding disease. These same
approaches show translational promise in helping to address cri-
tical clinical analysis needs for genetic and rare diseases.

Methods
Integration of phenotype with annotated variants. We previously described in
detail each component of an automated pipeline to integrate phenotypes with
annotated variants13. Therefore, we only briefly describe these aforementioned
components (human phenotype ontology, linking disease phenotypes to genes
using Phenolyzer, pathogenic variants) and focus on the new components.

Human phenotype ontology. We retrieved 12,461 HPO Phenotypic Abnormality
terms and used package ontologyIndex23 within R 3.4.324 to read in the obo file
downloaded from https://hpo.jax.org/app/download/ontology on 23 June 2017.

Linking disease phenotypes to genes using Phenolyzer. Retrieval of disease
genes associated with the HPO terms, was performed using Phenolyzer25. We used
the command line version (https://github.com/WGLab/phenolyzer), with options
specified to generate the same result as the Phenolyzer web server with default
settings (-p -ph -logistic -addon DB_DISGENET_GENE_DISEASE_-
SCORE,DB_GAD_GENE_DISEASE_SCORE -addon_weight 0.25). We only
considered genes with a known disease association (seed genes in Phenolyzer). We
did not apply a threshold to genes selected for each HPO term based on the
Phenolyzer confidence score.

Pathogenic variants. Variants in the seed genes returned by Phenolyzer were
annotated using dbNSFP version 3.4a (release 12 March 2017)26,27. We selected
ClinVar9 pathogenic variants and used the converted rank scores for CADD12 and
MetaSVM11. We removed ClinVar pathogenic variants with minor allele fre-
quencies greater than or equal to 0.01 in the following cohorts: (1) 1000 Gen-
omes28, (2) UK10K_COHORT_TWINSUK29, (3) UK10K_COHORT_ALSPAC29,
(4) NHLBI GO Exome Sequencing Project30, and (5) Exome Aggregation Con-
sortium31 as they are unlikely to be causal variants. After selecting pathogenic
variants within the seed genes for each HPO term, we excluded terms having fewer
than 25 genes. In total we produced 1879 data sets, one for each HPO term, with a
median of 1073 pathogenic variants (Supplementary Data 4).

Benign variants. We used package org.Hs.eg.db32 to retrieve all gene symbols
across the human genome. Variants within these genes were annotated using
dbNSFP version 3.4a (release 12 March 2017). We defined benign variants as those
not present in ClinVar and common in at least one population (MAF ≥ 0.01 in the
same populations as above). We excluded benign variants present in the 2916 genes
containing pathogenic variants. After filtering, there were 55,523 benign variants
across 12,313 genes (Supplementary Data 5). When considering both the patho-
genic variants (described above) and the benign variants, MetaSVM had a higher
rate of unscored variants (15.2%) than CADD (0.03%), but we decided not to
subset the data to those variants with scores from both tools to include the max-
imum number of variants.

Gene expression data. We used the yarn package33 to preprocess RNA-Seq data
from GTEx release version 6.015 as yarn offers tissue-specific filtering and nor-
malisation. This tissue-aware preprocessing ensures we do not filter out genes that
show highly specific tissue expression. We specified the tissue groups listed in
Table 1 of the publication by Paulson et al.33 to yarn, as well as Bladder, Cervix
Uteri and Fallopian Tube (these three tissues are not listed in Table 1 because the
authors only used tissues with at least 15 samples). Genes that were not expressed
(<1 count per million) in at least six samples (smallest tissue group size) were
excluded. Tissue-aware normalisation was performed using the normal-
izeTissueAware() function and the smooth quantile normalisation
(qsmooth) method34. After normalisation we averaged gene expression within each
tissue group. The final expression table contains 31,542 genes and 41 tissues
(Supplementary Data 6).

We selected human primary cell samples from the FANTOM5 data set14

(excluding samples with poor RNA quality, shallow library depth or suspected
mislabelling). Gene expression data (read counts of robust phase 1 CAGE peaks for
human samples with annotation [hg19]) was downloaded using the FANTOM5
table extraction tool (TET). CAGE peaks with gene annotation (for a single gene)
were retained and we summed peak counts within the same gene to obtain an
overall measure of gene expression. We annotated the cell types and subtypes using
the FANTOM5 ontology terms list (fantom.gsc.riken.jp/5/sstar/
FF_Ontology_terms_list). The plotCMDS() function from the yarn package was
used to calculate multidimensional scaling (MDS) coordinates for the samples.
Similarly to Paulson et al.33, we iteratively examined the MDS plots to determine
whether particular cell subtypes could be grouped together, resulting in a final set
of 81 cell groups (Supplementary Data 7). We filtered and normalised the gene
expression data by these cell groups (Normalisation_Group column in
Supplementary Data 7), and removed genes not present in at least two samples due
to the smaller group sizes in FANTOM5. After normalisation, we averaged gene
expression by the 157 cell subtypes listed in Supplementary Data 7 (Cell_Type
column). The final expression table contains 17,510 genes and 157 cell types
(Supplementary Data 8).

Specificity of gene expression. To measure tissue or cell-specific gene expression
we transformed both GTEx and FANTOM5 expression data sets to nonparametric
specificity percentile scores as described by Hu et al.35. This transformation was
applied to the expression data sets described above, after filtering out non-protein-
coding genes. Firstly, nonparametric specificity scores are calculated by dividing the
expression values for each gene by the sum of the squared expression values across
that gene (Euclidean norm). Then, nonparametric specificity percentile scores were
calculated by ranking the nonparametric specificity score for each tissue or cell type
and dividing these ranks by the number of genes. Low scoring genes (close to zero)
are specifically expressed, whereas high scoring genes (close to one) are either
ubiquitously expressed or not expressed. The final expression table for GTEx
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contains 18,442 genes and 41 tissues, and for FANTOM5 there are 16,096 genes
and 157 cell types (Supplementary Data 9 and 10).

VARiant Prioritisation by Phenotype (VARPP). VARPP uses random forests36

to predict pathogenicity of variants by phenotype whilst accounting for clustering
of variants within genes. We used gene expression (GTEx or FANTOM5) in
combination with variant prioritisation scores (CADD or MetaSVM) to predict
pathogenicity. We chose CADD because it is widely used for variant filtering, and
MetaSVM because we previously found it to be a top performer for variant
prioritisation13. We also considered specificity of gene expression, because disease
genes usually display tissue-specific expression37. Data and scripts required to run
VAARP are available in the following GitHub repository https://github.com/
deniando/VARPP along with instructions for use.

An overview of VARPP is shown in Supplementary Fig. 14. Given that gene
expression (or specificity) is used as a predictor variable, multiple variants in the
same gene will be assigned the same value. The default random forest algorithm
assumes that observations are independent and hence does not take this clustering
into account. When sampling for each tree of the random forest, a bootstrap
sample (with replacement) is selected where approximately 63% of observations
will be placed in-bag, with the remaining 37% placed out-of-bag38. The in-bag
samples are used to build the tree, and the out-of-bag samples are used to internally
validate the tree. This internal validation will be biased if the independence
assumption is violated. In our case, sampling variants would result in overly
optimistic performance of the classifier because variants in the same gene could be
present in both in-bag and out-of-bag samples of a single tree. To mitigate this bias,
we implemented a two-stage bootstrap approach for the random forests to account
for clustering of variants within genes39. This involves bootstrap sampling with
replacement at the gene level (rather than at the variant level), followed by selection
of a single variant within each gene. Sampling at the gene level ensures that variants
in the same gene can never be present in both in-bag and out-of-bag samples.
Furthermore, we selected a single variant within each gene, rather than all variants,
as this sampling method was shown to improve the performance of random
forest40.

Eight different classifiers were considered that differed in the predictor variables
used, as follows:

● CADD+GTEx expression
● MetaSVM+GTEx expression
● CADD+ FANTOM5 expression
● MetaSVM+ FANTOM5 expression
● CADD+GTEx specificity percentile
● MetaSVM+GTEx specificity percentile
● CADD+ FANTOM5 specificity percentile
● MetaSVM+ FANTOM5 specificity percentile

We wrote a custom R function to implement the above, using the ranger
package41 to grow 2000 trees and to calculate unscaled permutation importance
measures for each predictor variable. The permutation importance measure is
calculated when predicting from each out-of-bag tree. Each predictor variable is
randomly permuted in turn and change in accuracy of the predictions is calculated.
Important variables will induce large changes in accuracy. Ranger does not handle
missing values in predictor variables, hence we remove variants that do not have
complete data across all predictor variables prior to growing each tree.

Performance evaluation of VARPP. We compared performance of VARPP versus
using either CADD or MetaSVM alone to identify pathogenic variants. The R
precrec package42 was used to calculate the area under the precision-recall curve
(auPRC) based on the interpolation method of Davis & Goadrich43. We chose to
focus on the auPRC rather than the area under the receiver operating characteristic
curve (auROC), due to the inherently imbalanced ratio of pathogenic to benign
variants. In addition to the auPRC, we also calculated the proportion of true
pathogenic variants (i.e. ClinVar pathogenic variants) in the top 100 predictions of
pathogenicity (referred to as PP100 from this point on). This measure focuses on
the top ranked variants as these are more likely to be considered for follow-up. In
contrast, auPRC is an overall measure of the ranking of all variants, including the
benign variants. We used a paired t-test to compare these two performance
measures across all 1879 HPO terms, for VARPP versus the variant
prioritisation tools.

Simulated disease exomes. To assess how well VARPP ranks a single causal
variant within an individual exome we randomly spiked ClinVar pathogenic var-
iants into exomes of healthy individuals obtained by the 1000 Genomes Project
(1000 G). Variant call format (VCF) files for each chromosome were downloaded
from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. VCFtools44 was
used to remove variants with a minor allele frequency greater than 0.01. BCFtools
(www.samtools.github.io/bcftools/) was used to extract each of the 2504 individuals
from the multi-sample VCF files, whilst simultaneously removing rows that did not
contain variants (i.e. rows where the individual was homozygous for the reference
allele). The vcf-concat Perl script from VCFtools was used to concatenate the VCF
files for each chromosome into one file per individual. We annotated variants in

each VCF file using dbNSFP version 2.9.3 (release March 12 2017) and based on
this annotation we removed variants with minor allele frequencies greater than 0.01
in any of the following cohorts: (1) 1000 Genomes, (2) NHLBI GO Exome
Sequencing Project, (3) Atherosclerosis Risk in Communities Study45, and (4)
Exome Aggregation Consortium.

We downloaded all ClinVar variants from ftp://ftp.ncbi.nlm.nih.gov/pub/
clinvar/tab_delimited/ on 7 August 2018. Single nucleotide variants were filtered
to those reported on build hg19 as this matches the build of the 1000 G VCF
files. We selected variants assigned Clinvar pathogenic clinical significance, and
also required variants to be annotated with one or more HPO terms. After
filtering, 2365 ClinVar pathogenic variants remained as our spike-in variant set.
The spike-in variant set contains 567 unique genes and 589 unique HPO
annotations. We annotated our spike-in variant set with dbNSFP and annotation
was returned for 2237 variants. We removed a further 8 variants with minor
allele frequencies greater than 0.01 in any of the aforementioned cohorts
(Supplementary Data 11).

A single spike-in variant was randomly allocated to the filtered set of rare
variants for each 1000 G sample. Phenolyzer was queried using the HPO term(s)
associated with each spike-in variant, and the corresponding 1000 G sample was
retained for further analysis with VARPP if at least 25 seed genes were returned.
Pathogenic variants within the seed genes were selected and VARPP was fitted as
described above and tested back on each 1000 G sample. When testing back on
each sample, the test set consisted of variants in genes that were not seen by
VARPP. We wrote a custom R function to implement these steps. The whole
process was carried out three times, so we could check for consistency across
results (Supplementary Data 12). Performance was assessed by comparing ranks of
the spike-in variant based on VARPP against ranks based on CADD or
MetaSVM alone.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study are included in this published article
(and its Supplementary Information files). The source data underlying Figs. 2 and 3 and
Supplementary Figs. 1, 2, 3, 4, 5, 6, 7, and 8 are provided as Supplementary Data 1. The
source data underlying Supplementary Figs. 9, 10, 11 and 12 are provided as
Supplementary Data 2. The source data underlying Supplementary Fig. 13 are provided
as Supplementary Data 3. A description of the Supplementary Data Files is available at
https://doi.org/10.6084/m9.figshare.9808472. Supplementary Data Files 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11 and 12 are available at https://doi.org/10.6084/m9.figshare.10010474, https://
doi.org/10.6084/m9.figshare.10010480, https://doi.org/10.6084/m9.figshare.10010489,
https://doi.org/10.6084/m9.figshare.9808445, https://doi.org/10.6084/m9.
figshare.9808451, https://doi.org/10.6084/m9.figshare.9808454, https://doi.org/10.6084/
m9.figshare.10010492, https://doi.org/10.6084/m9.figshare.9808457, https://doi.org/
10.6084/m9.figshare.9808460, https://doi.org/10.6084/m9.figshare.9808463, https://doi.
org/10.6084/m9.figshare.9808466 and https://doi.org/10.6084/m9.figshare.9808469,
respectively.

Code availability
Data and scripts required to run VAARP are available in the following GitHub repository
https://github.com/deniando/VARPP along with instructions for use.
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