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Abstract: Gastric cancer is one of the most common malignant tumors, and it is also one of

the leading causes of cancer death worldwide. Because of its insidious symptoms and lack of

early dictation screening, many cases of gastric cancer are at late stages which make it more

complicated to cure. For these advanced-stage gastric cancers, combination therapy of

surgery, chemotherapy, radiotherapy and target therapy would bring more benefit to the

patients. However, the drug-resistance to the chemotherapy restricts its effect and might lead

to treatment failure. In this review article, we discuss the mechanisms which have been found

in recent years of drug resistance in gastric cancer. And we also want to find new approaches

to counteract chemotherapy resistance and bring more benefits to the patients.
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Introduction
Even with the development in medical detection and therapy, the morbidity of

gastric cancer still remains to be ranking fourth in all cancers. And it is also

the second cause of death due to cancers around the world. East Asian regions,

especially China, Japan and Korea, are high-prevalence areas for gastric cancer.1 In

China, gastric cancer is the second most common and deadliest cancer just after

lung cancer in 2015. It has been estimated that there are over 700,000 new cases

every year, and most of them are in rural area. On the other side, because of its

insidious symptoms and lack of early dictation screening, many cases in China are

at late stages which bring more difficulties to clinical treatments.2,3 For advanced-

stage gastric cancers, combination therapy of surgery, chemotherapy, radiotherapy

and target therapy would bring more benefit to the patients.4,5 Chemotherapy is one

of the main additional methods in treatment, but the rise of drug resistance restricts

its effect and might lead to treatment failure.6–8 In order to solve this problem, we

need to study the mechanisms of the chemotherapy resistance and find solutions.

The mechanisms of drug resistance to chemotherapy are complex. According to

what we have known, we conclude them into seven aspects as followed: (1) Reduce

the effective concentration of intracellular drugs; (2) Change of drugs’ targets; (3)

Dysfunction of DNA damage repairing; (4) Change of apoptosis and autophagy; (5)

Change of tumor micro-environment; (6) Extracellular vesicles and macropinocy-

tosis; (7) MicroRNAs and LncRNAs. Although we have made much progress in

studying the molecular mechanisms of the drug resistance, it still lacks applied
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technique in detecting and controlling the chemotherapy

resistance in clinical practice.9,10 In this article, we would

like to summarize and analyze the research progress in

chemotherapy in gastric cancer, and it might lead us to

new solutions to this problem.

Reduce the Effective Concentration
of Intracellular Drugs
Drug Efflux
The ATP-binding cassette family is a group of the most well-

known proteins in constructing transporters in cells.11–13

These transporters will pump the drugs out of the cells and

lead to multi-drug resistance. In these proteins, P-gp,

ABCG2 and MRP-1 have been well studied in solid tumors,

such as breast cancer, ovarian cancer and gastrointestinal

cancers.14–16 It has been proofed that P-gp is overexpressed

in gastric cancer, and would be related to the poor prognosis

of the patients.17,18 The expression of P-gp is also highly

related to acquired drug resistance and the risk of relapse

after chemotherapy which makes it important in our

studies.16,19

The regulation pathways of P-gp in regulating drug

resistance are diverse. MAPK pathway proteins play

important roles as down-stream receptors and in regulating

intracellular environment when P-gp is up-regulated in

cancer cells.20 NF-κB could also enhance the expression

of P-gp by targeted combining the promoter of P-gp gene

to induce multi-drug resistance.21,22 On the other hand,

inhibiting PI3K/AKT pathway could reduce the expression

of P-gp and reverse drug resistance.23 The pathways and

molecules which we have mentioned above could serve as

targets for us to inhibit drug resistance and provide us with

new solutions to this problem.24,25

Drug Inactivation
Normal cells could decompose and transform the toxins

and their intermediate products to detoxification in order to

maintain stable homeostasis. This is also the way that

cancer cells decrease the damage from chemotherapeutics.

Glutathione S-transferases (GST) are important in inac-

tivating drugs and induce drug resistance. The main

mechanisms are as followed: (1) Catalyze glutathione to

combine with electrophilic substrates and prevent reactive

oxygen species from causing damage to cell membranes;

(2) Up-regulated glutathione and GST will enhance the

polarity of drugs to make them inactive; (3) GST could

also remove toxic metabolites directly to reduce

damage.26,27 In some researches, we could find that the

expression of GST is higher in cancer tissues than normal

epithelium.28 Specifically, it has a strong connection with

the drug resistance to platinum.29,30

Change of Drugs’ Targets
Tumor cells could reduce the level of drugs’ targets or

enzymes’ activity in cells to induce drug resistance. DNA

topoisomerase is served as drug targets by many commonly

used chemotherapeutics, such as doxorubicin and etoposide.

DNA topoisomerase is involved in DNA replication, recom-

bination and repairing process of ribozymes. It is an impor-

tant part in cell cycle regulation. There are two types of

DNA topoisomerase isomers: topoisomerase I (Topo I) and

topoisomerase II (Topo II). In gastric cancer, the expression

of Topo II is up-regulated, and it has an influence on

infiltration depth, histological type and lymph node metas-

tasis. Topo II is also a key factor in inducing resistance to

adriamycin and mitomycin C in gastric cancer, and it is

correlated to prognosis.31–34 Research has noticed that

down-regulating the expression of Topo II would strengthen

the resistance to adriamycin.35 This would lay the founda-

tion for us to solve this kind of chemotherapy resistance.

With the development of new drugs and therapies,

molecule-targeted therapy has become a hotspot in recent

years for its higher efficiency and less side-effects.36,37 In

gastrointestinal cancers, imatinib has been widely used in

curing GIST and has made great progress. It targets at

tyrosine kinase to inhibit PDGF receptors, SCF and c-Kit

receptors. While in clinical practice, we have found that

the mutation of Kit and BRAF gene would lead to drug

resistance to imatinib.38,39 This situation demands us to

study in the next generation of targeted drugs and make

individual treatment more specific.

Dysfunction of DNA Damage
Repairing
In normal cells, DNA damage repairing is activated when

they have physical, chemical or biological damages in

order to stabilize chromatin. However, when the repairing

system is dysfunctional, it would lead to oncogenesis.40,41

Chemotherapy utilizes DNA damage and cytotoxicity as

an approach to kill cancer cells, especially for platinum

drugs. Platinum inhibits DNA transcription and replica-

tion, and it might cause DNA cleavage which makes DNA

damage repairing activation a key factor in drug resistance

to platinum.42,43
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Nucleotide excision repair (NER) is an important path-

way to repair the damage caused by chemotherapy drugs

through identification, resection and reconstruction of

damaged DNA. And this progress is composed of dozens

of proteins.44,45 While DNA mismatch repair genes

(MMR), such as MLH1, also play a role in the develop-

ment of gastric cancer and inducing drug resistance.46

These pathways could offer us a road to reverse drug

resistance to platinum and bring benefits to the patients.

Change of Apoptosis and
Autophagy
Dysfunction of Apoptosis Pathways
There are two classical apoptosis pathways in human: (1)

Endogenous pathway mediated by mitochondria; (2)

Exogenous pathways mediated by tumor necrosis factor

(TNF) receptors.47

The Bcl-2 protein family contains a variety of apopto-

sis-related proteins, such as Bax, Bad and Bid which

induce apoptosis, and Bcl-2, Bcl-xl which inhibit the pro-

gress. These proteins interact with each other in order to

maintain a relatively stable state for cells. When this

balance is broken, it would likely lead to carcinogenesis

and have resistance effects on chemotherapeutics which

aim at inducing cell apoptosis.48,49 In gastric cancer, stu-

dies have shown that the over-expression of Bcl-2 is

highly related to drug resistance, and it is also an impor-

tant influence factor in prognosis.50,51 Bax, which is pro-

moting apoptosis, has been confirmed to be used in

predicting the patients’ response to chemotherapy.52

Upregulating the expression of Bax could help to promote

sensitivity to chemotherapy in cancer cells by releasing

cytochrome C from mitochondria.53 In addition, other

members in the Bcl-2 family, such as Bcl-xL and Bak,

also have been proved to be playing relevant roles in drug

resistance.54,55 These make Bcl-2 family critical in gastric

cancer development and chemotherapy resistance. They

would hopefully be a breakthrough point in our research.

Tumor necrosis factor (TNF) family proteins, such as

NFRS-1, Fas, DR4 and DR5, are also important in cell

apoptosis regulation. Studies have shown that Fas could

induce cell apoptosis to eliminate tumor cells by combin-

ing with FasL, while the increase in soluble Fas will

inhibit apoptosis.56,57 A recent study has found that the

expression of TNF-related apoptosis-inducing ligand

(TRAIL) had a negative correlation with multidrug resis-

tance-associated protein P-gp, and P-gp could achieve

multi-drug resistance by regulating the expression of

TRAIL and its mediated apoptosis pathway.58

P53 is one of the most popular tumor suppressor genes

in our studies, and it has multiple functions in cell cycle

regulation, DNA repairing and cell apoptosis. Researches

have shown that p53 mutation is an important influence

factor in gastric cancer development, and high expression

of p53 gene is associated with poor prognosis.59,60 At the

same time, p53 also takes part in gastric cancer drug

resistance. We could find that patients with mutant p53

have a better response to chemotherapy.61 And recent

studies suggest that rAd-p53 could induce cell apoptosis

in gastric cancer cells, and p53 could reverse cisplatin

resistance by regulating the AKT signaling pathway and

the expression of Bax.62,63

PI3K/AKT pathway is crucial in cell growth and pro-

liferation. Abnormal activation of the PI3K/AKT pathway

has been reported to be one of the important mechanisms

of inducing drug resistance in tumor cells.64,65 And further

studies have showed that some chemotherapeutics would

activate the PI3K/AKT pathway which resulted in

acquired drug resistance.66,67 So far, the mechanisms of

the PI3K/AKT pathway have not been fully understood.

And the abnormal activation of the PI3K/AKT pathway in

tumor cells might be via PI3K catalytic subunit of alpha

(PIK3CA) mutation or loss of PTEN gene function.68,69

NF-κB could serve as a down-stream targeted protein and

take part in inducing drug resistance.70 P-gp, Bcl-2 and

Bax could also be regulated by phosphorylated AKT.24 At

the same time, how to make use of the PI3K/AKT path-

way in clinical treatment is also on the schedule. Now,

research has proved that the AKT inhibitor could reverse

the drug resistance of gastric cancer cells.71 Further vali-

dation and application researches have been carried out

and would get promising results for clinical works.72

Change of Autophagy Pathways
Autophagy is a cellular survival mechanism which is

a highly conserved cellular process to degrade cytoplasmic

materials and recycle to maintain energy homeostasis. And

it could be induced by cancer therapy, among other stres-

ses, and frequently contributes to cancer cell survival.73–75

Autophagy can also be classified as macro-autophagy,

micro-autophagy, and chaperone-mediated autophagy.

Molecular mechanisms of autophagy could be divided

into initiation, nucleation and elongation of autophago-

some, fusion of autophagosome with the lysosome, and

degradation of sequestered material. Autophagy is
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constitutively activated in cancer cells through the dereg-

ulation of PI3K/Akt/mTOR molecular axis and AMP-

activated protein kinase (AMPK) signal transduction,

which contributes to the metabolic reprogramming of can-

cer cells.76–78

A large amount of cancer therapies has been shown to

induce autophagy, while many of them indicate that autop-

hagy turns out to promote tumor cell survival and contri-

bute to therapy resistance.79,80 Some studies have also

shown that autophagy-related proteins, such as Beclin 1

(BECN1), microtubule-associated protein1 light chain 3

(MAP1-LC3), and p62/sequestosome 1 (SQSTM1) have

an important prognostic value in gastric cancer, and act as

a protective mechanism for tumor cells in chemotherapy,

promoting drug resistance as well.81–83 The therapeutic

induction of autophagy is frequently attributed to reduced

mTOR activity leading to autophagy de-repression, and

this is most obvious with therapies targeted at inhibiting

PI3K, AKT or indeed mTOR itself. In addition, autophagy

is induced by conventional genotoxic agents, such as

radiation or cisplatin, as a result of DNA damage-

induced p53 activity. However, the role of p53 in these

responses is complicated. Depending on the context, it can

also inhibit autophagy.84,85 As there are a growing number

of studies in autophagy and its cytoprotective effect, there

might be a chance to help cancer therapeutic approaches

with agents that inhibit autophagy.86,87

Change of Micro-Environment
There is extracellular matrix, a variety of trace elements,

immune cells and other substances in tumor’s micro-

environment. These substances have multiple effects on

proliferation, invasion, metastasis and multi-drug

resistance.88–90

Extracellular Matrix
Extracellular matrix is a complex network containing multi-

functional molecules and has an important influence on

tumor development. Laminin and collagen IV are important

parts of the basement membrane in the gastric cancer’s

extracellular matrix.91 And the overexpression of laminin

would enhance gastric cancer cells’ resistance to vincristine

and adriamycin via regulating MGr1-Ag/37LRP.92 This phe-

nomenon also indicates that cell adhesion ability is asso-

ciated with the chemo-resistant phenotype of gastric cancer

cells, which makes it has a chance to be considered as

a reference target to detect drug resistance. The mechanisms

of how laminin induced drug resistance in gastric cancer are

varied, including regulating the expression of multiple drug

resistance-related proteins such as P-gp, and regulating

apoptosis-related proteins Bcl-2 and Bax to inhibit drug-

mediated apoptosis and multiple signaling pathways

(PI3K/AKT and MAPK/ERK).92,93 Besides these, the high

expressions of metalloproteinases inducer HMGB1 are also

related to drug resistance.94,95 Thus, there are still more

details needed to be explored between the extracellular

matrix and tumor drug-resistance mechanism which will

bring more benefits to clinical treatment.

Cytokines and Growth Factors
The cytokines and growth factors in tumor micro-

environment are involved in the activation of a variety of

signaling pathways and play a key role in chemoresis-

tance. Many cytokines and growth factors have been con-

firmed to act as independent factors that influence

prognosis in gastric cancer patients under chemotherapy

treatment.96 Interleukin family is a major part of cytokines

that have been well studied. IL-6 could lead to acquired

drug resistance to trastuzumab in gastric cancer cells via

activation of the STAT3 signaling pathway.97 IL-33 could

cause resistance to platinum through the JNK signaling

pathway.98 And IL-24 has also been proved to be involved

in regulating multi-drug resistance.99

Anoxia
Anoxia is an important biological characteristic in tumor-

igenesis and is also one of the mechanisms in drug resis-

tance. HIF-1α is critical in cells’ response to hypoxia, and

the over-expression of HIF-1α has been confirmed to be

related to poor prognosis in gastric cancer in multiple

studies which makes it an independent factor predicting

prognosis.100–102 Some studies have showed that HIF-1α
could regulate drug resistance by regulating the expression

of p53, NF-κB, Bcl-2 and serving as the down-stream

target of PI3K/AKT and MAPK/ERK signaling

pathways.103–106 HIF-1α has played a significant role in

inducing drug resistance in gastric cancer, while the

mechanisms are still needed to be explored.103

Extracellular Vesicles and
Micropinocytosis
Extracellular vesicles (EVs) are secreted by nearly almost

cells and released to the extracellular space. EVs could be

divided into three different subgroups according to their size:

exosomes (30–100 nm), micro-vesicles (MVs, 100–1000
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nm), and apoptotic bodies (1000–5000 nm).While exosomes

are small membrane nanovesicles which constituted through

the intraluminal budding of the late endosomal membrane

and are secreted from the plasmamembrane.107–109 Recently,

the finding that paclitaxel-resistant gastric cancer cell line

(MGC-803R) cell-derived exosomes could be taken up by

paclitaxel-sensitive MGC-803 (MGC-803S) cells has been

reported. Furthermore, the exosomal miR-155-5p from

MGC-803R cells can join in directly inhibiting GATA bind-

ing protein 3 (GATA3) and tumor protein p53-inducible

nuclear protein 1 (TP53INP1) to induce chemoresistant phe-

notypes in the sensitive cells which uptake the

exosomes.110,111 In addition, exosomal miR-21 can be

directly transferred from macrophages to gastric cancer

cells to obtain the chemotherapy resistance, and inhibit cell

apoptosis and activate the PI3K/AKT pathway by regulating

PTEN.112

Macropinocytosis has been known as a primary

method for the cellular intake of fluid-phase and mem-

brane-bound bulk cargo. And recent researches show that

direct roles for macropinocytosis within tumorigenesis.113

Uptake of nutrients in the tumor microenvironment by

macropinocytosis has recently been named as an emerging

hallmark of cancer metabolism.114,115 In lung cancer cell

line A549, it has been demonstrated the extracellular ATP

was internalized by macropinocytosis and induced intra-

cellular ATP increase and drug resistance.116 In addition,

there are several researches associated with macropinocy-

tosis and drug resistance in pancreatic cancer and breast

cancer.117,118 The mechanisms and effects of micropino-

cytosis in gastric cancer need further study, and it may lead

to a new way to solve the multi-drug resistance in gastric

cancer.

MicroRNAs and LncRNAs in Drug
Resistance in Gastric Cancer
With the development of research in drug resistance, new

research objects are introduced into this study.

MicroRNAs are noncoding single-stranded RNA mole-

cules which contain 18 to 22 nucleotides encoded by

endogenous genes. They are involved in regulating gene

expression and have extensive application prospects in

tumor researches,119 while lncRNAs refer to nucleotides

long-chain non-coding RNA which have more than 200

nucleotides. And recent studies reveal that they are

involved in cell cycle regulation, epigenetic regulation

and many other aspects which make them become

a focus of current researches. LncRNAs also play an

important role in tumorigenesis and might be the break-

through point.120,121 Now, we will, respectively, introduce

the two types of molecules in the research of gastric

cancer’s drug-resistance briefly.

MicroRNAs in Drug Resistance of Gastric

Cancer
MicroRNAs have been extensively studied in recent years;

their important roles in numerous biological behaviors

begin to be revealed. A growing number of studies prove

that microRNAs are significant in regulating drug trans-

porters, transcription factors and nuclear receptors which

may lead us to a new approach in drug-resistant

treatment.122 In the study of the drug resistance in gastric

cancer, microRNAs are also involved in several classic

signaling pathways.

Bcl-2-related apoptosis pathway is important in regulat-

ing drug resistance in gastric cancer, and the current

researches have shown that a variety of microRNAs are

involved in regulating this pathway. MiR-503 and miR-143

can regulate the expression of IGF1R and Bcl-2 to mediate

gastric cancer cells’ resistance to cisplatin.123,124 The study

of miR-200 BC/429 finds that high expression of miR-

200 BC/429 will strengthen sensitivity of SGC7901/vincris-

tine (VCR) cell line to cisplatin (CDDP), etoposide (VP-16)

and adriamycin (ADR), while it is not suitable for 5-fluor-

ouracil. And when these cells were transfected with miR-

200 BC/429 inhibitor, their resistance to cisplatin, etoposide

and adriamycin was enhanced. Through the luciferase assay,

the Bcl-2 3ʹ-UTR reporters were detected in resistant

SGC7901 cells which suggested that Bcl-2 was a target

gene of the miR-200bc/429 cluster.125

PI3K/AKT signaling pathway is another important sig-

naling pathway in drug-resistance mechanisms, while

microRNAs are also involved in it. MiR-21 is detected

highly expressed in SGC7901/cisplatin (CDDP) resistant

cell line. Further experiments confirm that when the cells

are induced with over-expression of miR-21, cell apoptosis

caused by cisplatin injury would significantly reduce. On

the other hand, decreasing the expression of miR-21

increases the anti-proliferative effects and CDDP-related

apoptosis. It is also been found that miR-21 regulates

cisplatin resistance via down-regulating the expression of

PTEN and activation of the PI3K/AKT signaling pathway.

This also provides us with a new method in handling the

cisplatin resistance in gastric cancer via PI3K/PTEN/AKT
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pathway.126 Besides, miR-21 could also regulate trastuzu-

mab’s efficiency in addition to chemotherapy in patients

with HER2-positive gastric cancer. Over-expressed miR-

21 would inhibit gastric cancer cell apoptosis caused by

the drugs while inhibiting its expression would help with

the therapy.127,128 This result would make microRNAs an

important aid in individualized medicine.

For microRNAs involve in a wide variety of drug-

resistance mechanism in gastric cancer, further researches

are required to conduct.129,130 Although there is a long

road for microRNAs from being applied to the treatment,

they still introduce us with a new way for our future

cancer treatment. New treatments based on microRNAs

will come out in the near future promisingly.

LncRNAs in Drug Resistance of Gastric

Cancer
In the study of gastric cancer, a variety of abnormal-

expressed lncRNAs have been proved to be critical in

tumorigenesis, metastasis and drug resistance. PVT1,

a lncRNA which is associated with gastric cancer, is clo-

sely related with the development and MDR in gastric

cancer. Recent researches show that PVT-1 is highly

expressed in gastric cancer tissues of cisplatin-resistant

patients and SGC7901/DDP cells. In addition, PVT1 is

also a risk factor in lymph nodes metastasis. These fea-

tures make PVT1 have the potential to be the new bio-

markers for the evaluation of patients with gastric

cancer.131,132 And in the prescription of drug resistance

in gastric cancer, up-regulating PVT1’s expression would

raise the expression of p-glycoprotein, MRP, mTOR and

HIF-1α to induce multidrug-

resistance, while inhibiting PVT1’s expression would

reverse cell resistance to cisplatin.133,134 Other studies

have shown that down-regulating the expression of

LEIGC in gastric cancer cells could enhance the resistance

to 5-fluorouracil via regulating the EMT process, which

suggested LEIGC could be a suppressor lncRNA in gastric

cancer.135 Further studies have found that the target site of

lncRNA MRUL is close to p-glycoprotein, and the expres-

sion of MRUL is higher in drug-resistance cells. For

p-glycoprotein is one of the important proteins in inducing

multidrug resistance, patients with high expression of

MRUL show poor reactivity of chemotherapy drugs in

clinical practice. And another study reveals that MRUL

induces resistance to adriamycin by regulating the expres-

sion of ABCB1 in gastric cancer.136

New lncRNAs are also added to some common mole-

cular mechanism and signaling pathway due to the recent

studies, such as Notch 1 could increase lncRNA

AK022798 expression to induce resistance to cisplatin in

gastric cancer.137 LncRNA HOTAIR could also activate

the PI3K/AKT pathway and regulate the expression of

p-glycoprotein through miR-216.138 On the other hand,

the connection between lncRNAs and microRNAs has

been revealed, such as lncRNA UCA1 could enhance

drug resistance by down-regulating miR-27b.139 With the

deepening of the researches, lncRNAs could play a more

active role in gastric cancer drug-resistance treatment.

Discussion
The preferred treatment for advanced-stage gastric cancer

is still surgical operation.140,141 However, for patients who

have no chance to get surgical treatment, the ultimate goal

of comprehensive treatment is to prolong survival and

improve the quality of life. The development and progress

of novel chemotherapy, targeted drugs, immunotherapy

will provide new opportunities for the comprehensive

treatment of gastric cancer. We could bring better clinical

benefit to patients by carrying out a more comprehensive

and personalized diagnosis and treatment strategy.

Meanwhile, drug resistance is still one of the major obsta-

cles in gastric cancer treatments. Although there are many

mechanisms that have been revealed above, the clinical

application is still limited.

The networks of drug-resistance-related pathways are

complicated, and many proteins and molecules are

involved (Figure 1). It might be hard to distinguish them

apart. But the main goal of improving the therapy by

enhancing the efficiency of the drugs is similar.

As we have discussed above, the regulation of certain

miRNA or lncRNA expressions could participate in

improving the response of GC cell lines to chemotherapy

and significantly enhance the antitumor properties of speci-

fic drugs. It could be helpful in developing personalized

therapies, as well as establishing novel therapeutic strategies

to reverse the resistance of tumors in combination with

chemotherapeutic agents. And macropinocytosis could be

used as a new target for therapy and might help with

transfer the drug into the cells. Despite these hypotheses,

there are many other ways we could try in this field.

In conclusion, there are more studies have been carried

out to reveal the mechanisms of drug resistance in gastric

cancer, the related pathways and molecules above are

likely to help us solve this problem in future. For drug
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resistance is caused by multiple factors, it makes our

research more complicated and brings a challenge in clin-

ical application. However, we should believe that with the

development of our technology, the situation will be

improved and the patients will get benefit.
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