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Abstract 64 

Background: Jansen de Vries Syndrome (JdVS) is a rare neurodevelopmental disorder (NDD) 65 

caused by gain-of-function (GOF) truncating mutations in PPM1D exons 5 or 6. PPM1D is a 66 

serine/threonine phosphatase that plays an important role in the DNA damage response (DDR) 67 

by negatively regulating TP53 (P53). JdVS-associated mutations lead to the formation of a 68 

truncated PPM1D protein that retains catalytic activity and has a GOF effect because of 69 

reduced degradation. Somatic PPM1D exons 5 and 6 truncating mutations are well-established 70 

factors in a number of cancers, due to excessive dephosphorylation and reduced function of 71 

P53 and other substrates involved in DDR. Children with JdVS have a variety of 72 

neurodevelopmental, psychiatric, and physical problems. In addition, a small fraction has acute 73 

neuropsychiatric decompensation apparently triggered by infection or severe non-infectious 74 

environmental stress factors. 75 

Methods: To understand the molecular basis of JdVS, we developed an induced pluripotent 76 

stem cell (iPSC) model system. iPSCs heterozygous for the truncating variant (PPM1D+/tr), were 77 

made from a patient, and control lines engineered using CRISPR-Cas9 gene editing. 78 

Proteomics and phosphoprotemics analyses were carried out on iPSC-derived glutamatergic 79 

neurons and microglia from three control and three PPM1D+/tr iPSC lines. We also analyzed the 80 

effect of the TLR4 agonist, lipopolysaccharide, to understand how activation of the innate 81 

immune system in microglia could account for acute behavioral decompensation.  82 

Results: One of the major findings was the downregulation of POGZ in unstimulated microglia. 83 

Since loss-of-function variants in the POGZ gene are well-known causes of autism spectrum 84 

disorder, the decrease in PPM1D+/tr microglia suggests this plays a role in the 85 

neurodevelopmental aspects of JdVS. In addition, neurons, baseline, and LPS-stimulated 86 

microglia show marked alterations in the expression of several E3 ubiquitin ligases, most 87 

notably UBR4, and regulators of innate immunity, chromatin structure, ErbB signaling, and 88 

splicing. In addition, pathway analysis points to overlap with neurodegenerative disorders. 89 
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Limitations: Owing to the cost and labor-intensive nature of iPSC research, the sample size 90 

was small. 91 

Conclusions: Our findings provide insight into the molecular basis of JdVS and can be 92 

extrapolated to understand neuropsychiatric decompensation that occurs in subgroups of 93 

patients with ASD and other NDDs.  94 

 95 

  96 
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Introduction 97 

Jansen de Vries Syndrome (JdVS) (OMIM 617450) is a recently discovered 98 

neurodevelopmental disorder (NDD) caused by truncating mutations in PPM1D exons 5 or 6 (1-99 

4). It is characterized by mild to severe intellectual disability, anxiety disorder, attention deficit 100 

hyperactivity disorder (ADHD), obsessive behavior, hypotonia, sensory integration problems, 101 

and in some cases, autism spectrum disorder (ASD). In addition, feeding difficulties and 102 

gastrointestinal problems (e.g., constipation, esophageal reflux, and cyclic vomiting syndrome) 103 

are common. Approximately half of the reported cases have an increase in childhood infections, 104 

although this has not been systematically evaluated and the pathogenesis has not been 105 

established. PPM1D codes for a member of the PP2C serine/threonine phosphatase family. So 106 

far, every PPM1D mutation found in JdVS is predicted to translate into a truncated protein (e.g., 107 

nonsense mutations and frameshifts) because of the loss of C-terminal amino acids. The 108 

catalytic domain encoded largely by exons 1-4 is preserved, and an increase in PPM1D half-life 109 

occurs because truncated proteins lose a degradation signal that maps within the terminal 65 110 

amino acids (5,6). 111 

 112 

PPM1D is a well-known tumor suppressor gene, acting as a negative regulator of P53 and other 113 

proteins involved in the DNA damage response (DDR) pathway, such as MDM2, ATM, CHK1, 114 

CHK2, ATR, and H2AX (7-9). Somatic GOF truncating mutations in exons 5 or 6 have been 115 

found in a variety of cancers (7-14). Cancer risk in JdVS has not yet been established, although 116 

a normal P53 response to ionizing radiation was found in EB-transformed lymphocytes derived 117 

from children with JdVS (4).  118 

 119 

In addition to the neurodevelopmental and psychiatric features of JdVS, a small subgroup of 120 

patients experience behavioral decompensation that appears to be linked to infection or severe 121 

physical stress. One patient we identified was diagnosed with pediatric acute-onset 122 
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neuropsychiatric syndrome (PANS) as a child, several years prior to exome sequencing for 123 

NDD revealed a typical PPM1D truncating variant (15). PANS is an enigmatic, 124 

neuroinflammatory disorder characterized by the abrupt onset of severe neurological and 125 

psychiatric symptoms that includes obsessive-compulsive disorder (OCD), restricted eating, 126 

anxiety, cognitive deficits with academic regression, disrupted sleep, rage, mood disturbance, 127 

joint inflammation, and autonomic nervous system disturbances (e.g., enuresis, postural 128 

orthostatic tachycardia syndrome) (16-18). Subsequently, we identified two other JdVS case in 129 

which severe behavioral and motor regression occurred following infection and noninfectious 130 

triggers. 131 

 132 

Mouse Ppm1d knockout (KO) models have been developed, which show effects on dendritic 133 

spine morphology and memory processes, a disturbance in T- and B-lymphocyte differentiation, 134 

proliferation, cytokine production, and an increase in phagocytosis and autophagy in peripheral 135 

macrophages (19-22). However, a mouse Ppm1d KO is not an appropriate model for JdVS 136 

GOF variants. Consequently, in order to understand the underlying molecular basis of truncated 137 

PPM1D on neuronal function and the apparent propensity a subgroup of JdVS patients has for 138 

acute neuropsychiatric decompensation, we developed an induced pluripotent stem cell (iPSC) 139 

model and analyzed glutamatergic neurons and microglia by proteomics and 140 

phosphoproteomics.  141 

 142 

Methods 143 

Subjects 144 

The JdVS patient is a male who was born full-term following an uncomplicated pregnancy who 145 

was diagnosed as a child following whole exome sequencing (WES), which revealed a typical 146 

PPM1D truncating mutation in exon 5 (c.1210C>T; p.Q404X). All PPM1D heterozygotes, 147 

whether patient-derived or developed using CRISPR-Cas9 editing (see below), will be referred 148 
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to as PPM1D+/tr. Analysis of parental DNA showed that the mutation was de novo, as is the case 149 

for >90% of JdVS cases. His typically developing brother was used as one of the controls. 150 

Another typically developing control male was used to develop isogenic iPSC PPM1D+/tr lines in 151 

which a truncating mutation was introduced in exon 5 using CRISPR-Cas9 gene editing (see 152 

Additional file 1: Expanded Methods for details). A third male was used as a typically 153 

developing control. These last two controls were characterized in another study (23).  154 

 155 

Development of iPSCs from peripheral blood CD34+ cells 156 

All methods used in this study are described briefly here; details can be found in Additional file 157 

1: Expanded Methods. iPSC lines were generated from human peripheral blood CD34+ 158 

hematopoietic stem cells (HSC) with a CytoTune-iPS 2.0 Sendai Reprogramming Kit 159 

(Invitrogen) following the manufacturer’s protocol, as previously described (24). All lines were 160 

capable of differentiating into the three germ layers and showed no expression of 161 

reprogramming transcription factors. Cytogenetic analysis was negative. 162 

 163 

CRISPR-Cas9 gene editing 164 

A heterozygous truncating variant in PPM1D exon 5 was generated by CRISPR-Cas9 gene 165 

editing, using a protocol described by Ran et al  (25). Briefly, a guide RNA (gRNA) sequence 166 

coding for a region in exon 5 adjacent to a PAM sequence 9 base pairs from the patient 167 

mutation was chosen (Figure 1: Additional file 1: Expanded Methods).  168 

 169 

Differentiation of iPSCs into glutamatergic neurons 170 

iPSCs 171 

were 172 

maintained as previously described (23). Glutamatergic neuronal differentiation was induced 173 

using a protocol developed by Zhang et al., in which differentiation is driven by overexpression 174 

Figure 1. DNA sequence analysis and Western blot of PPM1D truncating variants. 
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of the transcription factor NGN2 (26). A tet-inducible expression system was introduced and 175 

lentivirus particles prepared from the plasmid vectors; pLV_TRET_hNgn2_UBC_Puro (plasmid 176 

#61474) and FUdeltaGW-rtTA (plasmid #19780), followed by treatment with doxycycline and 177 

selection with puromycin (see Additional file 1: Expanded Methods for details). The protocol 178 

routinely leads to the production of a nearly pure culture of excitatory cortical glutamatergic 179 

neurons.  180 

 181 

Neurite outgrowth 182 

Neurite outgrowth was assessed blind to genotype using the NeuronJ plugin (27). Glutamatergic 183 

neurons were stained with Map2 and Tuj1 antibodies and imaged at 10x resolution. Images of 184 

patient and control neurons were converted to 8-bit grayscale, and individual dendrites were 185 

traced and labeled using the semiautomatic manual tracing tool. Approximately 10 images with 186 

an average of 12 neurons per field were analyzed per sample. The “measure tracings” function 187 

was used to determine mean length (in pixels) of the dendritic branches. 188 

 189 

Differentiation of iPSCs into microglia 190 

To generate microglia, we used kits from STEMCELLTM Technologies (STEMdiffTM 191 

Hematopoietic Kit, catalog number 05310; STEMdiffTM Microglia Differentiation Kit, catalog 192 

number 100-0019; STEMdiffTM Microglia Maturation Kit, catalog number 100-0020) according to 193 

the manufacturer’s instructions, with minor modifications as described in Additional file 1: 194 

Expanded Methods. iPSCs are first differentiated into HSCs, followed by terminal 195 

differentiation into microglia. The microglia grow in suspension with the control and PPM1D+/tr 196 

showing a similar morphology. (Additional file 2: Fig. S1). 197 

 198 

Fluorescence-activated cell sorting (FACS) 199 
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Single-cell suspensions were used for flow cytometry staining. We followed a protocol for 200 

Staining Cell Surface Targets for Flow Cytometry from ThermoFisher. All antibodies were 201 

obtained from Stemcell Technologies, except for TMEM119, which is from Novus Biologicals. 202 

For HSCs, we used CD45 FITC (Catalog number 60018FI.1) CD43 APC (Catalog number 203 

60085AZ.1), and CD34 PE (Cat. 60013PE.1) antibodies. For microglia we used TMEM119 APC 204 

(Catalog FAB10313A) and CD11b PE (Catalog 60040PE.1) antibodies. Antibody concentrations 205 

were 5ul per 100ul for all Ab except TMEM119 for which 0.5ul per 100ul was used. Flow 206 

cytometry acquisition was obtained using a BD LSRII analyzer, and BD FlowJo software was 207 

used for data analysis.  208 

 209 

Cytokine array  210 

Microglia were seeded at 5 x 105 cells/well in a 12 well, Matrigel-coated plate in STEMdiff 211 

Microglia Maturation media 24 days post differentiation. After 5 days of maturation, cells were 212 

stimulated with 100ng/ml LPS (O111:B4 strain; Sigma catalog # L4391) for 24 hours at 37oC. 213 

Supernatants were collected and analyzed using the Proteome Profiler Array Human Cytokine 214 

Array (R&D Systems catalog # ARY005B) following the manufacturer’s instructions. Arrays were 215 

analyzed using Quick Spots Image Analysis Software. Each cytokine and chemokine on the 216 

array is measured in duplicate. 217 

 218 

Western Blotting 219 

Proteins were prepared with PierceTM RIPA Buffer (Thermoscientific catalog # 89900) according 220 

to the manufacturer’s protocol, with a protease inhibitor cocktail mix (Sigma catalog # P8340). 221 

Protein concentrations were verified using the BCA assay. Western Blotting was essentially 222 

carried out as previously described, with modifications, as described in Additional file 1: 223 

Expanded Methods. Phosphorylation of CaMKII (CaMK2) was analyzed by comparing the 224 
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phosphorylated and unphosphorylated proteins, which are also described in more detail in the 225 

expanded methods section. 226 

 227 

Proteomics and phosphoproteomics 228 

Proteomics and phosphoproteomics, and subsequent bioinformatics analyses were performed 229 

as previously described (28-35) (see Additional file 1: Expanded Methods for details) 230 

 231 

Results  232 

 233 

Development of iPSCs 234 

A patient-specific line was developed from a male with JdVS who had a de novo nonsense 235 

mutation at codon 404 in exon 5 (c.1210C>T; p.Q404X) (Figure 1). The same mutation was 236 

found in one of the subjects in the original JdVS paper (individual 4) {{6152 Jansen,S. 2017}}. 237 

His typically developing brother was used as a control. We also used CRISPR-Cas9 gene 238 

editing on another control line to create truncating mutations in exon 5 near the patient’s variant. 239 

Two clones with an “A” deletion 5 bp from the patient mutation were obtained. The deletion 240 

causes a frameshift and premature termination after 6 additional amino acids are inserted 241 

(c.1209delA; N402Ifs*6). This is still within the boundaries of the most proximal truncating 242 

mutation described by Jansen et al., at cDNA position 1188 (4). Both the patient sample and the 243 

CRISPR-engineered lines show the truncated protein on a Western blot (Figure 1).  244 

 245 

Proteomics: glutamatergic neurons 246 

Proteomics and phosphoproteomics were carried out on glutamatergic neurons (day 21] 247 

differentiated from iPSCs. A total of four control and five PPM1D+/tr samples were analyzed. 248 

4,948 proteins were detected among which 35 were significantly upregulated and 26 that were 249 

downregulated in the PPM1D+/tr neurons (p<0.05, corresponds to a p-value of 4.32, see 250 

Figure 2. Volcano plots of differentially expressed proteins and phosphoproteins for all analyses 
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Additional file 3: Table S1). The volcano plots for this analysis, as well as the subsequent 251 

proteomics and phosphoproteomics data described below are shown in Figure 2.  252 

 253 

Gene Ontology (GO) analysis was carried out to characterize the pathways and processes 254 

affected by differentially expressed proteins (DEPs). The top GO pathway was, surprisingly, 255 

positive regulation of T cell differentiation (Table 1; Additional file 3: Table S1). This is 256 

probably due to expression of regulatory factors influenced by PPM1D that are expressed in 257 

both neurons and T-cells, an idea supported by the finding that DEPs contributing to the T cell 258 

differentiation GO term in neurons; CBFB, PNP, AP3D1, ANXA1, AP3B1, SART1, BAD, 259 

STAT5B, and ZMIZ1, are also expressed in peripheral blood mononuclear cell (PBMC) types 260 

and microglia (36). In addition, Ppm1d has been found to regulate Th9 cell development and T-261 

cell differentiation in mice (37,38). Thus, the common regulation of these proteins in neurons 262 

and immune cells could be coincidental. The other top GO terms are related to the apparently 263 

novel effect of PPM1D on processing H/ACA snoRNAs, a class of small nucleolar RNAs 264 

(snoRNAs) that regulate ribosome biogenesis and alternative splicing (39). 265 

 266 

We also analyzed neuronal DEPs by KEGG (Kyoto Encyclopedia of Genes and Genomes), 267 

which showed that the top pathway for upregulated proteins was spliceosome, consistent with 268 

the GO terms (Table 2). In addition, enrichment for proteins involved in several 269 

neurodegenerative disorders was also found (e.g., Amyotrophic Lateral Sclerosis [ALS], 270 

Huntington’s Disease (HD), Parkinson’s Disease (PD), Alzheimer’s Disease (AD), and prion 271 

disease). The top differentially expressed down-regulated KEGG pathways were metabolic 272 

pathways, ribosomes, and, similar to the up-regulated pathways, ALS, PD, and HD. These 273 

findings suggest that features underlying the pathogenesis of JdVS are shared with those 274 

involved in some neurodegenerative disorders. 275 

 276 
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Analysis of the top individual up and down-regulated DEPs was particularly noteworthy for 277 

altered expression of proteins involved in ubiquitin signaling (Table 3). The top-upregulated 278 

protein, for example, was CUL4B, a scaffold protein of the CUL4B-Ring E3 ligase complex, 279 

which is expressed primarily in the nucleus where it plays a role in DNA repair and tumor 280 

progression (40-42). Loss of function (LOF) variants have been found in NDDs (43-46). CUL4B 281 

is also an immune regulator, and is involved in the degradation of SIN1, an mTORC2 282 

component  (40,47-49). 283 

 284 

Other ubiquitin signaling proteins among the top 10 upregulated DEPs were PJA2, an E3 285 

ubiquitin-protein ligase, and AUP1, which forms a complex with the ubiquitin-conjugating 286 

enzyme (E2), UBE2G2  (50-52). Among the top downregulated DEPs affecting ubiquitin 287 

signaling is PELI2, a member of the E3 ubiquitin ligase family that regulate the innate immune 288 

system by increasing NLRP3 inflammasome activation (53). 289 

 290 

Other top upregulated DEPs of interest include SMARCE1, SLK, POFUT1, DKC1, and 291 

NEUROG2. SMARCE1 codes for an SWI/SNF chromatin remodeling complex component that 292 

regulates gene expression and can cause ASD when mutated (54-57).  293 

 294 

Other proteins that were most downregulated in PPM1D+/tr neurons were UPF2, NCAM2, TUB, 295 

and GSTZ1. UPF2 is a regulator of nonsense-mediated decay (NMD) and low expression is a 296 

factor in resistance to ATR inhibitors: ATR is a DNA damage sensor and a PPM1D substrate 297 

(9,58). Disruption of NMD has been associated with neurodevelopmental disorders (59) GSTZ1 298 

is a member of the glutathione S-transferase super-family that detoxifies products of oxidative 299 

stress, a process linked to PD, AD, and ALS  (60-63). 300 

 301 

Phosphoproteomics: glutamatergic neurons 302 
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Since PPM1D is a serine/threonine phosphatase, we also carried out a phosphoproteomics 303 

analysis on the samples used in the glutamatergic neuronal proteomics experiment. However, 304 

one sample was omitted for technical problems, so 4 control vs 4 PPM1D+/tr neuronal samples 305 

were analyzed. A total of 7,542 phosphosites were detected (Additional file 4: Table S2). At p 306 

< 0.05, 174 differentially expressed phosphosites (DEPP) differed significantly between control 307 

and PPM1D+/tr neurons; 46 were higher and 128 were lower. GO analysis showed that the most 308 

enriched phosphorylations are related to cytoskeleton organization, cellular component 309 

organization or biogenesis, and mRNA processing (Table 1). KEGG analysis of differentially 310 

expressed upregulated proteins showed that the top pathways were ErbB signaling, axon 311 

guidance, neurotrophin signaling, and regulation of the actin cytoskeleton (Table 2). Axon 312 

guidance and ErbB signaling were also among the top downregulated pathways, along with 313 

insulin signaling and spliceosome.  314 

 315 

The top DEPP that increased in the PPM1D+/tr neurons was SRRM1, which is involved in RNA 316 

processing, as a component of pre- and post-splicing multiprotein mRNP complexes that play 317 

major roles in RNA metabolism (Table 3) (63). Altered expression affects prostate cancer 318 

aggression and invasion of hepatocellular carcinoma cells (64,65). Mutations in PPM1D 319 

mutations are associated with both, suggesting that altered SRRM1 phosphorylation plays a 320 

role in PPM1D-associated cancers (68, 69). Strikingly, two phosphosites on SRRM1 (Ser725 321 

and Thr727) were also the top downregulated DEPPs. Predicted targets at Thr727 include 322 

HIPK1 and p38MAPK (http://www.phosphonet.ca/), which are PPM1D substrates. The findings 323 

suggest that regulation of SRRM1 is a novel feature of truncating PPM1D variants. 324 

 325 

Interestingly, three of the top DEPPs were found in NUCKS1, a chromatin regulator that 326 

regulates DNA repair (66-68). NUCKS1 has been implicated in PD in genome wide association 327 

studies (GWAS) and is a known PPM1D substrate, although neither of the top three neuronal 328 
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NUCKS1 phosphosites occurs at SQ/TQ motifs, which are canonical PPM1D targets (9,69,70). 329 

Another protein that scored multiple hits among the top upregulated phosphosites is DCX 330 

(doublecortin), a cytoskeletal protein that stabilizes microtubules and regulates neuronal 331 

migration and cortical layering during development (71).  332 

 333 

Differential phosphorylation of proteins that are known PPM1D substrates, such as ATM, CHK1, 334 

CHK2, and P53, were not detected, perhaps because the neurons were postmitotic and not 335 

subjected to conditions that would most effectively induce their phosphorylation (e.g., ionizing 336 

radiation). In fact, among the DEPPs that showed a decrease in phosphorylation expected of a 337 

PPM1D GOF effect, only three, ENAH, AKAP12, and ANK2 occurred at SQ sites, suggesting 338 

that the majority of neuronal DEPPs are secondary to the downstream effects of PPM1D on 339 

other kinases and phosphatases, although novel, noncanonical targets are possible as well. 340 

 341 

Overall, the neuronal proteomics and phosphoproteomics data showed differential expression of 342 

proteins and phosphoproteins coregulated in T-cells, splicing, DDR, chromatin regulation, 343 

neurodegeneration, ErbB signaling, and ubiquitin ligases.  344 

 345 

Proteomics: Microglia 346 

As described in the introduction, we identified several JdVS cases in whom severe motor and 347 

behavioral regression occurred following infections and non-infectious stressors. Although these 348 

examples of acute neuropsychiatric decompensation appear to be rare occurrences in JdVS, we 349 

extended the proteomics analysis to include microglia. An additional rationale is that microglia 350 

have been implicated in the pathogenesis of ASD and NDD (72-75). Microglia were developed 351 

from six iPSC lines (three control and three PPM1D+/tr). The differentiation protocol produced 352 

similar populations of TMEM119/CD11B double-positive cells; between 71.9 to 88% (Figure 3).  353 
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5,759 proteins were detected, which included 76 that were significantly upregulated and 76 that 354 

were downregulated (Additional file 5: Table S3; Figure 2). GO analysis showed enrichment 355 

of DEPs related to blood vessel development: aorta morphogenesis, blood vessel lumenization, 356 

and blood vessel morphogenesis, although the p-values are modest (Table 4). Nevertheless, 357 

these findings are of interest. The upregulated proteins that contributed to these GO findings, 358 

DLL4, RBPJ, and LRP, are all involved in endothelial function that can affect the brain-blood 359 

barrier (BBB) suggesting that PPM1D truncating mutations increase BBB permeability (76,77). 360 

In fact, PPM1D has been shown to be a BBB regulator (78). The findings support the idea that 361 

patients with JdVS are prone to neuroinflammation in response to a peripheral immune 362 

challenge. 363 

 364 

Also consistent with a neuroinflammatory phenomenon are the GO terms of enriched DEPs 365 

showing an effect on the production and positive regulation of NLRP3 inflammasome complex 366 

assembly. IL-18 is a proinflammatory cytokine produced, along with IL-1β, as a result of NLRP3 367 

inflammasome activation (79-81). However, the level of significance for this GO term is modest.  368 

 369 

The top pathway for upregulated proteins was lysosome, but similar to the KEGG analysis of 370 

neurons, among the top pathways for both up and downregulated proteins are 371 

neurodegenerative disorders. The lysosome pathway could indicate a predilection for disruption 372 

of autophagy, a process linked to neurodegenerative and neurodevelopmental disorders (Table 373 

5) (82-85). Interestingly, the most upregulated DEPs proteins in PPM1D+/tr microglia are several 374 

regulators of ubiquitin signaling and innate immune pathways (Table 6). These included, 375 

CDC34, a Cullin-Ring E2 ubiquitin-conjugating enzyme, GBP5, a member of the GTPase 376 

subfamily induced by interferon-gamma (IFN-γ), CDBP2, a CD2 antigen cytoplasmic tail-binding 377 

protein that regulates T-cell activation and IL-2 production, KLHDC4, a member of the Kelch-like 378 
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proteins that act as substrate adaptors for Cullin 3 ubiquitin ligases, PELI1, an E3 ubiquitin-379 

protein ligase pellino homolog that regulates NLRP3-induced caspase-1 activation and IL-1β 380 

maturation, ZNFX1, which functions as a dsRNA sensor and regulator of antiviral responses, 381 

and TEP1, a telomerase protein component that can influence innate immune responses 382 

through cGAS/STING (cyclic GMP-AMP synthase-stimulator of interferon genes) activation, a 383 

cytosolic DNA sensor (86-92).  384 

 385 

Many of the most downregulated proteins are also involved in innate immunity including TANK, 386 

which activates NF-κB and cGAS-STING signaling, APOBEC3G, a cytidine deaminase involved 387 

in anti-viral innate immunity, and HERC6, an E3 ligase for ISG15 that regulates ISGylation, a 388 

post-translational modification induced by interferon that has ubiquitin-like, protein modifying 389 

effects (93-103).  390 

 391 

Another key downregulated protein is POGZ, a chromatin regulator that also promotes 392 

homology-directed DNA repair (104). LOF mutations are commonly found in ASD and NDD 393 

(105,106). POGZ binds to ADNP, and their deficiency in mice induces significant upregulation of 394 

genes enriched in neuroinflammation and altered microglial and glutamatergic neuronal function 395 

(105-108). LOF mutations in ADNP have been found in NDD and ASD (including regressive 396 

autism; see discussion) (109-111). Neither POGZ nor ADNP is significantly differentially 397 

expressed in glutamatergic neurons. These findings suggest that decreased POGZ expression 398 

in microglia is playing a role in the neurodevelopmental features of JdVS.  399 

 400 

Phosphoproteomics: Microglia 401 

The phosphoproteomics analysis detected 3458 phosphosites of which only 4 showed a 402 

significant increase in the PPM1D+/tr microglia, while 39 were significantly decreased 403 

(Additional file 6: Table S4; Figure 2). The top GO terms for differentially phosphorylated 404 
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proteins were related to RNA splicing, regulation of small GTPase signaling, chromatin 405 

remodeling, protein phosphorylation, cytoskeleton organization, and cellular response to DNA 406 

damage stimulus, and the top KEGG pathway was spliceosome, similar to the neuronal 407 

proteomics and phosphoproteomics studies (Table 4; Table 5). The top upregulated 408 

phosphorylated proteins in PPM1D+/tr microglia were in PXN, DDX54, TOP2B, MACF1, CCNY, 409 

and SRRM1 (Table 6). Remarkably, this overlaps with the finding that SRRM1 was the top 410 

upregulated, as well as the top downregulated phosphorylated protein in PPM1D+/tr neurons, as 411 

described above, providing additional support for the idea that PPM1D truncating mutations 412 

disrupt SRRM1 function. An increase in phosphorylation at S429 in both neurons and microglia 413 

was detected. This is predicted to be a substrate for the PIM family of kinases, which promote 414 

tumorigenesis and immune escape by HIV (112,113).  415 

 416 

Two phosphosites in TRAFD1 were among the top 10 DEPPs. TRAFD1 is a transcription factor 417 

that acts as a negative feedback regulator of the innate immune system to control excessive 418 

immune responses (114,115). A similar occurrence in microglia could perhaps be relevant to the 419 

acute neuropsychiatric decompensation that occurs in some JdVS patients. 420 

 421 

The most downregulated DEPPs were found in SERF2, FLI1, UFL1, SNX5, and VPS50. SERF2 422 

is small EDRK-rich factor 2 that modifies amyloid fiber assembly and promotes protein 423 

misfolding (116). FLI1 is a member of the ETS transcription factor family that is disrupted in 424 

Ewing Sarcoma and acute myelogenous leukemia (117). And UFL1 (UFM1-protein ligase 1; 425 

Ubiquitin-like modifier 1 ligating enzyme 1) is a regulator of UFM1 conjugation (UFMylation), a 426 

ubiquitin-like modification that plays a key role in maintaining cell homeostasis under cellular 427 

stress, including DDR (118-120). SNX5 is a component of an autophagosomal complex and 428 

VPS50 is an endosome-recycling protein (121,122). 429 

 430 
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In summary, the microglia proteomics and phosphoproteomics analyses suggest that reduced 431 

expression of POGZ is a candidate for the cognitive and behavioral aspects of JdVS, and that 432 

truncated PPM1D could disturb innate immune responses in the brain through altered regulation 433 

of ubiquitin signaling, DDR, splicing, altered expression or function of key genes, and perhaps 434 

BBB permeability. 435 

 436 

Proteomics Analysis of lipopolysaccharide (LPS)-activated microglia 437 

To test the hypothesis that PPM1D+/tr microglia have an altered response to an innate immune 438 

system challenge, the effect of LPS was analyzed by proteomics. One hundred and fifty-eight 439 

proteins were upregulated in the PPM1D+/tr samples, and 254 were downregulated.  440 

(Additional file 7: Table S5; Figure 2). The top GO term was negative regulation of interleukin-441 

6 (IL-6), a proinflammatory cytokine implicated in neuroinflammation, maternal immune 442 

activation, ASD, schizophrenia, and depression (Table 7)  (123-126). However, the p-value was 443 

modest. KEGG analysis showed that the top pathways for upregulated proteins were lysosome, 444 

metabolic pathways, and several neurodegenerative disorders, similar to the findings in 445 

uninduced microglia and glutamatergic neurons (Table 8). Downregulated proteins were 446 

enriched for spliceosome, nucleocytoplasmic transport, and ALS, overlapping with other 447 

proteomics findings. Proteins involved in the response to several infectious diseases were also 448 

detected in the KEGG analysis.  449 

 450 

Examination of individual DEPs showed striking patterns consistent with innate immune 451 

dysregulation, in particular, ubiquitin signaling (Table 9). The top upregulated protein in 452 

PPM1D+/tr microglia was UHRF1BP1 (UHRF1-binding protein 1), which binds to UHRF1, a 453 

RING-finger E3 ubiquitin ligase, a regulator of Treg cell proliferation (127,128). Non-454 

synonymous variants have been found in systemic lupus erythematosus (129). However, the 455 

effects of UHRF1BP1 and UHRF1 on microglia are not known. GBA1 catalyzes the cleavage of 456 
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glycosphingolipids–glucosylceramide and glucosyl sphingosine. Genetic variants are known risk 457 

factors for PD and Lewy Body Dementia, and biallelic LOF variants cause Gaucher disease 458 

(130-134). RAB11A is a member of the RAS family of small GTPases and is a regulator of toll 459 

receptor trafficking (134,135). 460 

 461 

The most downregulated DEP was the ubiquitin protein ligase E3 component n-recognin 4 462 

protein, UBR4, which regulates oxidative stress by promoting K27-linked-ubiquitylation of N-463 

terminal oxidized cysteines leading to proteasomal degradation (136). It’s also a regulator of 464 

interferon signaling (137,138) and the proteasomal degradation of PINK1, which is involved in 465 

the pathogenesis of PD (see discussion) (138-140). UBR4 variants have been linked to early-466 

onset dementia (140). Other top-downregulated proteins include HAS1, a regulator of the 467 

extracellular matrix that is induced by LPS and KCTD5, a BTB/POZ domain-containing protein 468 

that functions as substrate-specific adaptor for Cullin3-based E3 ligases (141-143). 469 

 470 

Phosphoproteomics LPS treated microglia 471 

 472 

Phosphoproteomics was carried out on the same samples used in the proteomics analysis. A 473 

total of 3,458 phosphosites were detected; 42 showed a significant increase in the LPS treated 474 

PPM1D+/tr microglia, and 182 showed a significant decrease (Additional file 8: Table S6; 475 

Figure 2). Strikingly, four of the top seven phosphosites that increased in the LPS-stimulated 476 

PPM1D+/tr microglia were in UBR4, although neither of the sites is a canonical PPM1D target 477 

motif (Table 9). The top phosphosite is at S2718, which is phosphorylated in UV irradiated cells, 478 

consistent with an effect of PPM1D or its substrates on DDR (144). This and the other top UBR4 479 

phosphosites have an SS motif. As noted above, UBR4 is also the most downregulated DEP in 480 

LPS-treated microglia, suggesting that UBR4 phosphorylation is inversely correlated with UBR4 481 

protein levels. There are also two enriched phosphosites in PLXNC1, a member of the plexin 482 
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family of transmembrane receptors for semaphorins, which are involved in brain development 483 

and immune responses (145). IL16 had the most differentially increased phosphosite after 484 

UBR4. It is a CD4+ immune cell-specific chemoattractant cytokine that has been implicated in 485 

multiple sclerosis (146,147). 486 

 487 

The most downregulated phosphosite was in RASAL3, a RasGAP that is highly expressed in 488 

neutrophils. Deficiency enhances immune activation in acute inflammatory conditions (148). GO 489 

analysis of all differential phosphosites showed enrichment of phosphoproteins involved 490 

 in RNA splicing, regulation of small GTPase-mediated signal transduction, chromatin 491 

remodeling, cytoskeleton organization, and cellular response to DNA damage stimulus 492 

(Table 7). These findings overlap with the uninduced microglia phosphoproteomics analysis. 493 

Alterations in microglia’s cytoskeleton function could potentially cause problems with their 494 

migration or phagocytic potential. 495 

 496 

The top KEGG pathways for phosphosites that increased in the PPM1D+/tr microglia were Rap1 497 

signaling, Yesinia infection, platelet activation and regulation of cytoskeleton, while the terms 498 

spliceosome, regulation of actin cytoskeleton, viral life cycle (HIV-1) and thyroid hormone 499 

signaling pathway were pathways enriched with phosphosites that decreased in PPM1D+/tr 500 

microglia (Table 8). A modest enrichment of phosphosites involved in ErbB signaling was also 501 

seen, which by itself seems relatively minor. However, in view of the enrichment of 502 

phosphosites in this pathway in neurons and uninduced microglia, as well as LPS-treated cells, 503 

the findings suggest that PPM1D truncating mutations can disrupt ErbB signaling. PPM1D 504 

expression has been found to affect breast cancer growth (149,150). In the brain, ErbB 505 

signaling plays a role in synaptic plasticity and has been implicated in NDD  (151-154).  506 

 507 
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Overall, the findings show that immune stimulation of PPM1D+/tr microglia results in altered 508 

expression of proteins involved in ubiquitin signaling, in particular, UBR4, actin cytoskeleton, 509 

RNA splicing, chromatin structure, and innate immune regulation, the latter of which could play 510 

a role in the decompensation some JdVS patients experience following infectious and non-511 

infectious stressors.  512 

 513 

In summary, the three cell types in which proteomics and phosphoproteomics were carried out 514 

(glutamatergic neurons, uninduced microglia, and LPS-stimulated microglia) showed several 515 

overlapping pathways: splicing, ubiquitin ligase expression, neurodegenerative disorders, 516 

chromatin organization, cytoskeleton dynamics, and ErbB signaling (Figure 4). 517 

  518 

Functional analysis of glutamatergic neurons and microglia 519 

Most of the differentially expressed phosphosites in neurons and microglia were not at canonical 520 

SQ or TQ motifs recognized by PPM1D, so the GOF effect of truncated PPM1D could not be 521 

unequivocally validated using the phosphoproteomics data we obtained. Consequently, we 522 

examined a known neuronal PPM1D target, CaMKII T287 to confirm a GOF effect in neuronal 523 

cells. As shown in Figure 5, there was a statistically significant, 2-fold decrease in the relative  524 

expression of phospho-CAMKII in PPM1D+/tr neuronal cells consistent with a GOF effect. Also 525 

shown in the figure, is a validation of the GO and KEGG findings that cytoskeleton function is 526 

disrupted in PPM1D+/tr glutamatergic neurons; a significant decrease in neurite outgrowth was 527 

found. Cytoskeleton function is critical for neurite outgrowth and synapse development, and 528 

many ASD and NDD candidate genes have an adverse effect on these processes (155-157).  529 

 530 

Finally, we measured the concentration of cytokines and chemokines in the supernatant 531 

following LPS treatment to assess microglia function following an innate immune challenge. The 532 

top GO term for LPS-treated PPM1D+/tr microglia was negative regulation of IL-6. This was 533 
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based on DEPs that directly or indirectly affect IL-6 signaling (ZC3H12A, GBA, TNFAIP3, 534 

GAS6), rather than IL-6 levels per se, which was not detected in the proteomics analysis. As 535 

seen in Figure 5C, IL-6 was induced in LPS-treated control microglia, but not in the PPM1D+/tr 536 

cells as predicted. However, because of a large standard error and the small sample size, the 537 

induction was not statistically significant. In addition, we detected a slight increase in baseline 538 

IL-18 levels in PPM1D+/tr microglia compared with the controls, as predicted from the GO 539 

analysis, but that difference was also not statistically significant. There was also a decrease in 540 

IL-18 induction by LPS detected in the PPM1D+/tr microglia compared with LPS-treated controls, 541 

but the difference fell short of statistical significance (p=0.2). This is consistent with the 542 

proteomics data, which showed a statistical trend towards a decrease in IL-18 in the PPM1D+/tr 543 

LPS-treated microglia (-log2 p-value of 3.79 = 0.07, see Additional file 7: Table S5). In 544 

addition, there was, somewhat unexpectedly, a significant decrease in the induction of the 545 

chemokines CCL2 and CCL3/CCL4 by LPS between the control and PPM1D+/tr microglia (p= 546 

0.0009 and 0.02, respectively. In fact, while LPS induced an increase in CCL2 in the control 547 

sample that showed a trend towards statistical significance (p=0.065), a significant decrease 548 

was detected in the PPM1D+/tr cells (p=0.01). The findings suggest that truncated PPM1D 549 

causes deregulation of cytokine release. 550 

 551 

Discussion  552 

Although the sample size in this study was small, a number of interesting findings emerged that 553 

could explain the clinical features seen in JdVS. One is the significant decrease in the 554 

expression of the chromatin regulator and high-confidence ASD candidate gene POGZ in 555 

PPM1D+/tr microglia. This is consistent with the finding that Pogz KO mice show an upregulation 556 

of genes enriched in neuroinflammation and an increase in microglia phagocytosis in the 557 

prefrontal cortex (105). Similar and overlapping findings were found in Adnp KO mice. ADNP is 558 

another high-confidence ASD gene that forms a nuclear complex with POGZ and was also 559 
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decreased in PPM1D+/tr microglia (108). Given the findings in mouse Pogz KO models, the 560 

significant decrease of POGZ in PPM1D+/tr suggests that microglia are playing a direct role in 561 

the neurodevelopmental aspects of JdVS. However, considering the neuronal proteomics 562 

analysis, neurons are likely also playing a causal role, as expected of a gene like PPM1D that is 563 

expressed ubiquitously throughout the CNS in neurons and non-neuronal cells. Considering that 564 

PPM1D is expressed at much higher levels in the cerebellum compared to other brain regions, 565 

as are both POGZ and ADNP, it will be particularly important to carry out the studies reported 566 

here in cerebellar organoids derived from our iPSC lines, or in mouse models. The cerebellum 567 

is now known to play a role in cognitive function and the development of ASD and NDD, in 568 

addition to its well-established effects on locomotor function and coordination (158-160).  569 

 570 

Another interesting aspect of this study is related to the clinical observation that a small 571 

proportion of JdVS patients have acute neuropsychiatric decompensation, a phenomenon that 572 

has been described in genetic subgroups of NDD and ASD (109,161-164). One of the patients 573 

presented with symptoms consistent with PANS, as we previously reported (15), and two others 574 

with acute and subacute behavioral and motor regression following infection and noninfectious 575 

stressors (unpublished observations). PANS is an autoinflammatory/autoimmune disorder 576 

induced by group A beta-hemolytic Streptococcus and other infectious microbes, and behavioral 577 

regression in ASD has been hypothesized to have immune-based or infection-triggered 578 

underlying pathogenesis in some cases (162,165-167). Interestingly, ADNP is one of 11 ASD-579 

associated candidate genes, most commonly found in regressive ASD (109). Our microglia 580 

proteomics and phosphoproteomics findings support the idea that PPM1D truncating mutations 581 

can affect the susceptibility to immune-based decompensation. For example, the microglia GO 582 

analysis showed that proteins involved in endothelial function that can affect the BBB are 583 

differentially expressed; disruption of the BBB resulting in increased permeability to peripheral 584 

inflammatory cytokines, chemokines, complement, and immune cells, has been viewed as a 585 
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pathogenic feature of neuroinflammatory and neurodegenerative disorders (168-171). Also 586 

consistent with a neuroinflammatory vulnerability are the various connections to dysregulated 587 

innate immunity we detected in PPM1D+/- microglia, primarily through altered expression of 588 

ubiquitin ligases and ubiquitin-conjugating enzymes. Most notable is UBR4, which was the most 589 

downregulated DEP in LPS-stimulated microglia. UBR4 was also among the most down-590 

regulated proteins detected in PPM1D+/tr microglia treated with poly I:C and IL-17 (unpublished 591 

observations, manuscript in preparation). As noted in the results section, UBR4 regulates 592 

oxidative stress and interferon signaling, and the degradation of PINK1, a mitochondrial 593 

serine/threonine kinase that recruits the E3 ligase PARKIN (PRKN) to induce mitophagy (136-594 

138,172). Homozygous, LOF mutations in either PINK1 or PRKN are found in early onset, 595 

autosomal recessive forms of PD (139,140). Interestingly, we are aware of two cases of acute 596 

neuropsychiatric decompensation consistent with PANS who are heterozygous for LOF 597 

mutations in PRKN (manuscript in preparation). This connection between LPS-stimulated 598 

PPM1D+/tr microglia and PD suggests a common vulnerability to environmental stressors due to 599 

dysfunctional UBR4 signaling, with subsequent adverse effects on proteasomal degradation and 600 

mitophagy. A defect in mitophagy homeostasis has been implicated in the pathogenesis of PD, 601 

as well as AD (173,174). UBR4 variants have been found in some families with early-onset 602 

dementia (175). The effect of PPM1D truncating mutations on mitophagy has not yet been 603 

carried out. It should be noted that DEPs aside from UBR4 are connected to PD as seen in the 604 

KEGG pathway analyses showing that PD (and other neurodegenerative disorders) is among 605 

the top GO and KEGG pathways in both neurons and microglia.  606 

 607 

In addition to UBR4, a number of other E3 ubiquitin ligases and their regulators, and ubiquitin-608 

conjugating enzymes involved in innate immune responses were among the most differentially 609 

expressed proteins in untreated PPM1D+/tr microglia (CDC34, KLHDC4, and PELI1; 610 

upregulated: HERC6; downregulated), and in LPS stimulated microglia (UHRF1BP1, 611 
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upregulated), as noted in the results section. In addition, the top-upregulated protein in 612 

PPM1D+/tr neurons was CUL4B, a component of the CUL4B-Ring E3 ligase. The specific 613 

substrates affected by these ubiquitin regulators in microglia and neurons, and how they might 614 

be involved in JdVS and neuroinflammation need to be investigated. 615 

 616 

An important finding to consider regarding the neuroinflammatory potential of PPM1D+/tr 617 

microglia is the seemingly paradoxically lack of induction of IL-6 following LPS stimulation and 618 

the GO analysis that showed an enrichment of proteins that negatively regulate IL-6. This 619 

cytokine is one of the major proinflammatory cytokines implicated in neuroinflammation and 620 

maternal immune activation (123,176,177) In fact, in addition to IL-6, there was a generalized 621 

blunting of LPS-mediated cytokine induction in PPM1D+/tr microglia (Figure 5C). This was 622 

particularly the case for CCL2 and CCL3/CCL4, which showed significant decreases compared 623 

with LPS-induced control microglia. A blunted induction of ICAM-1 and IL-8 was also detected, 624 

but the control vs PPM1D+/tr difference was only significant for the latter (p=0.05). This suggests 625 

that TLR4 signaling is attenuated by truncated PPM1D. These findings need to be validated in a 626 

larger iPSC dataset, which is currently being carried out, and animal models. Reduced 627 

expression of CCL2 and CCL3/CCL4, which are potent monocyte attractants, in response to 628 

LPS activation, could affect the recruitment of transmigrating monocytes, a population of 629 

peripheral monocytes that can cross the BBB (178,179). Considering the dichotomy of 630 

monocytes and macrophages into pro- and anti-inflammatory subtypes, the effect of the blunted 631 

activation of CCL2 and CCL3/CCL4 on a neuroinflammatory process is difficult to predict and 632 

would need to be evaluated in an animal model. Furthermore, if the connection between 633 

PPM1D GOF variants and neuroinflammation is confirmed, then the idea that cytokines and 634 

chemokines affecting microglia and brain function are mediators may be too limiting. In the case 635 

of truncated PPM1D, a disturbance in microglia homeostasis and function may be at play, rather 636 

than an excessive release of proinflammatory cytokines and chemokines.  637 
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 638 

It is important to note that the iPSC lines used in these studies were not made from subjects 639 

with acute psychiatric decompensation, in either the JdVS subject we used or, especially, the 640 

CRISPR lines, which were made from a typically developing control. Thus, while connections to 641 

a neuroinflammatory process in this study are based on differences between control and 642 

PPM1D truncating mutations, they are occurring in the context of cellular stress conditions 643 

inherent in growing cultured cells in artificial media in an incubator. Therefore, replication in an 644 

animal model is essential. 645 

 646 

Finally, it is important to consider the microglia findings in the context of the increased infections 647 

that occur in some JdVS children. In the original report of 14 cases, and a subsequent follow up 648 

of 33 cases, recurrent infections, in particular otitis media, were reported in approximately half  649 

(1,4). Although this has not been evaluated systematically, the increase in infections seen in 650 

some children has been sufficiently severe to warrant evaluations for immunodeficiencies by 651 

their physicians, which have been non-diagnostic so far. Considering the physiological and 652 

functional overlap between microglia and peripheral monocytes/macrophages, the differential 653 

expression of proteins involved in immune responses that were found in our proteomics 654 

analysis, as well as the blunted effect on cytokine and chemokine release could be having a 655 

similar effect in the periphery, reducing the effectiveness of an innate immune response to 656 

infections.  657 

 658 

Limitations 659 

The small sample size was a major limitation. Another is extrapolating data related to 660 

neuroinflammation using an in vitro microglia differentiation and cell culture system that is 661 

probably inducing cellular stress. 662 

 663 
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Conclusion 664 

In summary, our findings show plausible mechanisms for the neurodevelopmental and cognitive 665 

features of JdVS, as well as the increased risk of neuroinflammatory-mediated decompensation, 666 

and perhaps the increased rate of infections seen in patients. The mechanistic links we 667 

identified to regression in NDD are also significant. Our findings provide additional support for 668 

the idea that a subgroup of NDD and ASD cases can experience neuropsychiatric 669 

decompensation caused by dysregulated innate immunity that is potentially treatable with 670 

immune modulators, as suggested by other investigators (162,180). In addition, the molecular 671 

connection to PD found with UBR4 and other DEPs (e.g., NUCKS1, GBA1) could also be 672 

significant in that unrecognized and under-treated neuroinflammatory processes could pose a 673 

future risk of PD and other neurodegenerative disorders. Thus, our analysis of JdVS, a rare 674 

disease with fewer than 100 reported cases, could be informative for disorders that have greater 675 

public health significance.  676 

 677 
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iPSC (induced pluripotent stem cell)  680 
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 743 

Figure and Table Legends 744 

Figure 1. DNA sequence analysis and Western blot of PPM1D truncating variants. A. Map 745 

of PPM1D showing the 6 exons with the catalytic domain depicted as a solid bar. The two 746 

clusters of JdVS mutations are in the 3'-end of exon 5 and the 5'-end of exon 6. B. DNA 747 

sequence strip of wild type allele on top and the patient sample showing the c.1210C>T; 748 

p.Q404X nonsense mutation on bottom. The region covered by the guide RNA used for 749 

CRISPR-Cas 9 engineering is shown. C. Two isogenic lines with an "A" deletion were generated 750 

with CRISPR. D. PPM1D Western blot showing wild-type protein and the truncated protein. 751 

Cyclophilin is a loading control. Lanes 1 and 2 are control samples, lane 3 is the patient sample, 752 

and lanes 4 and 5 are two CRISPR lines. 753 

 754 

Figure 2. Volcano plots of differentially expressed proteins and phosphoproteins for all 755 

analyses. -log2 value of 4.32 corresponds to p=0.05, which is the cutoff. 756 

 757 

Figure 3. FACS analysis of microglia. Microglia were developed from three control iPSC lines 758 

(PPM60C, LS200, and LS400), and three patient lines (PPMOOD, 36C, 36E). PPM6OC is the 759 

typically developing sibling control of PPMOOD, and LS200 is the isogenic control for 36C and 760 

36E. LS400 is another typically developing control. Cells were sorted using conjugated 761 

antibodies against the microglia markers TMEM119 and CD11b, the latter of which also binds to 762 

macrophages. Microglia are positive for both double-positive cells. 763 

 764 

Figure 4. Summary of neuronal and microglia proteomics and phosphoproteomics. Six 765 

pathways (center of each block, light grey) were found by either GO or KEGG (up or 766 
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downregulated) that were shared in three or more of the six different conditions analyzed in this 767 

study; proteomics and phosphoproteomics on glutamatergic neurons, untreated microglia, and 768 

LPS induced microglia (shared dark grey block; not shared, white block) 769 

 770 

Figure 5. CaMKII, Neurite Outgrowth, Cytokine Release. A. CaMKII phosphorylation was 771 

analyzed by quantifying Western blot signals for CaMKII, phospho-CaMKII, and cyclophilin as a 772 

loading control. The graph in 5A is a plot of the ratio of the normalized phospho-CaMKII signal 773 

(relative to cyclophilin) divided by the normalized CaMKII signal. A total of 4 control and 5 774 

PPM1D+/tr neuronal samples were analyzed. The graph is the mean for the two groups, +/- 775 

SEM. The decrease in CaMKII phosphorylation was highly significant (p= 0.0005, Student’s t-776 

test, two-tailed). B. Neurite outgrowth was measured in day 21 glutamatergic neurons as 777 

described in the methods section. Tracings from two control and two PPM1D+/tr day 21 778 

glutamatergic neurons were obtained, blind to genotype, for a total of 400 and 229 neurons 779 

analyzed, respectively. The difference between the two was highly significant (mean +/- SEM, 780 

8.9E-07, Student’s t-test, two-tailed). C. Cytokine release was assayed using the Proteome 781 

Profiler Array Human Cytokine Array, as described in the methods. A total of 4 control and 3 782 

PPM1D+/tr microglia samples were analyzed (the same samples that were analyzed in the 783 

proteomics and phosphoproteomics analyses plus an additional control that was not analyzed 784 

by proteomics. Culture supernatants were harvested after 24 hours of LPS treatment. Untreated 785 

(no tx) cells from the same differentiation were harvested simultaneously. The data are the 786 

means of 4 vs 3, with each spot on the array measured in duplicate. A Student’s t-test was used 787 

to calculate statistical significance. Those at p < 0.05 are indicated by asterisks: CCL2, 788 

untreated control LPS vs PPM1D+/tr LPS (p=0.01); untreated PPM1D+/tr vs PPM1D+/tr LPS 789 

(p=0.0009) (note CCL2 control vs control LPS had a p-value of 0.065); CCL3/CCL4, untreated 790 

control vs control LPS (p=0.02); CCL3/CCL4, control LPS vs PPM1D+/tr LPS (p=0.02); ICAM-1 791 
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untreated control vs control LPS (p=0.05); IL-8, untreated control vs control LPS (p=0.02), 792 

control LPS vs PPM1D+/tr LPS (p=0.05);  793 

 794 

Table 1. Gene Ontology (GO) analysis, neurons. All differentially expressed proteins and 795 

phosphoproteins were used to determine GO terms. Only the most significant terms are shown. 796 

For the complete list, see Additional file 3: Table S1. Tab1.  797 

 798 

Table 2. KEGG analysis, neurons. KEGG analysis based on differentially expressed up-799 

regulated proteins and phosphoprotein, and differentially expressed down-regulated proteins 800 

and phosphoproteins. See Additional file 3: Table S1 for complete lists. 801 

 802 

Table 3. Differentially expressed proteins and phosphoproteins, neurons. Differentially 803 

expressed up and down-regulated proteins and phosphoproteins based on total scores 804 

(calculated by multiplying Fold Change by the p-value [-log 2 of 4.32 corresponds to p=0.05]). 805 

DEPs shown in descending order.  806 

 807 

Table 4. Gene Ontology (GO) analysis, microglia. All differentially expressed proteins and 808 

phosphoproteins were used to determine GO terms. Only the most significant terms are shown. 809 

For the complete list, see Additional file 5: Table S3.  810 

 811 

Table 5. KEGG analysis, microglia. Shows lists of the most significant KEGG pathways for up 812 

and downregulated proteins and phosphoproteins in PPM1D+/tr microglia. See Additional file 5:  813 

Table S3 for complete lists.  814 

 815 
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Table 6. Differentially expressed proteins and phosphoproteins, uninduced microglia. 816 

Differentially expressed up and down-regulated proteins and phosphoproteins in baseline, 817 

untreated microglia. 818 

 819 

Table 7. Gene Ontology (GO) analysis, LPS induced microglia. All differentially expressed 820 

proteins and phosphoproteins were used to determine GO terms. Only the most significant 821 

terms are shown. For the complete list, see Additional file 7: Table S5. 822 

 823 

Table 8. KEGG analysis, LPS treated microglia. Differentially expressed up and down-824 

regulated proteins and phosphoproteins in baseline, untreated microglia.  Additional file 7: 825 

Table S5. 826 

 827 

Table 9. Differentially expressed proteins and phosphoproteins, LPS-treated microglia. 828 

Shows the top up and downregulated proteins and phosphoproteins in baseline, untreated 829 

microglia. See Additional file 7: Table S5 and Additional file 8: Table S6 for all proteins and 830 

phosphoproteins. 831 

 832 

Additional Files 833 

Additional file 1: Expanded Methods. This file contains a detailed description of the methods 834 

used in this study. 835 

 836 

Additional file 2: Fig. S1. Microscopic image of unstained microglia grown in suspension. Two 837 

controls and two PPM1D+/tr samples are shown. The bar is 200 µMs. Two other samples not 838 

available. 839 

 840 
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Additional file 3: Table S1. Neuron proteomics, PPM1D+/tr vs controls. Tab 1. Gene 841 

Ontology (GO) analysis. Control sample names on top are shown in pastel; 1 and 4, 2 and 3 842 

are biological duplicates. PPM1D+/tr samples are shown in light green. Samples 1 and 2, as well 843 

as 3 and 5, are biological duplicates. Differentially expressed proteins are arranged in 844 

descending order based on highest to lowest scores in a comparison of all PPM1D+/tr samples 845 

vs all controls. The score is calculated by multiplying Fold Change by the p-value (-log 2 of 4.32 846 

corresponds to p=0.05). Tabs 2 and 3 (Neuron PPM1D+/tr Up KEGG and Neuron PPM1D+/tr 847 

Down KEGG, respectively) shows the KEGG analysis of all proteins that increased and 848 

decreased in the PPM1D+/- samples.  849 

 850 

Additional file 4: Table S2. Neuron phosphoproteomics, PPM1D+/tr vs controls. Control 851 

sample names on top are shown in pastel. Controls 1 and 3, and 2 and 4 are biological 852 

duplicates. PPM1D+/- sample names are shown in green. Samples 2 and 4 are biological 853 

duplicates. Tab 1, DEPPs are differentially expressed phosphoproteins arranged in descending 854 

order based on highest to lowest scores, as described in the legend for Additional file 3: Table 855 

S1. Tab 1 (Phosphosites and GO) contains all phosphorylated proteins in descending order and 856 

the GO analysis. Tab 2 (normalize to protein value) show GO analysis and volcano plot. Tabs 3 857 

and 4 are  neuron phospho up 500 EnrichR and neuron phospho down 500 EnrichR, 858 

respectively, showing KEGG pathway analysis for phosphoproteins that increase or decrease in 859 

PPM1D+/- neurons. Additional GO analyses for up and down regulated phosphoproteins are 860 

shown, but were not described in the paper in order to avoid redundancy. 861 

 862 

Additional file 5: Table S3. Microglia proteomics, PPM1D+/tr vs controls. Three control 863 

samples and three PPM1D+/- samples were analyzed. The microglia were in their baseline state 864 

– no treatment (no tx). Tab 1 (processing) shows the detailed steps of data processing starting 865 

from raw abundance to log2 transformation, to normalization and to imputation of missing 866 
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values. Tab 2 is the differentially expressed protein list calculated as described in the neuron 867 

proteomics analysis (see figure legend, Additional file 3: Table S1), along with the GO analysis. 868 

Tab 3 is the DAVID KEGG analysis of up regulated proteins, which was not discussed in the 869 

paper since it overlapped with other findings. Tabs 4 and 5 are the KEGG pathways for the up 870 

and down regulated proteins, respectively, using 500 EnrichR. Tab 6 is the DAVID KEGG 871 

analysis of up regulated proteins. 872 

 873 

Additional file 6: Table S4; Figure 2. Microglia phosphoproteomics, PPM1D+/tr vs controls. 874 

Phosphoproteomics was carried out on the same samples described in Additional file 5: Table 875 

S3. Tab 1 (PPM1D+tr untreated vs Control) contains the differentially expressed 876 

phosphoprotein list, along with the GO analysis. Tabs 2 and 3 (PPM1D+tr untreated Up KEGG 877 

and PPM1D+tr untreated Down KEGG) show KEGG pathways for up and downregulated 878 

phosphosites, respectively. 879 

 880 

Additional file 7: Table S5. LPS treated microglia proteomics, PPM1D+/tr vs controls. 881 

Microglia derived from the same iPSC lines as described in the legend of Additional file 5: Table 882 

S3 were treated with LPS (see main text). Tab 1 (processing), as described in Additional file 5: 883 

Table S3. Tab 2 (microglia proteomics LPS) shows differentially expressed protein arranged by 884 

total score in descending order (PPM1D+/tr vs controls) and GO analysis. KEGG pathway 885 

analysis for up and downregulated proteins are shown in Tabs 3 and 4, respectively (Microglia  886 

LPS Up KEGG; Microglia  LPS down KEGG).  887 

 888 

Additional file 8: Table S6. LPS treated microglia phosphoproteomics, PPM1D+/tr vs 889 

controls. Phosphoproteomics was carried out on LPS treated microglia using the same 890 

samples described in Additional file 7: Table S5. Tab 1 (PPM1D+tr LPS vs Cont LPS) shows 891 

differentially phosphorylated phosphosites arranged by total score in descending order and the 892 
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GO analysis. Tabs 2 and 3 (PPM1D+tr LPS enriched Up KEGG; PPM1D+tr LPS enriched Down 893 

KEGG) show the KEGG pathway analyses for phosphosites that increase or decreased, 894 

respectively. 895 

 896 

 897 
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