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Abstract

Background: Replication timing experiments that use label incorporation and high throughput sequencing
produce peaked data similar to ChIP-Seq experiments. However, the differences in experimental design, coverage
density, and possible results make traditional ChIP-Seq analysis methods inappropriate for use with replication timing.

Results: To accurately detect and classify regions of replication across the genome, we present Repliscan. Repliscan
robustly normalizes, automatically removes outlying and uninformative data points, and classifies Repli-seq signals
into discrete combinations of replication signatures. The quality control steps and self-fitting methods make Repliscan
generally applicable and more robust than previous methods that classify regions based on thresholds.

Conclusions: Repliscan is simple and effective to use on organisms with different genome sizes. Even with analysis
window sizes as small as 1 kilobase, reliable profiles can be generated with as little as 2.4x coverage.
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Background
The most essential property of the cell is its ability to
accurately duplicate its DNA and divide to produce two
daughter cells [1]. The cell’s replication cycle starts with
G1 phase, in whichmolecules essential for cell division are
produced, then proceeds to replicating DNA in S phase.
After all DNA in the genome is duplicated, the cell contin-
ues to grow in G2 phase until it divides into two daughter
cells at the end of Mitosis, or M phase, at which point it is
ready to start the cell cycle again (Fig. 1).
To ensure accuracy and efficiency, S phase is complex

and highly regulated. Instead of duplicating in a single zip-
ping motion, reminiscent of transcription, DNA is synthe-
sized in regions at distinct times in eukaryotes, initiating
at multiple origins of replication [2]. This synthesis pro-
cess takes place in a live cell, so replication mechanisms
need to be coordinated with active transcription, chro-
matin configuration, and three-dimensional structure [3].
For example, early replication correlates with chromatin
accessibility [4].
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To better understand the coordinated program of DNA
replication, two types of protocols have been developed to
examine genome-wide replication profiles based on DNA
sequencing data. One based on the time of replication,
TimEx [5, 6], and the other based on incorporation of a
labeled precursor into newly replicated DNA, Repli-seq
[7–12]. Time of replication (TimEx) measures DNA cov-
erage at sequential times in S-phase. The normalized early
S-phase signal should be mostly 1x coverage, additively
transitioning to 2x coverage in late S-phase. In contrast
to this method, Repli-seq works by only sequencing newly
replicated DNA. Theoretically, in a single cell, this means
once a region is replicated, it should not appear in sam-
ples taken at later times, except in the case of allelic timing
differences. Both methods have been shown to yield sim-
ilar results [13, 14] for when and where genomic regions
replicate, but each requires a distinct type of analysis. The
methods described in this paper focuses on data produced
by label incorporation (Repli-seq).

Data description
In continuation to our analysis of A. thaliana chromo-
some 4 in 2010 [15], we updated our laboratory proto-
col to be more stringent as described in Hansen et al.
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Fig. 1 Overview of the cell cycle. Cell division takes place in two
stages: interphase and mitosis. Interphase is when a cell copies its
genome in preparation to physically divide during mitosis. Interphase
starts with cell growth and preparation for DNA synthesis in Gap (G1).
After G1, DNA is replicated in regions during the Synthesis (S) phase.
The cell then transitions into a second growth phase - Gap 2 (G2).
When the cell has finished growing, the cell divides into two
daughter cells in Mitosis (M)

2010 [12], Bass et al. 2014 [16], Bass et al. 2015 [17],
and Wear et al. 2016 [18]. We increased the sensitivity of
the labelling process by using 5-Ethynyl-2’-deoxyuridine
(EdU), which does not require harsh denaturation of
DNA, unlike 5-Bromo-2’-deoxyuridine (BrdU) used in
previous work. A flow cytometer is then used to sepa-
rate labeled from unlabeled nuclei, and to resolve labeled
nuclei into different stages of S phase based on their
DNA content. Next, DNA is extracted from sorted nuclei.
The newly replicated DNA is immunoprecipitated and
then sequenced using an Illumina sequencer. Previous
protocols used microarrays for labeled DNA detection,
which provided signal on probes at fixed intervals across
a genome. Directly sequencing the immunoprecipitated
DNA allows for a continuous display of replication activity
across the genome.
Following the Repli-seq protocol, we created an exem-

plar A. thaliana dataset for development, with nuclei
from: G1 (non-replicating control) and early, middle,
and late S phase. While the amplification, fragmenta-
tion, and sequencing of next generation sequencing (NGS)
libraries should be unbiased and random, physical fac-
tors affect the sequenceability of each region. To correct
for these effects, we use the raw non-replicating DNA
from the G1 control to normalize any sequenceability
trends.

Introducing repliscan
In addition to our updated laboratory protocol for gener-
ically measuring DNA replication, we needed to improve
the sensitivity and robustness of our analytical method.
In previous work, log-ratios and aggressive smoothing
were used to classify genomic regions by their time of
replication. While this yielded results with high true pos-
itive rates, we found that this approach over-smoothed
our deep coverage, next generation sequencing data. We
created the Repliscan method to analyze generic, DNA
sequence-based replication timing data without user-
specified thresholds. Accepting any number of S-phase
timepoints as input, Repliscan removes uninformative or
outlying data, smooths replication peaks, and classifies
regions of the genome by replication time.

Implementation
The analysis of the replication time data starts like any
other DNA sequencing analysis, with quality control,
mapping, and alignment filtering. Quality control con-
sisted of removing contaminating 3’ universal sequencing
adapters from the paired reads, and trimming the 5’ ends
with quality scores below 20 with the program Trim
Galore! [19] version 0.3.7, which is designed to maintain
read pairs. While it is obvious that low-quality regions
need to be removed or masked because those base calls
are untrustworthy, any contaminating sequences from
adapters hinder the alignment process even more because
they are always high-quality and may comprise a large
part of the read. Therefore, reads in the output from Trim
Galore! shorter than 40 base pairs were discarded, and
resulting singletons (unpaired reads) were not included
for alignment.
We then used BWA-MEM [20] version 0.7.12 with

default parameters to align the quality-filtered reads to the
TAIR10 A. thaliana reference genome [21]. After align-
ment, we filtered out any reads with multiple alignments
using samtools [22] version 1.3. Removing these non-
uniquely aligning reads is essential because they come
from repetitive elements or other duplications in the
genome that could replicate at different times, thereby
confounding region classification into discrete replica-
tion times. After our stringent alignment requirements,
fewer than 0.5% of our reads were identified as duplicates
by samtools. We decided that removing the duplicates
from our data was unnecessary due to the depth of our
sequencing and localized nature of replication peaks. We
also performed a correlation analysis of our samples and
replicates, confirming their high level of similarity.

Windowing
TheDNA sequencing workflow leaves us with raw replica-
tion signals across a genome, which we must classify into
distinct genomic regions and assign replication times. Our
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methods for this process build on methods from Lee et al.
[15] and are illustrated in Fig. 2.
At first glance, Repli-seq data appears similar to dense

ChIP-seq data [23], when viewed in a genome browser
(Fig. 3). However, instead of highlighting a limited num-
ber of coverage peaks as sites of molecular interac-
tions, replication timing data consists of coverage across
the entire genome accented with extremely wide peaks
corresponding to regions of replication initiation and
subsequent spreading. This background coverage with
subtle, broad increases in depth makes deep cover-
age essential to reduce sampling error when detect-
ing statistically-relevant differences. Even though the
cost of sequencing has plummeted since 2007, deep-
coverage DNA sequencing is still expensive for higher
eukaryotes.
Lee et al. defined putative replicons in A. thaliana and

calculated the median length to be 107 kilobases [15]. To
achieve greater signal depth in each replication timing
sample, we transformed each BAM alignment file into 1
kilobase coverage windows using bedtools [24].While this
transformation slightly reduces the resolution of our anal-
ysis, Fig. 3 shows that the proportion of sampling error
to measured signal is greatly reduced with the increased
coverage. The windows also put all changes in coverage
on the same coordinate system, simplifying comparisons
between samples and experiments.
We chose 1 kilobase windows because they not only

reduce sampling error, but are also two orders of mag-
nitude smaller than the expected A. thaliana replicons.
Repliscan does not summarize information with sliding
windows, so choosing a window size that is an order
of magnitude smaller than the expected replicon size is
important to approximately align to the actual replica-
tion borders. Our analysis will theoretically allow the
detection of regions of replication as small as 1 kilobase;
however such regions are unlikely to exist in cells sub-
jected to realistic labeling protocols. Therefore, in the
final timing classification, Repliscan will merge neighbor-
ing regions with similar properties into larger segments.
The 1 kilobase resolution then helps to highlight tran-
sitions between such segments. In some circumstances,
such as working with low coverage data, it may be advan-
tageous to use a larger window size. However, to achieve
the best results when adapting Repliscan to other species,
we suggest the expected replicon size be factored into
calculations that establish window size and sequencing
depth.

Replicate aggregation and normalization
To further decrease sampling effects, and achieve con-
sistent results between experiments, we used multiple
biological replicates and adopted aggregation methods to
either increase coverage or summarize replication signals
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Fig. 2 Repliscan workflow. Diagram of the preliminary alignment and
quality control methods at the top, and the Repliscan methods at the
bottom
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Fig. 3 Replication signal and sampling uncertainty. The top two graphs show raw and windowed replication signal across A. thaliana chromosome
3. The bottom two graphs show raw and windowed replications signals at 18.5-19.0 megabases from the top view as represented by the gray
selection area. The red bars represent sampling uncertainty (

√
λ for Poisson distributions)

using functions provided by “bedtools map” [24]. For
experiments with low coverage, we pooled timing t = 1..T
replicates r = 1..R together by summing coverage signal k
across each window i = 1..N .

kit =
R∑

r=1
kitr (1)

When coverage was sufficient, we used the signalmean (or
the more robust signal median) to clean up aberrant cov-
erage. For these methods, replicates were first normalized
for sequencing depth using sequence depth scaling [25].
This normalization step removed differences in sequenc-
ing depth between replicates by scaling each sample to an
average depth of 1x.

kit = median
(

N ∗ kitr∑N
i=1 kitr

)
(2)

After aggregation, the combined signals were normalized
once more to scale any imbalances in replicate num-
bers back to 1x, prior to making comparisons between
replication times.

kit = N ∗ kit∑N
i=1 kit

(3)

Our A. thaliana test data was relatively high coverage at
30x per bioreplicate, so we used the median function to
generate a robust signal, instead of defaulting to sum.

Reducing type I error
Repliscan aims to detect and highlight peaks of replica-
tion coverage, but some peaks may be too high and may
in fact be false-positives caused by errors in the reference.

For instance, if a repetitive element is present three times
in the actual genome, but present only once in the refer-
ence sequence due to assembly error, all reads would align
uniquely to the same location. If two of the actual elements
replicate early and the third in middle S phase, the early
peak would be twice as large and dominate the classifica-
tion process. To reduce type I error arising from genomic
repeats, we needed to detect and exclude these areas from
the final classification because there is no way to resolve
such duplication events without improving the reference
genome.
The distribution of sequencing coverage is bounded on

the left at zero, with very long, positive tails (Fig. 4). Before
we can detect any outliers we first need to transform the
data to actually fit a probability distribution.
In Fig. 4, we show that both the log and square root

transformations stabilized the spread and skew. The log
transformation extends the (0, 1) tail and shortens the
[ 1,∞) tail, making the distribution more normal-like.
The square root transform also shortens [ 1,∞) tail and
spreads the [ 0, 1) tail, but not to the same extent, leaving
the distribution skewed towards 0. While different, both
transformations improve the fit of different probability
distributions.
Normally, sequencing depth is modeled with a Poisson

distribution because the integer counts are discrete [26],
positive, and asymmetric. However, our aggregated and
normalized data is continuous, positive, and asymmet-
ric. To accurately model these sequencing values we use
the Gamma distribution for highly-skewed data and the
normal-like methods for symmetric data [27]. In all, we
provide four combinations of methods to transform the
data and detect outliers:
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Fig. 4 Normalized and transformed replication signals. Violin plots showing how the normalized and aggregated A. thaliana chromosome 3
replication signals from G1, early (E), middle (M), and late (L) S-phase data was bounded from [ 0,∞). We separately experimented with with log
transforms to make the distributions more normal-like, and square root transforms to stabilize the spread

fitting a gamma distribution to the log transformed data,

log(Kt) ∼ �(αt ,βt) ≡ Gamma(αt ,βt) (4)

fitting a gamma distribution to the square root trans-
formed data,

√
Kt ∼ �(αt ,βt) ≡ Gamma(αt ,βt) (5)

fitting a normal distribution to the log transformed data,

log(Kt) ∼ N (μ, σ 2) ≡ Normal(μ, σ 2) (6)

or calculating the whisker bounds (WB) of a boxplot from
the log transformed data

Xt = log(Kt) (7)
IQR(Xt) = P75(Xt) − P25(Xt) (8)
WB(Xt) = [P25(Xt)−1.5 ∗ IQR(Xt),P75(Xt) (9)

+1.5 ∗ IQR(Xt)] ,
where P is the percentile function. (10)

We use scipy [28] version 0.15.0 to fit all probability
distributions to the actual coverage windows. Windows
with coverage in the upper and lower 2.5% tails of the cal-
culated probability distributions, or outliers when using
whiskers, are considered unrepresentative and removed
(Fig. 5).

log(kit) =
{
0 P97.5(αt ,βt) < X < P2.5(αt ,βt)
kit Otherwise (11)

For simple cases, or when the transformed data does not
resemble a probability distribution, we also provide the
option of a rank-based (percentile) cutoff. By default, this
will remove the upper and lower 2.5% coverage values, but
this value can also be customized by the user.
The outliers in the positive coverage tails that this

method removes may comprise a significant amount of
coverage, so we perform another round of normalization
to return the sample to 1x coverage. Each of the five meth-
ods has its own strengths and computation complexity.
Most coverage data can be accurately modeled with the

normal distribution. For cases when the transformed cov-
erage distributions are still skewed, we suggest using the
gamma distributions. If for some reason, the coverage data
is multimodal, the whisker or percentile cutoff methods
will both remove outliers from the data. We recommend
the whisker method over a percentile cutoff because the
whiskers remove data from a derived distribution, while
the percentile indiscriminately removes a percentage of
the data.

Normalize for sequenceability
Amplification, fragmentation, and shotgun sequencing
DNA is a non-uniform random process. Coupled with
imperfect alignment efficiency from repetitive regions
and incomplete reference genomes, artificial peaks aris-
ing from differences in the efficiency with which specific
genomic regions can be sequenced are easy to confuse
with actual signal peaks. This does not have a signifi-
cant impact on comparisons between samples, but makes
it difficult to compare adjacent genomic regions. Our
sequencing protocol included a sample of non-replicating
G1 DNA to correct for this phenomenon.
In G1, the cell is growing in physical size but no DNA

replication is taking place, so the copy number of each
sequence in the genome is at the 2C level. Variations in
sequenceability can thus be separated from variations in
signal attributable to DNA replication. Dividing each of
the S-phase samples by the G1 sample normalizes each of
the windows by giving the ratio of treatment coverage over
expected coverage.

rt = kt
k1

, where k1 is the control. (12)

To better illustrate this process, consider two replica-
tion coverage windows next to each other: the first one is
accessible and easy to sequence, and therefore produces
more fragments per unit input DNA than the second win-
dow, which is hard to sequence. The normalization step
would lower the signal from the first window, dividing it
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Fig. 5 Outlying coverage in chromosome 3. Based on the normal distribution fit (yellow) to the log transformed coverage distribution of early (E),
middle (M), and late (L) S-phase data, windows that fall in the tails shaded in gray are removed from the analysis

by a big coverage number from G1. It would also raise the
signal from the second window, which would be divided
by a smaller G1 number, making the two windows more
comparable and reducing background noise. We recom-
mend that such a control be implemented in all DNA
sequencing based experiments to detect replication tim-
ing, on the basis that a non-replicating G1 control is the
best, and most uniform representation of the genome.
However, in the event that a non-replicating G1 is not
sequenced, all S-phase samples can be combined to syn-
thesize a total-S control, or a total DNA control can
be used.

Haar wavelet smoothing
Data sampling is always affected by noise. Statistical noise
can be accounted for and modeled with more sampling,
more robust statistical methods, or by summarizing larger
ranges of data. Adding replicates for additional statistical
power is cost-prohibitive, especially for larger genomes.
Instead, we adopted the Haar wavelet transform to sum-
marize replication data as an orthonormal series gener-
ated by the Haar wavelet. Using Wavelets [29] version
1.0, we performed a maximum overlap discrete wavelet
transform with the Haar wavelet using reflected bound-
aries and level 3 smoothing on a per-chromosome basis
for each sample. Wavelet decomposition is designed to
represent a signal as a collection of frequencies. Level 3
decomposition represents a signal as the upper 87.5% of

frequencies. Smoothing works as a low-pass filter, where
small and frequent changes are removed, while large and
wide changes are preserved.
We specifically chose the Haar wavelet over other

smoothing methods because it is a square function with
discrete boundaries and thus resembles the signals we
aim to detect. General smoothing methods like LOESS
and moving average methods produce stabilized trends
from data, but they work by summarizing subsets of the
whole picture. These methods also leave behind artifacts.
A moving average will change a square peak into a saw-
tooth pattern the size of the smoothing window and will
be affected by a single point of noise. LOESS is designed
to model trends in sliding subsets of the data, but each of
the least-squares regression steps are vulnerable to noise
as with the moving average. LOESS will also spread out
peaks in our data because of our uniform window size
(1 kilobase), and is designed to accurately model clus-
ters of points. As demonstrated in Fig. 6a with simulated
data, the Haar wavelet accurately removes low-amplitude
and high-frequency noise to reconstruct the original sig-
nal without artificially expanding the peaks of replication
signal. Applying the moving average, LOESS, and Haar
wavelet to actual A. thaliana data in Fig. 6b shows that
both the moving average and LOESS can capture large
trends, but the Haar wavelet excels at highlighting subtle
peaks in the data without under smoothing and requir-
ing the user to choose the range they summarize on. Any
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A B

Fig. 6 Smoothing comparisons. a - Noise (green) is added to an original signal (purple), and then smoothed with a 4 unit (40 point) moving average
(orange), a 5 unit (25% subset) LOESS (red), and a level 3 Haar wavelet (blue). Both the moving average and LOESS spread out the peaks and
artificially lowered signal amplitudes, while the Haar wavelet keeps bounds and peak heights close to the original. b - The A. thalianamiddle
S-phase normalized signal (green), is smoothed with a moving average (orange), LOESS (red), and the level 3 Haar wavelet (blue) for comparison

proportion or range of the data is very different when
choosing different window sizes. Haar only removes low-
amplitude frequency trends from the wavelet transform.
We experimented with several levels of decomposition

with our data, and found that the low-frequency trends
preserved with level 3 aligned to genes, transposable ele-
ments, and histone marks on each genome the best. If
the window size is kept at the default of 1 kilobase, this
decomposition level can be kept the same because the
same frequencies are represented. If the window size is
changed to accommodate different sequencing depths, we
suggest that users experiment with different decomposi-
tion levels, because this essentially changes the sampling
rate of the analysis.

Defining replication
The analysis to this point yields a smoothed ratio of
normalized replication ratio signals rcwt in windows
(w = 1..Y ) per chromosome (c = 1..X), with a range
of [ 0,∞) that can be compared to each other, and leads
to the question of which signals can be considered con-
fidently as resulting from DNA replication. Lee et al.
[15] originally considered array-based replication signals
greater than the control as actively replicating in their
investigation of A. thaliana as follows.

replicatingct(w) =
{
1, if rcwt > 1
0, otherwise , where cw = i (13)

The Repliscan software allows users to adopt this thresh-
old method, but we also include more robust methods to
define replication. The simple threshold approach above
is appropriate when considering replication as a ratio, but
because all signals from the early, middle, and late S-phase
samples represent labeled - and therefore, replicating -
DNA, even signals that are less than the control must be

considered as reflecting some level of replication activ-
ity. In other words, even though there may be noise in
the data, all replication signals should be genuine because
EdU is only incorporated into newly replicated DNA.
Instead of simply choosing a smaller ratio threshold, we
implemented a percentile cutoff based on the distribution
of the ratios. By default, this method removes the lowest
2% of the values for a chromosome in a given sample.

replicatingct(w) =
{
1, if rcwt > P0.02(rct)
0, otherwise (14)

While this method is a data-dependent means for estab-
lishing a cutoff, it was not considered ideal for an auto-
matic analysis for two reasons. First, a cutoff is still being
dictated, even if it is more robustly supported than in pre-
vious analyses. Second, this cutoff will always remove a
flat percentage of the values, even if there is no evidence
they are not high-quality data points. To improve on these
deficiencies, we implemented a threshold for replication
that depends on the information provided in addition to
the data.
To maximize the fraction of a chromosome with

valid replication signal (or information), we designed an
optimization method that incorporates as much of each
chromosome as possible by analyzing the rate that chro-
mosome coverage changes with replication signal. Using
data from all time points, coverage is defined as the frac-
tion of windows with a signal greater than the threshold in
at least one replication time.

coverage(Tc) = rcwt > Tc
Y

,

where Tc is the threshold for chromosome c
(15)

Our optimization process begins from the point of the
largest absolute change in coverage (mTc), and lowers
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the replication threshold (Tc) until the absolute chro-
mosome fraction per sample/control coverage differential
goes below 0.1, effectively leveling out. In rare cases where
this process does not converge, the threshold is set to be
the median of all chromosomes that do converge.

mTc = argmax
Tc

(|coverage‘(Tc)|
)

(16)

T̂c = arg max
Tc<mTc

(|coverage‘(Tc)| < 0.1
)

(17)

Rcwt =
{
rcwt , if rcwt > T̂c
0, otherwise (18)

Such a search pattern circumvents any local optima in the
coverage signal that may have stalled a gradient descent.
That being said, we implemented the threshold to run
on a per-chromosome basis to minimize the effect of any
structural differences (Fig. 7).
The end result is a method that includes as much of the

genome and coverage information as possible, and pre-
vents the use of small signals when they comprise a small
portion of the chromosomes. Our method is generically
applicable to experiments using the same Repli-seq pro-
tocol because the threshold is calculated from the data. A
critical benefit is that users are not required to be mas-
ters of their data or this tool, and can instead focus on
interpretation.

Classification/Segmentation
Given a signal that can confidently be considered as aris-
ing fromDNA replication, we are able to classify segments
of the genome according to when in the cell cycle they
are replicated. Suppose that in one of the windows in

Fig. 7 Replication threshold from coverage. The upper plot shows
how much of A. thaliana chromosome 3 will be kept for downstream
analysis as a function of the signal threshold. The lower plot shows
the chromosome coverage differential as a function of the threshold.
The vertical red line in each plot marks the optimal threshold of 0.92

Chromosome 3, we have the following levels of replication
in Table 1.
We already know from Fig. 7 that any values below

0.92 in Chromosome 3 are not considered replicating, so
the middle S-phase value would become 0 and we would
say this window replicates in both early and late S-phase.
However, the late replication level is 3 times higher than
that of early, which is just past the threshold for replication
at 0.93. Instead of making another replication threshold,
we implemented a general solution to compare values
against each other using a proportion.
First, on a window-by-window basis, we take the infinity

norm of all values, whichmeans we divide all values by the
maximum for that window position.

Sct(w) = Rcwt
‖Rcw‖∞

(19)

This operation scales the largest value to 1 and the others
to the range [0,1]. A time signal is then classified as pre-
dominantly replicating Cct(w) if the normalized value is
greater than 0.5, or at least half the size of the largest signal
for that window.

Cct(w) =
{
1, if Sct(w) > 0.5,
0, otherwise (20)

The infinity-norm ensures that the largest value will
always be classified as replicating, and this classification
method allows for a window to be called strongly repli-
cating at more than one time in S-phase (e.g. both early
and late) when other signals are within 50% of the maxi-
mum value. Besides 0.5 being easy to test for, this creates
an equally partitioned solution space in the form of an
n-dimensional hypercube. In the case of our A. thaliana
data, the space is a 3-dimensional cube with each dimen-
sion being one of the time points: early, middle, and
late S-phase. The 0.5 partition then creates 8 equal-sized
sub-cubes corresponding to each possible combination of
times:

{
Non-replicating, Early, Middle, and Late

}

along with
{
Early-Middle, Middle-Late,
Early-Late, and Early-Middle-Late

}

S-phase replication combinations.

Table 1 Example coverage values to demonstrate replication
timing classification

Time Early Middle Late

Coverage 0.93 0.8 3.0

Replicating 0.93 0 3.0



Zynda et al. BMC Bioinformatics  (2017) 18:362 Page 9 of 14

Results and discussion
Data
To demonstrate the ability of our methods to adapt to dif-
ferent datasets, we ran our pipeline on the A. thaliana
Col-0 cell culture data (PRJNA330547) that was used to
develop these methods, and a separate similarly prepared
Z. mays B73 replication timing dataset (PRJNA327875)
also from our lab.

A.thaliana
The A. thaliana experiment was comprised of 3 early S
bioreplicates, 3 middle S bioreplicates, 3 late S biorepli-
cates, and 1 G1 sample. Each bioreplicate was paired-end
sequenced to 36x coverage. The unique and properly-
paired alignment rate for each sample was approximately
85%, yielding a total of 30x viable replication data from
each sample. Due to the high coverage, we decided to
use 1 kilobase windows and merge bioreplicates with the
median function for our analysis.

Z. mays
In the Z. mays experiment, there were 3 early S biorepli-
cates, 3 middle S bioreplicates, 2 late S bioreplicates, and
2 G1 technical replicates. Each bioreplicate was paired-
end sequenced to about 5x coverage. While there were
more reads than the A. thaliana experiment, the Z. mays
genome is much larger, so coverage was lower. Using the
B73 AGPv3 genome assembly, the unique and properly-
paired alignment rate for each sample was approximately
99%, yielding a total of 5x viable replication data from each
bioreplicate. Even though a larger analysis window could
have been used, we decided to use the same 1 kilobase
windows for this dataset, and deemed the summation of
bioreplicates was necessary to achieve enough coverage to
highlight peaks in the data.

Segmentation overview
Using 1 kilobase windows, median aggregation for A.
thaliana, and sum aggregation for Z. mays, we used
our default pipeline to classify the replication timing of

our data. We generated Fig. 8 to show the replication
segmentation classification of Chromosome 3 in A.
thaliana and Chromosome 10 in Z. mays.
In both instances, early replication is concentrated

toward the ends of the chromosome arms, with mid-
dle and late replication becoming more prominent closer
to the centromere and the highest concentration of late
replicating sequences in the heterochromatin surround-
ing the centromere. These timing maps demonstrate that
the method developed using the A. thaliana data was
successfully applied to the lower coverage Z. mays data
by simply choosing to aggregate replicates using the sum
instead of the median.

Segment composition and size
Instead of viewing the chromosomes as a whole, we can
also get an idea of predominant replication times by
looking at the proportional composition. Figure 9 shows
that Early, Early-Middle, and Middle-Late S-phase repli-
cation makes up most of the segmentation profiles for A.
thaliana Chromosome 3. About 6% of the chromosome
is missing around the centromere and heterochromatic
knob, which probably would have been classified in the
Middle to Late times based on what we do see. In Z. mays,
we see a more uniform distribution of Chromosome 10,
which is 5-fold larger, across the replication segmentation
classes. Lee et al. [15] previously hypothesised a two-
stage replication program, but our results, which were
generated using much shorter labeling times to capture
much smaller increments of replication, show amore even
spread (Fig. 9).
The Early-Late and Early-Middle-Late comprise a small

portion of the chromosomes in both organisms and could
arise naturally in the data through allelic and cell pop-
ulation differences. Figure 10 shows a different sum-
mary of the segmentation breakdown, highlighting the
segment size distribution with boxplots. Once again,
Early-Late and Early-Middle-Late segments are distinct in
that their lengths are small relative to the other timing
categories.

Fig. 8 Comparison of A. thaliana and Z. mays segmentation. Following the segmentation legend on the right, A. thaliana chromosome 3 (top) and Z.
mays chromosome 10 (bottom) have been classified into segmentation regions by Repliscan. The large white regions in the A. thaliana figure are
unclassified regions due to high or very low signal. Below each replication segmentation is a depiction of the chromosome, with the centromere
location marked in yellow [32, 33]
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Fig. 9 Composition of replication segmentation. The segment
composition shows that replication in A. thaliana is skewed towards
early S replication, while Z. mays has an even distribution across early,
middle, and late S. We can also see that the non-sequential early-late
(EL) and early-middle-late (EML) classifications comprise a very small
proportion of the classified segments in both cases

Downsampling and stability of results
The relatively small genome size of A. thaliana allowed us
to obtain extremely deep sequencing coverage, which is
currently cost-prohibitive for larger genomes. To estimate
a minimum coverage requirement for our methods, we
simulated experiments with lower coverage via downsam-
pling. We first generated 3 technical replicates by ran-
domly sorting the original alignment files. We removed
reads from each of the replicates in 1% increments without
replacement. Each of the 300 (100 × 3) simulated exper-
iments were analyzed using both median and sum aggre-
gation, and no (none), log gamma, square root gamma,
normal, and whisker outlier removal. To account for dif-
ferences arising from the sorting order, the final clas-
sification for each window was determined by majority
across the 3 replicates. Classification ties were broken
by treating the early, middle, and late time classification

combination as a 2-bit binary number, and taking the
median.
After confirming that the segmentation profiles from all

three 100% replicates were identical to our original seg-
mentation, differences for each run type were calculated
as percent Hamming distances from the 100% version. All
differences were compounded and plotted as a fraction
of the whole chromosome in Fig. 11. The most obvious
results are the spikes of differences in both the median
and sum log transformed gamma runs when the iterative
fitting function failed to converge (Fig. 12).
Shifting attention to the square root gamma experi-

ments in Fig. 11, we see that the fit function never fails
to converge, but there is increased variability of results
among each level of downsampling. All other probabil-
ity functions are very stable between downsampling runs.
We even see that summing the coverage to 90x provides
no improvement over the median - even at low cov-
erage levels. The inflection points show that the most
stable method was aggregating replicates with the median
operation and removing coverage by fitting a normal dis-
tribution to the log transformed data. Results from this
method began to noticeably diverge when downsampled
to 8%, or 2.4x coverage. This indicates 5x coverage for the
commonly studied species Z. mays (2.3 gigabase genome
[30]) is sufficient to calculate a replication profile, which is
quite tractable for a laboratory of modest financial means.

General application of repliscan
To demonstrate that Repliscan is generally applicable,
we used it to analyze two published Repli-seq datasets:

Fig. 10 Segment size distribution. Boxplots for every combination of replication time, illustrating the distribution of segment sizes. Early (E) and
mid-late (ML) S were largest in A. thaliana, while early and late (L) were largest in Z. mays
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Fig. 11 Segmentation differences in downsampled data. After downsampling the A. thaliana data, the accuracy of median (top) and sum (bottom)
aggregation, and outlier detection using log gamma, none (NA), normal, square root gamma, and whiskers. Inflection points in the differences are
labeled with black diamonds

Human fibroblast data from Hansen et al. 2010 [12]
(GSM923444) and D. melanogaster data from Lubelsky
et al. 2014 [31] (PRJNA63463).
The Human fibroblast Repli-seq data contains samples

from 6 fractions of S phase (G1b, S1, S2, S3, S4, and
G2) with two replicates each providing an average depth
of 0.02x coverage. Using the supplementary methods of
Hansen et al., we were able to reproduce their original tag
density results. Reads from both replicates were first com-
bined and then aligned to the human reference genome
(hg19). After alignment, signals with more than 4 reads
per 150 basepair window were removed. Lastly, a percent
total coverage in 50 kilobase wide windows was calculated
every 1 kilobase (Fig. 13).
To analyze this data with Repliscan starting from the

aligned reads, we first needed a sequencing control. Both
G1b and G2 contain replicating DNA in this experiment,
so we combined G1b, S1-4, and G2 to create a total-
S (TS) control in the first line of the Repliscan input
configuration. After crafting the configuration file, we
ran Repliscan with a window size of 50 kilobases and

aggregation through sum tomatch themethods of Hansen
et al. Fig. 13 compares the output of Repliscan against the
reproduced results in a region from their original work.
Given that there were 6 fractions of S-phase in the Replis-
can input, there were (26 − 1) 63 possible classifications,
but only 22 were present in the output segmentation.
Repliscan presented temporally sensible results with repli-
cation initiating in G1b and spreading to G2 all while
relying on the automatic tuning of Repliscan after match-
ing the window size (Fig. 13). We compared our results
from Repliscan to the “BJ-G1_segment” regions published
by Hansen et al. in their Supplementary Table S4 using the
accuracy statistical measure.

accuracy = (TP + TN)/(TP + FN + TN + FP) (21)

Where TP is the number of G1bS1 Repliscan classifi-
cations that match “BJ-G1_segment”, FN is the number
of non-G1bS1 classifications that match “BJ-G1_segment”,
TN is the number of non-G1bS1 classifications that also
do not match “BJ-G1_segment”, and FP is the number of
G1bS1 classifications that do not match “BJ-G1_segment”.

Fig. 12 Unconverged log gamma fit. Most of the data is removed when the iterative fitting function fails to converge with the log transformed
gamma distribution. Instances like this produce the spikes of differences in Fig. 11
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Fig. 13 Human fibroblast Repli-seq. 50 kilobase sliding window replication signals (blue) reproduced from Hansen et al., published “BJ-G1_segment”
regions, and 50 kilobase Repliscan results (bottom)

We found that our Repliscan reanalysis had an accuracy of
83% with the published “BJ-G1_segment” results.
We also reproduced the original continuous replication

profiles of Lubelsky et al. by processing the raw data as was
done in the original paper. Replicates were combined from
each fraction of S phase (Early, Early-Mid, Late-Mid, and
Late) and aligned to the dm3 Release 5.12 genome. Unique
alignments were kept and the RPKM was calculated in 10
kilobase windows along the genome. The RPKMs from
the 4 samples were then weighted and combined to cre-
ate a single replication signal from 0 to 1. The replication

signal was then LOESS smoothed with a span of 200 kilo-
bases (20 bins). This continuous signal was then classified
as early replication when the value was less than or equal
to 0.5, and late replication when above 0.5 (Fig. 14).
Similar to the work by Hansen et al., this experiment

did not contain an non-replicating G1 control, so we
combined all fractions into a total-S (TS) control. For
inputting the raw data into Repliscan, we crafted two
input configurations: one with Early (early, early-mid) and
Late (mid-late, late) (2S) to match the discrete results
of Lubelsky et al., and another with Early, Early-Mid,

Fig. 14D.melanogaster KC167 Repli-Seq. Reproduction of the LOESS smoothed continuous replication profile (Lubelsky LOESS), and the thresholded,
discrete early (blue) and late timing domains (Lubelsky > 0.5) from original Lubelsky et al. study. Repliscan segmentation results with Early (Early,
Early-Mid) and Late (Mid-Late, Late) replication (2S), and Early, Early-Mid, Mid-Late, and Late replication (4S) configuration with 10 kilobase windows
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Mid-Late, and Late classifications (4S) to highlight the
classification capabilities of Repliscan. Coverage averaged
around 4.4x, so we ran Repliscan with both (2S and 4S)
input configurations, sum replicate aggregation, and 10
kilobase windows to match the original analysis (Fig. 14).
The Repliscan configuration with two S-phase fractions

(2S) highly resembled the thresholded continuous signal
(Lubelsky > 0.5) with a statistical accuracy measure of
95%. When Repliscan was run to capture all 4 S-phase
combinations, more information was revealed about the
replication timeline. Looking at the two left-most late
regions of “Lubelsky > 0.5” in Fig. 14, we can see that
the continuous signal rides along the 0.5 threshold, and
Repliscan predicted a long region of EMS-EMLS with all
four fractions of S taken into context, instead of detect-
ing an initiation site in the center. This situation is a good
example of the type of coarse grained calls that we are try-
ing to avoid with Repliscan by allowing combinations of
replication in our classifications. Our 4S results were also
found to be highly similar with the discrete data, with a
statistical accuracy of 78%.

Conclusions
Based on our results from running Repliscan on both A.
thaliana and Z. mays data, we have demonstrated that
our methods offer a robust means of analyzing data from
replication timing experiments that use label incorpora-
tion. Although we argue that a non-replicating G1 control
should be preferred for biological reasons, our analytical
method can be used equally well with control datasets
derived from synthetic total S phase pools or from total
DNA. We have significantly improved on previous meth-
ods by incorporating non-destructive Haar smoothing,
using optimization methods to define replication, and
classification through signal proportion. When run using
the same parameters but using data from different organ-
isms, the methods automatically tuned their thresholds to
adjust for differences in coverage. Downsampling our data
showed our methods provided stable results at as little as
2.4x coverage and 1 kilobase analysis windows. Even lower
coverages can be accommodated at lower resolution by
using larger window sizes for the analysis.We also demon-
strated that Repliscan can be used to classify replication
regions in external Repli-seq data by applying it to both
low-coverage Human and high-coverage D. Melanogaster
experiments with 4 to 6 S-phase fractions and synthetic
total-S controls. There is no current consensus pipeline
for validation, so we compared the published results from
the external datasets to those from Repliscan. We found
that the Repliscan results were on average 85% identical to
the original findings of these papers.
In-depth explorations of the replication programs in A.

thaliana and maize will be published separately. We think
these methods provide a path for greater understanding

of the DNA replication program in plants, humans, and
other higher organisms.
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