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sNebula, a network-based 
algorithm to predict binding 
between human leukocyte antigens 
and peptides
Heng Luo1,2, Hao Ye1, Hui Wen Ng1, Sugunadevi Sakkiah1, Donna L. Mendrick1 & 
Huixiao Hong1

Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to 
understand the functioning of the immune system. Since it is time-consuming and costly to measure 
the binding between large numbers of HLAs and peptides, computational methods including machine 
learning models and network approaches have been developed to predict HLA-peptide binding. 
However, there are several limitations for the existing methods. We developed a network-based 
algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide 
binding data and demonstrated the prediction performance of sNebula on this dataset using leave-
one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides 
of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing 
binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus 
improve our understanding of the immune system.

Human leukocyte antigens (HLAs) are the major histocompatibility complexes (MHCs) in humans. They are 
expressed on the surfaces of antigen presenting cells to recognize endogenous or foreign peptides for immunolog-
ical reactions1,2. The genes that encode HLAs are a gene system located at the short arm of Chromosome 6. They 
are highly polymorphic across populations3–5. There are different classes of HLAs, including Class I, II and III, 
according to their genetic locations. Different classes of HLAs have divergent structures and functions. Both Class 
I and Class II HLAs have a long binding groove that can bind peptides and present them onto T-cell receptors6–8, 
while Class III HLAs are a part of the complement system to help with pathogen clearance9. Class I HLAs capture 
the endogenous peptides degraded from cytosolic proteins and present them to the T-cell receptors on the surface 
of CD8+  T-cells for cytotoxic responses, while the Class II HLAs present exogenous peptides from extracellular 
sources to the CD4+  T-cells to trigger acquired responses including antibody synthesis10,11. The binding between 
Class I/II HLAs and peptides is an important process for immune responses. Studying HLA-peptide binding will 
help us better understand the immune system and the mechanisms of autoimmune diseases and adverse drug 
reactions12,13 and will also provide important information needed in the development of vaccines and protein 
therapeutics14,15.

Since HLA-peptide binding is important for immune-related applications, experimental binding assays were 
developed to test in vitro binding affinities between HLAs and peptides and the data were collected in databases 
such as AntiJen16, IEDB17, MHCBN18 and SYFPEITHI19. The IMGT/HLA database recorded more than 13,000 
HLA alleles by August 201520. Since it is time-consuming and costly to experimentally test the binding between 
large numbers of HLAs and peptides, computational methods have been developed to predict HLA-peptide  
binding21. The current widely used methods are machine learning methods; however, several challenges limit 
their applicability. First, many machine learning methods can only predict a limited number of HLAs or peptides 
with a specific length. Second, an HLA-specific model would be unreliable if the training samples were not large 
enough21. Therefore, we developed the neighbor-edges based and unbiased leverage algorithm (Nebula) based on 
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network analysis to overcome the limitations of machine learning methods22,23. We successfully applied Nebula 
to predict HLA-peptide binding and found that it delivered a reasonable performance. However, Nebula is not 
applicable to predict the binding between a peptide and an HLA if no experimental data are available between 
the peptide and other HLAs or no binding assay has been developed for the HLA. Thus, Nebula is not able to 
predict binding for unstudied peptides and HLAs, limiting its application. Nebula is an algorithm purely based 
on the topology of a network; alternatively, the network is treated as a colorless graph where the nodes are not 
differentiated (colorless). Actually, the nodes (HLAs and peptides) in the bipartite network of HLA-peptide could 
be differentiated in many ways. Thus, appropriate consideration of node difference in a prediction algorithm is 
expected to improve its performance. In this study, we developed a new network-based prediction algorithm 
called similar neighbor-edges based and unbiased leverage algorithm (sNebula) by presenting the bipartite net-
work of HLA-peptide binding data in a color graph. By introducing color to the network as additional informa-
tion, sNebula can predict binding activity for peptides and HLAs that are not included the training network, 
overcoming the limitation of Nebula. We used the qualitative binding data between Class I HLAs and peptides as 
an example. We demonstrated that sNebula is a reliable algorithm for prediction of HLA-peptide binding and can 
be applied to HLAs or peptides with or without experimental binding data.

Results
Data curation. We curated 43,935 peptides, 135 Class I HLAs and 141,224 qualitative HLA-peptide binding 
data from the four databases. The binding data are given in Supplementary Table S1. Among the 43,935 distinct 
peptides, the peptide length varies from 6 to 30. Most of the peptides are 9-mers (65%) and 10-mers (25%), which is 
consistent with the experimental discovery of Class I HLA-binding peptides24. The distribution of peptide lengths 
is summarized in Supplementary Table S2. The 135 HLAs include 49 HLA-A alleles, 75 HLA-B alleles, 9 HLA-C 
alleles and 2 HLA-E alleles. The HLA alleles and their pseudo-sequences are listed in Supplementary Table S3.  
Among the 141,224 HLA-peptide binding data, 47% are bindings and 53% are non-bindings.

Leave-one-out (LOO) cross-validation. Parameter n indicates the maximum of neighbors from the pep-
tide and HLA that are used for sNebula to make a prediction of the binding between the HLA and the peptide. 
Fifty leave-one-out (LOO) cross-validations were conducted on the HLA-peptide binding data using parame-
ter n =  1 to 50. The prediction accuracy values yielded from the 50 LOO cross-validations are shown in Fig. 1. 
When n =  13, the accuracy reached the maximal value 0.841, and the corresponding sensitivity, specificity and 
area under the receiver operating characteristic curve (AUC) values were 0.818, 0.862 and 0.841, respectively. 
As n increases after this point, the accuracy of the model gradually dropped. Thus we used n =  13 for LOO 
cross-validations.

Five-fold cross-validations. One thousand iterations of five-fold cross-validations were conducted on the 
HLA-peptide binding data using sNebula. The prediction values in each of the five-fold cross-validations were 
compared with the experimental values and a set of accuracy, sensitivity and specificity values was calculated. The 
distributions of 1,000 values of these performance metrics are shown in Fig. 2. The average sensitivity, specificity 
and accuracy values are 0.816, 0.852 and 0.835, respectively, with the same standard deviation of 0.001.

Confidence analysis. The sNebula predictions are continuous values that not only indicate binding status 
of binder/non-binder but also represent the prediction confidence levels. The confidence levels of sNebula pre-
dictions from the 1,000 iterations of five-fold cross-validations were calculated and used to place the predictions 
into 10 groups by confidence. The performance of sNebula was assessed for each of the 10 groups of predictions. 
The performance in terms of accuracy, sensitivity, specificity and AUC at different confidence levels were plotted 
in Fig. 3. As the confidence increased, the AUC, accuracy, sensitivity and specificity (indicated by the left y-axis) 
improved, and the predictions in number (indicated by the right y-axis) also increased. The confidence analysis 

Figure 1. Determination of parameter n using LOO cross-validations for sNebula. The y-axis is the 
prediction accuracy and the x-axis indicates n.
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results revealed that the higher the prediction confidence level the better the prediction performance of sNebula. 
Moreover, most predictions from sNebula were at high confidence.

Benchmark. The IEDB website contains the performance comparison of various prediction methods for 
HLA-peptide binding (http://tools.iedb.org/auto_bench/mhci/weekly/). We used NetMHCpan25–27 to compare 
with sNebula and Nebula. The performance comparison is shown in Table 1. Different methods had different 
performance depending on the dataset and the HLA. While NetMHCpan performed well on some datasets such 

Figure 2. The distributions of sensitivity, specificity and accuracy seen in the 1,000 iterations of five-fold 
cross-validations. 

Figure 3. The relationships between prediction confidence and sNebula performance (AUC, accuracy, 
sensitivity, specificity) and prediction frequency. The confidence values ranging from 0 to 1 are grouped 
into 10 bins. The X-axis represents the upper boundary of each confidence bin. The left Y-axis indicates AUC, 
accuracy, sensitivity and specificity. The right Y-axis gives prediction frequency.

http://tools.iedb.org/auto_bench/mhci/weekly/
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as B*07:02, B*15:02 and B*27:04 in terms of AUC values, sNebula had better results on datasets such as C*03:04 
and A*02:06. As a comparison, Nebula also had high AUC values on some datasets such as A*68:02 and B*38:01. 
However, because Nebula could not make predictions on HLAs and peptides that are not included in the training 
network, the results of Nebula were not complete for some datasets as B*27:04 and B*27:05.

Discussion
The human HLA loci are in a genomic region that is among the most polymorphic. The HLA loci have retained 
much variation28–30. Thousands of HLA alleles have been discovered, including approximately 9000 alleles of 
Class I HLAs20,31. The proteins encoded by HLAs are used by the immune system to recognize invaders such as 
foreign pathogens. However, the proteins themselves are not able to display biological functions. The binding 
groove of HLA proteins holds a peptide that can exhibit functions of HLAs such as social recognition skills32. It 
follows that knowledge of HLA-peptide binding plays a key role in understanding related biomedical questions 
such as autoimmune diseases and HLA-mediated adverse drug reactions33,34. Many in vitro experiments have 
been designed to assay HLA-peptide binding35. However, due to the huge number of possible binding interactions 
between thousands of HLAs and millions of peptides, it is difficult, if not impossible, to comprehensively ascer-
tain the binding interactions between HLAs and peptides. Thus, computational methods can play a crucial role in 
the study of HLA-peptide binding. Though some computational approaches have been proposed for prediction of 
HLA-peptide binding21,36, the practicability is limited since many methods do not support HLAs with few bind-
ing peptides or peptides that are diverse in length. Some recently developed methods such as NetMHCpan25–27, 
NetMHC37 and kernel functions25,38 can predict for peptides with different lengths; however, extra processes39,40 
are usually required to identify core binding sequences within the peptides so that they can be converted to a 
fixed length. Though such extra processes may not necessarily reduce performance of such methods, algorithms 
that can overcome some restrictions of the current computational methods and handle peptides with different 
lengths are expected to have wider applications. Using sNebula, one can generate a comprehensive atlas of binding 
interactions between HLAs and peptides. Based on bipartite network analysis, sNebula has no limitations on the 
number of HLA molecules used or the size of the peptides utilized for training and, thus, provides a promising 
solution for the construction of a comprehensive atlas of HLA-peptide binding. However, different from machine 
learning-based methods such as NetMHCpan25–27, sNebula is unable to directly predict HLA-peptide binding if 
neither the peptide nor the HLA exists in the training network.

The results of this current study suggest that sNebula can accurately predict the binding activity between 
HLAs and peptides, even though this is a very sparse dataset. The algorithm is useful because it can not only make 
predictions for untested peptides and HLAs given sequence information, but also can make more accurate pre-
dictions with a higher confidence. In addition, it does not set any limitation on the peptide length or the number 
of HLA alleles. With all these advantages, sNebula can help us study the binding between HLAs and peptides and 

Dataset
IEDB 

reference HLA
Peptide 
length

Peptide 
count Measurement

NetMHCpan sNebula Nebula

SRCC AUC SRCC AUC SRCC AUC

2016-05-03/2016-02-19
1029957 B*38:01 9 28 ic50 0.766 0.963 0.171 0.531 0.400 1.000

1029824 A*02:01 9 77 binary 0.071 0.546 0.060 0.539 — —

2015-08-07

1027131 B*15:02 9 14 binary 0.713 1.000 0.693 0.939 − 0.707 0.000

1029125 B*27:04 9 21 binary 0.717 0.939 0.133 0.582 — —

1029125 B*27:05 9 21 binary 0.751 0.959 0.752 0.959 — —

1029125 B*27:06 9 21 binary 0.421 0.750 0.421 0.750 0.500 0.750

1029061 B*57:01 9 26 ic50 0.612 0.943 0.169 0.575 0.000 0.250

315209 C*03:04 9 14 t1/2 0.781 0.911 0.113 0.923 — —

1028928 A*02:01 9 13 binary 0.570 0.955 0.539 0.909 — —

1028928 B*07:02 9 12 binary 0.648 1.000 0.522 0.900 — —

315174 B*27:03 9 11 binary 0.657 0.893 0.179 0.607 0.436 0.750

1028790 A*02:01 9 55 ic50 0.615 0.574 0.505 0.778 0.478 0.856

1028790 A*02:01 10 35 ic50 0.407 0.677 0.432 0.704 0.528 0.725

1028790 A*02:02 9 55 ic50 0.582 0.713 0.372 0.680 0.427 0.668

1028790 A*02:03 9 55 ic50 0.539 0.696 0.477 0.629 0.450 0.757

1028790 A*02:03 10 35 ic50 0.208 0.750 0.419 0.697 0.308 0.691

1028790 A*02:06 9 55 ic50 0.630 0.770 0.510 0.848 0.537 0.795

1028790 A*02:06 10 35 ic50 0.572 0.768 0.525 0.680 0.502 0.700

1028790 A*68:02 9 55 ic50 0.534 0.806 0.482 0.713 0.545 0.889

1028790 A*68:02 10 35 ic50 0.272 0.620 0.591 0.813 0.533 1.000

Table 1.  Performance comparison of NetMHCpan, sNebula and Nebula on IEDB benchmark datasets. 
The datasets along with the performance metrics of NetMHCpan were harvested from IEDB automatic 
server benchmark page (http://tools.iedb.org/auto_bench/mhci/weekly/). SRCC stands for Spearman’s Rank 
Correlation Coefficient and AUC stands for area under the receiver operating characteristic curve. The “–” mark 
means not applicable.

http://tools.iedb.org/auto_bench/mhci/weekly/
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improve our understanding of the immune system. Like HLA-peptide binding data, a lot of big data are diverse 
and incomplete41 such as gene expression data42,43, drug-target binding44 and clinical information45. Methods 
have been developed to impute the missing values for analysis including unsupervised and supervised classifica-
tions43,46,47. However, unlike the classification models, sNebula can deal with sparse or incomplete data without 
requiring the process of missing data imputation. It also accepts the diversity and flexibility of data so an assured 
length of features is not required. With the arising of big data era and increasing needs of big data analysis, we 
believe sNebula is one of the possible solutions to deal with large, diverse and incomplete data for predictions and 
novel discoveries.

Future applications of sNebula remain to be explored. In this study, sequences were utilized to calculate the 
similarity between nodes. It is possible to use sNebula in the development of similar algorithms for other applica-
tions. For example, it is possible to utilize the 2D structural fingerprints of drugs to replace sequences of peptides 
for similarity calculation and, thus, modify sNebula to predict drug-HLA binding or even drug-target binding 
that may underlie some observed genetic links to adverse drug events. Network-based inference (NBI) is a pow-
erful network approach that can integrate a variety of data sources for a wide spectrum of applications such as 
drug-target predictions48,49, drug safety assessment50–52, driver mutations prioritization in cancer genomics53, 
RNA network prediction54 and xenobiotics gene and disease prediction55. Cheng et al. utilized Node Weighted 
Network-based Inference (NWNBI) to predict drug-target interactions using a node-weighted network and 
observed a better performance than the unweighted NBI49,56. They calculated the drug similarity by 2D finger-
prints and target similarity by sequences. However, their method uses all the neighbors for prediction instead 
of selecting the top similar ones. It is possible to improve the prediction performance by selecting top similar 
neighbors using sNebula. Another possible application for sNebula is to predict drug-disease association for drug 
repurposing. Gottlieb et al. collected a network of drug-disease associations as well as information of drug-drug 
similarities and disease-disease similarities to predict novel drug-disease associations using logistic regression57. 
The machine learning method is useful; however, there are some challenges such as problems to deal with a flexi-
ble length of features21 or missing data45. Since sNebula is based on similarity and does not require the complete-
ness or an assured length of features, it is possible to extend sNebula to predict drug-disease associations while 
overcoming those problems.

Another potential application of sNebula is to develop new therapeutics such as tumor immunotherapy. The 
neoantigens are peptides in the human body that are not encoded by the normal human genome. In tumors, they 
are generated by the tumor-specific DNA alternations58. When the gene expression data for patients are available, 
predicting HLA-peptide binding may help to identify or filter patient-specific neoantigens, which are a major 
factor for clinical immunotherapy development58,59. As more HLA-peptide binding data and patient-specific RNA 
sequencing data are becoming available, we believe sNebula can potentially help with neoantigen identification 
and the development of immunotherapies.

In addition to predictions values, sNebula also provides the confidence values. Confidence values are estima-
tions about how likely the result is true; therefore, users can differentiate the results using confidence values and 
select the most confident predictions for validation. A good method not only makes more predictions in number, 
but also predicts with higher accuracy at higher confidence. From the confidence analysis result of sNebula, we 
saw sNebula predicted more and performed better with higher confidence. We believe the confidence values are 
useful information that can potentially help with the selection of prediction results for experimental validation in 
applications such as HLA-peptide binding, drug-target binding and drug-disease associations.

Conclusion
We developed a network-based prediction algorithm, sNebula, to predict the binding potential between HLAs 
and peptides. We found this algorithm exhibited a good performance in both the LOO cross-validation and 
five-fold cross-validations using the experimental HLA-peptide binding data curated from major databases. 
The confidence analysis indicated its ability to make predictions with more accuracy when the confidence level 
is higher. This algorithm not only overcomes the limitations of the current machine learning methods on the 
number of HLAs and lengths of peptides, but also makes it possible to predict HLA-peptide binding for new 
peptides or HLAs. It could be expected that sNebula can help with the construction of a comprehensive atlas of 
HLA-peptide binding that, in turn, facilitates better understanding of the immune system.

Methods
Study design. The workflow of the study is shown in Fig. 4. Qualitative Class I HLA-peptide binding data 
were collected and curated from four databases: AntiJen16, IEDB17, MHCBN18 and SYFPEITHI19. A bipartite 
network of HLA-peptide binding data was then constructed. The binding data network was used to assess the 
performance of sNebula using leave-one-out (LOO) cross-validation and 1,000 iterations of five-fold cross-val-
idations. The prediction confidence analysis was conducted based on the results of five-fold cross-validations.

Data curation. The experimental Class I HLA-peptide binding data were collected from four databases 
(AntiJen16, IEDB17, MHCBN18 and SYFPEITHI19) as described in our previous study22. The databases provide 
qualitative binding categories (binding versus non-binding) for each HLA-peptide pair. We merged the four data-
bases and recorded only one qualitative datum for each of HLA-peptide pairs using the majority voting strategy22. 
Since sNebula is based on a color graph of the network in which the nodes (HLAs and peptides) are colored using 
their amino acid sequences, we downloaded HLA sequences from the IMGT/HLA database20 and removed the 
HLAs that do not have an affirmative protein sequence such as HLA serotypes and allele groups and their binding 
peptides. The curated HLA-peptide binding data were used to construct a bipartite binding network, where HLAs 
and peptides are nodes, and the binding data between them, either binding or non-binding, are edges.
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sNebula. To predict the binding between peptide px and HLA hy, sNebula first identifies the peptides that are 
connected to HLA hy, pi (i =  1, 2, … ). The similarity between peptide px and each of the connected peptides of hy, 
pi, is calculated based on their sequences. To calculate the similarity between peptide px and peptide pi, sNebula 
first aligns the sequences of the two peptides without opening gaps and then calculates the similarity score spx,i 
using equations (1–2).
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In equation (2), lx and li are the lengths of peptides px and pi, respectively. In equation (1), px,i is the sequence sim-
ilarity between peptides px and pi and is calculated using BLOSUM50 matrix60, and px,x is the sequence similarity 
between peptide px and itself. BLOSUM50 matrix was used in this study because it has been used in many other 
methods for predicting HLA-peptide binding26,39,61,62. For each of possible alignments between peptide px and 
peptide pi, a sequence similarity value, px,i, is calculated. The alignment with the largest sequence similarity value 
is then selected and its similarity, px,i, is used for the calculation of equation (1).

In the same way, sNebula recognizes the HLAs that are connected to peptide px, hj (j =  1, 2, … ). The similarity 
between HLA hy and each of the connected HLAs of peptide px, hj, is then calculated. For the HLA similarity  
calculation, instead of using HLA full sequences, sNebula utilizes the 48 unique residues on HLAs that 
closely interact with peptides which were identified by Chelvanayagam63 as HLA pseudo-sequences. The 
pseudo-sequence similarity score shy,j between HLA hy and HLA hj is calculated using equation (3).
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In equation (3), hy,j is the pseudo-sequence similarity between HLA hy and HLA hj and is calculated using 
BLOSUM50 matrix, and hy,y is the pseudo-sequence similarity between HLA hy and itself. It is noted that both 
spx,i and shy,j are directional; thus, spx,I (shy,j) is not necessarily equal to spj,x (shj,y).

After the similarity scores for the nodes (HLAs and peptides) of the neighbor edges are calculated, sNebula 
ranks the peptides and HLAs using their similarity scores spx,i and shy,j to select n top ranked peptides and HLAs 
for px and hy, respectively, for the calculation of a continuous value px,y using equation (4) as the prediction of 
binding between px and hy. Here n is a parameter to be determined. The n with the best prediction of accuracy of 
LOO cross-validation based on the network of HLA-peptide binding data is used.

Figure 4. Study workflow. The qualitative Class I HLA-peptide binding data were curated from four major 
databases (AntiJen, IEDB, MHCBN and SYFPEITHI). A HLA-peptide binding data network was constructed 
based on the curated data. To assess the performance of sNebula, LOO cross-validation and 1,000 iterations of 
five-fold cross-validations were executed. Based on the results of five-fold cross-validations, confidence analysis 
was conducted to evaluate the relationship between the confidence levels and the prediction performance of 
sNebula.
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In equation (4), ei,y is the binding edge weight between peptide i and HLA y in the HLA-peptide binding data 
network given by equation (5).
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As an unbiased approach, sNebula considers the contribution from the peptides px and HLAs hy of the neighbor 
edges equally. When peptide px do not contain neighbor edges, sNebula predicts the binding between peptide px 
and HLA hy using equation (6).
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Therefore, if a peptide has no experiment data against any HLA in the training network, sNebula is still able to 
predict its binding towards the HLAs based on its sequence and the topological feature of the training network 
using equation (6). In the same way, if HLA hy do not have neighbor edges, sNebula predicts the binding between 
peptide px and HLA hy using equation (7).

=
∑

∑
=

=

p
sh e

sh (7)
x y

j
n

y j x j

j
n

y j
,

1 , ,

1 ,

When the number of available connecting nodes (HLAs or peptides) for peptide px or HLA hy is less than n, all of 
the nodes are used. When multiple connecting nodes for peptide px or HLA hy have the same similarity score to be 
selected as the top n similar nodes, the average of their binding edge weights is used in equations (4), (6) and (7).

The binding prediction px,y is a continuous value between − 1 and 1 and is converted into a categorical predic-
tion value cx,y using equation (8).
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The goodness of the prediction cx,y is assessed using a metric term as prediction confidence confx,y that is defined 
in equation (9).

=con f p (9)x y x y, ,

LOO cross-validation. In the LOO cross-validation, each of the HLA-peptide binding data was taken out 
and the remaining HLA-peptide binding data were used to construct the HLA-peptide binding network for pre-
diction of the binding value for the taken-out HLA-peptide pair using sNebula. This process was repeated until 
every HLA-peptide binding data were used as a test sample. The predicted values were then compared with the 
actual experimental binding data and sensitivity, specificity, accuracy and area under receiver operating charac-
teristic curve (AUC) were calculated to evaluate the performance of sNebula. To determine the parameter n, we 
repeated the LOO cross-validation for n =  1, 2, 3 …  50. The n value with the highest prediction accuracy of LOO 
cross-validation was selected to be the parameter for sNebula.

Five-fold cross-validations. We conducted 1,000 iterations of five-fold cross-validations on the 
HLA-peptide binding data to obtain a statistically robust estimation of sNebula performance. In a five-fold 
cross-validation, the HLA-peptide binding data were randomly divided into five parts as equal as possi-
ble. One part of HLA-peptide binding data was taken out to be used as test samples and the remaining four 
parts of HLA-peptide binding data were used as the training samples to construct a bipartite network. LOO 
cross-validations were conducted on training samples to determine the parameter n in sNebula. The network con-
structed from the training samples and the determined parameter n was used by sNebula to predict HLA-peptide 
binding of the test samples. This process was repeated five times so that each of the five parts of the HLA-peptide 
binding data was used once and only once as test samples. The categorical prediction results from all the five folds 
of test samples were compared to the actual experimental HLA-peptide binding data to calculate the sensitivity, 
specificity and accuracy to estimate the performance of sNebula.

Prediction confidence analysis. Prediction confidence has been proposed as one of the metrics to meas-
ure performance of predictive models developed in the FDA’s endocrine disruptors knowledge based project64–71 
using variety of machine learning methods such as decision tree72, Decision Forest models73–78 based on molec-
ular descriptors79 that are calculated using the algorithm developed for the expert systems of structure eluci-
dation80–85, support vector machine86,87 and principal component analysis based algorithm88,89. The continuous 
value output from sNebula for prediction of binding between an HLA and a peptide is the measure of likelihood 
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of the peptide is a binder or non-binder of the HLA and indicates the confidence for the prediction. A good pre-
diction method should not only show an overall high prediction accuracy but also is expected to 1) predict most 
unknown samples with a high confidence and 2) show a higher accuracy for the predictions with a higher confi-
dence than the predictions with a lower confidence. We examined the relationship between prediction confidence 
and accuracy using all predictions from the 1,000 iterations of five-fold cross-validations. The prediction confi-
dence was calculated using equation (9) for every prediction. The predictions were then placed into 10 groups 
with even confidence bins according to their confidence values. For each of the 10 groups of predictions, we 
calculated the sensitivity, specificity, accuracy and AUC by comparing the predictions with the actual experimen-
tal HLA-peptide binding data. At last, the performance of sNebula at difference confidence levels was analyzed.

Benchmark. IEDB has an automatic server benchmark page (http://tools.iedb.org/auto_bench/mhci/
weekly/) that evaluates different prediction methods for HLA-peptide binding based on new data submitted in 
the past three months or last week. We used the latest three datasets of 3-month period (2016-05-03, 2016-02-
19 and 2015-08-07) as an example to compare sNebula with existing methods as well as its predecessor, Nebula. 
The parameter n was set to 13 for sNebula to make predictions. Two performance metrics, Spearman’s Rank 
Correlation Coefficient (SRCC) and AUC, were calculated between the predicted values and experimental values 
using R.
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