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Abstract

Summary: Presence or absence of gene fusions is one of the most important diagnostic markers in many cancer
types. Consequently, fusion detection methods using various genomics data types, such as RNA sequencing (RNA-
seq) are valuable tools for research and clinical applications. While information-rich RNA-seq data have proven to
be instrumental in discovery of a number of hallmark fusion events, bioinformatics tools to detect fusions still have
room for improvement. Here, we present Fusion-Bloom, a fusion detection method that leverages recent develop-
ments in de novo transcriptome assembly and assembly-based structural variant calling technologies (RNA-Bloom
and PAVFinder, respectively). We benchmarked Fusion-Bloom against the performance of five other state-of-the-art
fusion detection tools using multiple datasets. Overall, we observed Fusion-Bloom to display a good balance be-
tween detection sensitivity and specificity. We expect the tool to find applications in translational research and clinic-
al genomics pipelines.

Availability and implementation: Fusion-Bloom is implemented as a UNIX Make utility, available at https://github.
com/bcgsc/pavfinder and released under a Creative Commons License (Attribution 4.0 International), as described at
http://creativecommons.org/licenses/by/4.0/.

Contact: rchiu@bcgsc.ca or ibirol@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene fusions have long been known as drivers for both develop-
ment and progression in various tumour. Over the years, a num-
ber of software tools have been developed to detect gene fusions
from RNA sequencing (RNA-seq) data (Kumar et al., 2016). The
algorithms of many of these tools typically involve detection of
clusters of split single-read and discordant read-pair alignments
against the reference genome or transcriptome. Alternatively,
other tools use de novo assembly methods to produce sequences
longer than the raw reads for more accurate sequence mapping
before fusion detection. Although developments in long read
technologies may alter this assessment in the future, the current
cost-benefit-value balance still favours short reads for many
applications.

Here, we describe a pipeline called Fusion-Bloom, which com-
bines the use of a new de novo transcriptome assembler, RNA-
Bloom (Nip et al., 2019) and a versatile assembly-based structural
variant caller, PAVFinder (Chiu et al., 2018), for fusion detection.
We demonstrate the performance of Fusion-Bloom on simulated
and experimental RNA-seq datasets. We benchmarked its

estimation accuracy and computational resource requirements in

comparison to those of six RNA-seq fusion detection tools.

2 Materials and methods

Fusion-Bloom is implemented as a UNIX Make utility, which auto-
mates three analysis stages: assembly, alignment and analysis

(Supplementary Fig. S1). In the first stage, paired RNA-seq reads are
assembled by RNA-Bloom with the option ‘-chimera–extend–stra-
tum 01’ to improve its reconstruction of full-length chimeric tran-

scripts in low abundance. To expedite processing, Fusion-Bloom
only retains RNA-Bloom contigs longer than the first quartile length

of the entire assembly for downstream analysis. Contigs are then
aligned against both the reference genome and annotated tran-
scripts. Reference transcript alignment provides a computationally

inexpensive yet useful complement to the genome alignment for chi-
mera identification. Raw RNA-seq reads are also aligned to the con-

tigs for: (i) filtering of mis-assembled chimeric junctions and (ii)
estimating the expression levels of putative fusions. Based on these
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alignments, PAVFinder detects potential fusions and reports its
results in BEDPE format (Supplementary Table S1).

3 Results

We took a commonly-used benchmarking dataset consisting of 50
fusions to compare the performance of Fusion-Bloom against 5
other fusion detection tools: deFuse (McPherson et al., 2011),
STAR-Fusion (Haas et al., 2017), JAFFA (Davidson et al., 2015),
pizzly (Melsted et al., 2017), SQUID (Ma et al., 2018) and
EricScript (Benelli et al., 2012) (Supplementary Table S2). Fusion-
Bloom out-performed other tools by detecting the largest number of
fusions (48) with zero false-positive (Supplementary Fig. S2). To bet-
ter mimic data from tumour transcriptomes, we repeated the bench-
marking experiment by combining the fusion-only dataset with an
additional dataset comprising similar number of reads simulated
from the ENSEMBLE annotation. We generated sensitivity-versus-
precision plots of the tools (Fig. 1A) by filtering reported events with
different read support levels represented by breakpoint-spanning
reads and flanking read pairs (Supplementary Table S3). Fusion-
Bloom was the best performer in this test; it does not produce any
false-positives within the entire range of support levels (hence a ver-
tical line). At the other end of the spectrum, pizzly’s false positives
remained high at all minimum support levels evaluated and thus
produced a consistently high false discovery rate (FDR). The other
tools displayed a more gradual linear relationship between true posi-
tive rate and FDR in response to the range of minimum support lev-
els tested.

A publicly available dataset consisting of synthetic fusion tran-
scripts spiked in at a wide range of molarity levels to total RNA pro-
vides another useful benchmarking test of sensitivity (Tembe et al.,
2014). The dataset is composed of 20 samples, each harbouring 9

fusions spiked in at 10 different molarities to total RNA in dupli-
cate. Fusion-Bloom and STAR-Fusion were the most sensitive tools
as they were capable of detecting all fusions at all molarities in both
replicates (Fig. 1B, Supplementary Table S4).

To assess the tools’ specificity in experimental data, we analyzed
three RNA-seq samples that are technical replicates of a whole-
blood sample pooled from five healthy donors (Zhao et al., 2015).
While we cannot assume all fusions detected in healthy individuals
are false positives without validation, we expect the majority of
reported events are likely false-positives. We made a plot of the total
number of fusions at different levels of minimum support to deter-
mine an optimal cutoff for comparison (Fig. 1C). Using a minimum
of 4 spanning reads as the cutoff, JAFFA consistently reports the
fewest number of fusions (5), whereas EricScript (301) and deFuse
(227) report the most. SQUID, STAR-Fusion, Fusion-Bloom and
pizzly report an average number of 16, 20, 26 and 46 fusions,
respectively.

We benchmarked the computing performance of the tools using
the 20 spike-in samples which contained 73 to 180 million read
pairs (Fig. 1D). On average, Fusion-Bloom requires 10–12 h to pro-
cess one hundred million read pairs. Although this is slower than
alignment-based methods such as pizzly and STAR-Fusion, we think
that de novo assembly is a valuable approach in that it provides
base-pair precision of fusion breakpoints, and can also be used for
detecting other long-range transcriptome rearrangement such as
tandem-duplications and splice variants (Chiu et al., 2018).
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Fig. 1. Benchmarking results of Fusion-Bloom and six other fusion detection tools.

(A) Sensitivity-versus-precision plot on simulated FusionMap fusions combined

with simulated reads representing reference transcripts in similar total abundance.

(B) Sensitivity benchmark using 10 replicates with 9 fusions spiked in at different

molarities (grey lines). (C) Total number of fusions reported in healthy blood sam-

ples in relation to minimum level of read support. (D) Wall-clock time (left Y-axis,

solid lines) and peak memory usage (right Y-axis, dotted lines) benchmarked on

spike-in samples. All the tools were run using 12 threads on a single Intel Xeon E5-

2699 v3 2.30 GHz 36-core machine running CentOS 6
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