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Abstract

Hepatocellular carcinoma (HCC) is a common cancer, and 
the body’s immune responses greatly affect its progression 
and the prognosis of patients. Immunological suppression 
and the maintenance of self-tolerance in the tumor micro-
environment are essential responses, and these form part 
of the theoretical foundations of immunotherapy. In this re-
view, we first discuss the tumor microenvironment of HCC, 
describe immunosuppression in HCC, and review the major 
biomarkers used to track HCC progression and response 
to treatment. We then examine antibody-based therapies, 
with a focus on immune checkpoint inhibitors (ICIs), mono-
clonal antibodies that target key proteins in the immune 
response (programmed cell death protein 1, anti-cytotoxic 
T-lymphocyte associated protein 4, and programmed death-
ligand 1) which have transformed the treatment of HCC and 
other cancers. ICIs may be used alone or in conjunction 
with various targeted therapies for patients with advanced 
HCC who are receiving first-line treatments or subsequent 
treatments. We also discuss the use of different cellular im-
munotherapies, including T cell receptor (TCR) T cell thera-
py and chimeric antigen receptor (CAR) T cell therapy. We 
then review the use of HCC vaccines, adjuvant immuno-
therapy, and oncolytic virotherapy, and describe the goals of 

future research in the development of treatments for HCC.
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Introduction
Liver cancer is among the most common cancers worldwide, 
and is becoming increasingly prevalent in Western nations.1,2 
Hepatocellular carcinoma (HCC) is the main type of liver 
cancer, and it usually occurs due to persistent liver damage 
from infection by the hepatitis B virus (HBV) or hepatitis C 
virus (HCV), alcoholism, or metabolic syndrome.3 The most 
common serum biomarker for HCC is α-fetoprotein (AFP). 
Tumor load, location, and comorbidities influence the choice 
of treatment, which may consist of transplantation, resection 
with percutaneous ablation, trans-arterial chemoemboliza-
tion (TACE), and radio-embolization.4

Effective anticancer immune surveillance occurs due to 
the interplay between the adaptive and innate immune re-
sponses. Immune evasion occurs when there are dysfunc-
tional interactions between the body’s defense system and a 
tumor. More specifically, the immune system may have weak-
ened detection of tumor-associated antigens (TAAs) or there 
may be an immune-suppressive tumor microenvironment 
(TME).5,6 Alterations in peptide or antigen processing, post-
transcriptional inactivation, epigenetics, and other changes 
can impair the identification of TAAs by different components 
of the immune system.7 Deficient immune regulation by reg-
ulatory T cells (Tregs), myeloid-derived suppressor cells (MD-
SCs), inhibitory B cells, and M2-polarized tumor-associated 
macrophages (TAMs) can stimulate cancer progression. In-
creased regulation of co-inhibitory lymphocyte signals and 
increased levels of tolerogenic enzymes also contribute to 
cancer development and progression.8 Targeting the body’s 
defense system by immunotherapy is therefore a potentially 
effective general strategy for the treatment of many malig-
nancies.

Liver tumors use specific ligands and receptors to enable 
communication of tumor cells with stromal cells, and to by-
pass anti-tumor immune responses.9 Effector lymphocytes 
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generate several co-inhibitory compounds at immune check-
points, such as lymphocyte-activation gene 3 (LAG3), cyto-
toxic T lymphocyte-associated antigen 4 (CTLA-4), PD-1, T 
cell immunoglobulin, and mucin domain containing-3 (TIM3), 
and this prevents over-activation of the immune response.10 
Activated T cells and Tregs express high levels of CTLA-4, and 
this down-regulates the immune response and blocks the 
activation of effector T cells.11 Activated T cells, Tregs, mono-
cytes, natural killer (NK) cells, dendritic cells (DCs), and MD-
SCs all express programmed cell death protein-1 (PD-1), and 
a variety of stromal and cancer cells express programmed cell 
death-ligand 1 (PD-L1). PD-1 decreases the activity of effec-
tor T cells, leading to suppression of effector functions. Many 
studies that used specific monoclonal antibodies (mAbs) as 
immune checkpoint inhibitors (ICIs) demonstrated the bene-
fits of an efficient immune response that eliminates different 
types of cancerous cells. ICIs can prevent the deactivation 
of T cells by blocking the binding of checkpoint proteins with 
their ligands.12 and are the first immunotherapy drugs with 
demonstrated efficacy against HCC.

Tumor immunotherapy has become a promising strategy 
for preventing the spread, recurrence, and development of 
many different tumors.13 Immunotherapy agents trigger tu-
mor-specific immune responses and prevent immunological 
tolerance. Cancer immunotherapy has the potential to pro-
vide systemic and long-term anti-tumor activities, making it 
an appealing treatment option for metachronous and mul-
ticentric HCC. The US Food and Drug Administration (FDA) 
has licensed eight different ICIs that target PD-1, CTLA-4, 
or PD-L1 for the treatment of a variety of malignancies, in-
cluding HCC.14,15 Other immunotherapeutic methods (such 
as the administration of immune cells with chimeric antigen 
receptors, cancer vaccines, adoptive cell therapy, and spe-
cially formulated cytokines) are currently under development 
and offer fresh optimism for the treatment of patients with 
HCC.16,17

Immune microenvironment of HCC

Antigenicity
Antigen expression is the first event in the establishment of a 
T cell response to a tumor. Uncontrolled expression of cancer 
testis antigens and oncofetal antigens during hepatocarcino-
genesis can trigger a spontaneous immune response.18 Blood 
and tumor samples from HCC patients exhibit tumor-specific 
T-cell reactions, such as the production of CD8+ T lympho-
cytes, and these can target AFP, melanoma-associated gene 
1 (MAGE-A1), glypican 3 (GPC3), and New York esophageal 
squamous cell carcinoma 1 (NY-ESO1). Genetic changes dur-
ing hepatocarcinogenesis may lead to amino acid modifica-
tions of proteins and the formation of cancer neoantigens.19 
These amino acid modifications may improve the peptide’s 
ability to bind to human leukocyte antigens (HLA), attract T 
cells toward the novel epitope, or create novel structures with 
T cell receptors (TCRs), and this allows T cells to recognize 
the novel epitope without being blocked by immunological 
tolerance.20 Many neoantigens derive from mutations of tu-
mor suppressor proteins, such as tumor protein p53 (TP53), 
and are present in a variety of tumors. However, most of 
these novel epitopes are private neoepitopes (on a single 
HLA) caused by somatic mutations, and are considered to be 
passenger mutations.21,22

Next-generation sequencing (NGS) technology has al-
lowed researchers to identify the mutational landscapes of 
numerous tumors.23 The tumor mutational burden (TMB, so-
matic mutations per Mb) is widely employed as a proxy for 

neoantigens due to its correlation with the number of T cells 
specific for neoantigens.24 The TMB varies widely among dif-
ferent types of tumors, and is low in pancreatic tumors (<1 
mut/Mb) but high in many other tumors (>20 mut/Mb).25 
HCC often has a low-to-moderate TMB compared to other tu-
mors, with a mean TMB of about 5 mut/Mb, corresponding to 
about 60 non-synonymous changes.26 Theoretically, a tumor 
is more likely to become antigenic in the presence of a high 
TMB. Neoantigens are common in HCC, but their pathological 
significance is uncertain.

Immunological profile
The liver performs a variety of functions, such as blood trans-
portation via the hepatic artery and portal vein, filtration of 
intestinal infectious agents, and excretion of harmful sub-
stances, and is therefore exposed to numerous foreign an-
tigens.27,28 The hepatic reticulo-endothelial system is com-
prised of sinusoids, liver sinusoidal endothelial cells (LSECs), 
and Kupffer cells, which present antigens to innate T-cells. 
This system induces an immunological reaction that is tolero-
genic in healthy individuals.29 Liver inflammation due to in-
fection by HBV or HCV leads to the recruitment of cytokines 
and other immune molecules that can promote cancer prolif-
eration.30 Innate and adaptive immune cells in the TME and 
TAMs stimulate PD-1 and CTLA-4.31 CTLA-4 blocks T-cell ac-
tivation by competing with CD28 in its binding to CD80/86 
on antigen-presenting cells (APC); PD-1 regulates T-cell col-
lapse and hinders T-cell stimulation.32 The different compo-
nents of the TME function in several complex processes, such 
as decreasing the detection of TAAs, interacting with immu-
nological checkpoints, and forming immune suppressive cells 
that provide a balanced and immunotolerant status.33 The 
immunotolerance of HCC is also associated with the produc-
tion of numerous cytokines and other regulatory molecules, 
including the immunosuppressive transforming growth factor 
beta (TGF-β).34

Immune cell microenvironment
The liver also down-regulates immune system activity, and 
this promotes tolerance to foreign antigens that are benign, 
such as those in the diet.35,36 The maintenance of a tolero-
genic environment in humans requires interactions of non-
parenchymal liver cells, such as Kupffer cells, LSECs, and he-
patic stellate cells (HSCs). Kupffer cells can function as APCs 
in conjunction with LSECs and HSCs.37 Kupffer cells also pro-
duce inhibitory molecules, including indoleamine 2,3-dioxy-
genase (IDO), prostaglandins, and interleukin 10 (IL-10),38 
and increase the activation of Tregs.39 PD-L1 has high expres-
sion in LSECs, and is responsible for the TGF-β-mediated ini-
tiation of Tregs. HSCs secrete hepatocyte growth factor (HGF), 
and this leads to the accumulation of MDSCs and Tregs in the 
liver, followed by PD-L1-mediated T cell death.40–42

The TME of HCC contains a mixture of cancer cells, can-
cer-associated fibroblasts, and non-parenchymal hepatic 
cells. Activation of the TME and the presence of defective 
tumor-infiltrating lymphocytes (TILs) are manifestations of 
a muted adaptive immune response to HCC.18 Suppression 
of the innate immune response, expression of inhibitory re-
ceptors.43,44 MDSC-mediated immune suppression,45 and an 
increase in the number of defective NK cells contribute to the 
activation of the TME.46 TGF-β controls immune cells in the 
liver, and promotes a balance between immune adaptabil-
ity and stimulation under normal conditions.47 However, the 
production of excessive TGF-β within the TME can disrupt this 
balance and promote cancer growth, because of its patho-
logical effects on a range of important cell types that control 
innate and adaptive immunity (Fig. 1).
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Mechanism of immunosuppression in HCC
Co-stimulatory molecules (CMs) must be produced on T 
cells and APCs for TCRs to bind the major histocompatibility 
(MHC) peptides on APCs. The downregulation of MHC class 
I on cancer cells hampers antigen conversion.48,49 Addition-
ally, the decreased development of CMs, such as B7-1 and 
B7-2, in HCC can cause T cell anergy.50 In healthy humans, 
immune checkpoints defend against unchecked autologous 
immunity by blocking excessive T-cell activation. However, 
tumor cells can overexpress immune checkpoint compounds 
that bind to TCRs and prevent T cell stimulation. Thus, acti-
vation of immune checkpoint pathways in HCC compromises 
the effector function of cellular immune reactions.51,52

The impaired CD4+ T cells in HCC patients can also sup-
press the body’s defense system.53 In the absence of appro-
priate CMs, expansion of MHC class II leads to inactive CD4+ 
T cells.54 Additionally, immunosuppressive components, such 
as Tregs.55 MDSCs, and regulatory DCs,56 have significant im-
munosuppressive effects in cancer patients. An increase in 
the number of immunosuppressive cells (such as Tregs), may 
promote cancer progression and lead to a poor prognosis. 
For example, previous research showed that HCC patients 
with venous metastases experienced changes in the Th1/Th2 
balance in the hepatic microenvironment.57 More specifically, 

abnormal immune responses in the TME are an important in-
dicator of HCC metastasis, and these manifest as the up-reg-
ulation of Th2-like cytokines (which are immunosuppressive 
and anti-inflammatory) and the down-regulation of Th1-like 
cytokines (which are pro-inflammatory and immunogenic) in 
adjacent non-cancerous hepatic tissues.58,59 Figure 2 sum-
marizes the bidirectional interactions between HCC tumor 
cells and the immunosuppressive component of the TME.

Immunotherapies for HCC
The liver collects blood from the hepatic artery and portal 
vein, and blood from the portal vein contains nutrients and gut 
bacteria that are exposed to Kupffer cells (macrophages), NK 
cells, and innate T lymphocytes in the hepatic sinusoids.60,61 
Immune adaptability in the liver, coordinated by Tregs and im-
munosuppressive inflammatory mediators, is essential be-
cause there is a need to prevent excessive immune responses 
against harmless antigens and bacteria.62 Immunotherapeutic 
approaches to hepatic cancer can be especially effective be-
cause the liver’s defense system promotes an immunosup-
pressive landscape that can encourage the development and 
impede the immune capture of cancerous hepatic cells.

Various factors that increase liver inflammation (e.g., tox-

Fig. 1.  Schematic illustration of the various approaches targeting TGF-β pathways for Hepatocellular carcinoma (HCC). The effect of TGF-β controls both 
immune evasion and antitumor immunity. TGF-β, transforming growth factor beta.
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ins, non-alcoholic hepatic steatosis, and viruses such as HBV 
and HCV) are also risk factors for the onset and progression 
of HCC. HCC can occur as a consequence of cirrhosis, which 
is characterized by abnormal interactions among angiogenic 
cells, fibroblasts, and defense cells.63 HCC is mostly influenced 
by disruptions in the balance of immune-suppressive and 
immune-activating cells, and these alterations in the tissue 
microenvironment can affect prognosis. For example, in vitro 
studies showed that increased expression of Tregs was linked to 
more advanced stages of HCC.64 Additionally, clinical studies 
showed that increased expression of Tregs was associated with 
a worse prognosis and an increased risk of metastasis.65,66 
Tregs impede the invasion of CD8+ effector T cells and decrease 
the activities of granzyme and perforin.64 Thus, increasing the 
level of checkpoint blockers (PD-1, PD-L1, Tregs, and MDSCs) 
decreases antiviral immune reactions.67,68 In particular, PD-
L1 overexpression decreases cytokine production, increases 
the growth of Tregs, and decreases effector T cell cytotoxic-
ity.69 PD-L1 expression is associated with a worse prognosis, 
a more advanced tumor stage, and an increased likelihood of 

tumor recurrence.67,70 Several in vitro studies demonstrated 
that PD-L1 blockade decreased viral density, halted cancer-
derived immunosuppression, and prevented cancer growth.71

Biomarkers for tracking responses to immunothera-
pies in HCC
Many ongoing clinical trials are examining the application of 
immune therapy for HCC (Table 1).72–74 Some of these studies 
focused on PD-L1 expression as an indicator of the response 
to immunotherapy, and examined the effects of novel com-
binations of ICIs. Early studies found that PD-L1 production 
is associated with poor prognosis in patients with advanced 
HCC.75–77 In the ORIENT-32 trial, sintilimab combined with 
IBI305 showed significant overall survival and progression-
free survival benefits compared with first-line treatment with 
sorafenib in patients with unresectable HBV-related hepato-
cellular carcinoma.72 Early studies found that the OS benefit 
of tislelizumab is non-inferior to that of sorafenib, with a high-
er objective response rate and more durable response, while 

Fig. 2.  The bidirectional interactions between Hepatocellular carcinoma (HCC) tumor cells (image drawn in the center) and the immunosuppressive 
component including MDSCs, M2 macrophages, ILCs, N2 cells, NK2, Th2, Treg, NKT of the tumor microenvironment. MDSCs, myeloid-derived suppressor 
cells; ILCs, Innate lymphoid cells; NK2, Natural killer; Th2, T helper 2; Treg, regulatory T cells; NKT, natural killer T.
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the median progression-free survival of sorafenib is longer.73 
There are also considerable inter-institutional variations in the 
techniques used to assess PD-L1 production, and this may 
explain the disparate results of multicenter clinical trials. Ide-
ally, cooperating institutions should establish standardized 
methods for defining PD-L1 production. It is also crucial to 
analyze sub-groups of patients with advanced HCC who have 
similar tumor loads, because PD-L1 expression changes as 
the disease progresses. The best time for immunohistochemi-
cal analysis of HCC tissue specimens and measurement of 
PD-L1 production is unknown; it is also unknown whether PD-
L1 should be measured in stromal tissues, tumor tissues, or 
both. The inconsistent immuno-histochemical methods used 
to measure PD-L1 expression make it more difficult to inter-
pret results that assess responses to immunotherapy.78

High intra-tumoral concentrations of CD3+ and CD8+ T 
cells are associated with longer recurrence-free survival, and 
the clinical outcomes following treatment with nivolumab 
(PD-1 inhibitor) and ipilimumab (CTLA-4 inhibitor) are as-
sociated with the penetration of CD8+ cells.79 However, this 
relationship might not apply to patients with chronic hepatitis 
C, because T-cell entry generally increases in the presence of 
chronic viral disease. Thus, more research is required to as-
sess the beneficial effects of ICIs in patients with HCC.79 The 
TMB can also indicate a tumor’s immunogenic potential.80,81 
The generally low TMB in HCC (average of 5 mut/Mb) may 
mean that this metric has limited application for HCC, al-
though TMB is increasingly used as a biomarker in a variety 
of other malignancies. A thorough genomic profile analysis 
of 755 patients with late-stage HCC showed that the median 
overall TMB was only about 4 mut/Mb, and that there was no 
link between TMB and response to treatment, disease pro-
gression, or stable disease (SD). This underlines the limited 
usefulness of TMB as a biomarker for HCC.82

The organization of cancers into molecular features is con-
trary to individual types of indicators, because HCC tumors 
are variable and have unique TMEs. A study of HCC found 
that the most prevalent genetic “clusters” were for interferon 
predominance, lymphocyte deficiency, inflammation, and 
wound healing. An improved understanding of the role of 
different gene clusters in the development of particular im-
mune escape mechanisms may help to develop more effec-
tive combination therapies.83 This may allow researchers to 
specify patient groups that would benefit most from specific 
combination therapies according to their genetic profiles.

Antibody-based therapies for HCC

Treatments with a single ICI
Effector immune cells express different immunological check-

points, and activation of these checkpoints prevents an over-
active immune response. There are numerous endogenous 
inhibitors of these checkpoints, including the T cell immu-
noreceptor with Ig and ITIM domains (TIGIT), B and T lym-
phocyte attenuator, LAG3, and TIM3.84,85 HCC exploits this 
checkpoint system to prevent anti-tumor immune respons-
es.86 ICIs are mAbs that block these checkpoints and restore 
immune responses. The immune response against tumors 
can also be enhanced by preventing the deactivation of T 
cells and the reactivation of immune targets. PD-1, CTLA-4, 
and PD-L1 are currently the main targets of approved ICIs.87 
The vast majority of immune cells (including MDSCs) mainly 
stimulated T-cells, Treg, DCs, NK cells, and monocytes, ex-
press PD-1, which is a member of the CD28 family. PD-1, 
PD-L1, and PD-L2 inhibit T cells, and this activates HCC and 
allows it to evade the immune system.88

The US FDA approved nivolumab (PD-1 inhibitor) in 2017 
for use as a second-line therapy for patients with severe 
HCC after the receipt of sorafenib, a tyrosine kinase inhibitor 
(TKI).89 Several trials have also examined the use of other 
ICIs as treatments for HCC, and pembrolizumab (PD-1 in-
hibitor) and atezolizumab (PD-L1 inhibitor) were approved as 
clinical treatments for HCC in various countries. Nivolumab 
and pembrolizumab can provide an objective remission rate 
of 15 to 20%, and a complete recovery rate of 1 to 5%. 
More specifically, for the 48 patients in the CheckMate 040 
trial, nivolumab treatment led to a median response dura-
tion of 17 months, and 80% of responders had a survival 
time of 2 years or more.90 The KEYNOTE-240 study, a phase 
III trial of 413 patients that compared pembrolizumab af-
ter sorafenib with placebo after sorafenib, found a signifi-
cantly longer survival time in the pembrolizumab group. 
Based on overall survival (OS) and progression-free survival 
(PFS), pembrolizumab appears to provide long-term ben-
efit for some patients.91 The phase III CheckMate 459 trial 
of 743 patients who had not used systemic medicines also 
evaluated nivolumab and sorafenib. In comparison with the 
sorafenib group, the nivolumab group had a longer medi-
an survival time.92 The extended continuation period in the 
CheckMate 459 trial supported the superiority of nivolumab 
over sorafenib in terms of long-term survival.93

Tislelizumab (PD-1 inhibitor) also provided long-term 
benefits and was readily accepted by patients who received 
prior systemic treatment for unresectable HCC. Tislelizumab 
and sorafenib were used as a first-line treatment in a large, 
randomized phase III trial of adults with unresectable HCC 
(NCT03412773).94 The majority of CD28 family member CT-
LA-4-expressing T cells and DCs that have been stimulated 
do so. CTLA-4 (which is related to CD28) downregulates the 
immune response after binding to B7.95 Ipilimumab (CTLA-4 
inhibitor) was approved in 2011 and was the first ICI ap-

Table 1.  Significant immunotherapy trials are still being conducted to treat advanced hepatocellular carcinoma

Trial name Phase Setting Target Intervention References

LEAP-002 Phase III Lenvatinib vs. the initial 
therapy for patients who 
have not received treatment

TKI, PD-1 
inhibitor

Lenvatinib+pembrolizumab 74

ORIENT-32 Phase II/III Comparison of sorafenib 
and first-line therapy for 
treatment-naive patients

PD-1 inhibitor, 
VEGF

Sintilimab+IBI308 72

RATIONALE-301 Phase III Comparison of sorafenib 
and first-line therapy for 
treatment-naive patients

PD-1 inhibitor Tislelizumab 73

CAR-T, chimeric antigen receptor-modified T cell; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; PD-L1, programmed death ligand 1; TKI, a tyrosine kinase 
inhibitor; PD-1, programmed cell death protein.
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proved by the US FDA for the treatment of advanced skin 
tumors. Tremelimumab (CTLA-4 inhibitor) was approved in 
2022, and is the most recently approved ICI.96

Ipilimumab (CTLA-4 inhibitor and an IgG1 mAb) and 
tremelimumab (CTLA-4 inhibitor and an IgG2 mAb) have 
distinct antibody-dependent cell-mediated cytotoxicities 
and complement-dependent cytotoxicities.97 Clinical trials 
showed that tremelimumab had potent anti-HCC effects, with 
a 17.6% partial response (PR) rate and a 76.4% illness con-
trol rate.98 Some research suggests that the efficacy of CTLA-
4 inhibitors can be attributed to the targeted removal of Tregs 
from cancers.99 HCC impairs the ability of T cells to function 
as effector cells due to the occurrence of TIM3 on TAMs and 
TILs, and there is a corresponding increased expression of 
tumor suppressor genes by Tregs.100 The excess production 
of TIM3 is related to a less distinguished HCC.101 Compared 
to other immune system components, LAG3 is considerably 
more abundant on tumor-specific CD4+ and CD8+ TILs in in-
dividuals with HCC. Fibrinogen-like protein 1, which is pro-
duced by hepatocytes, is another soluble ligand for LAG3.102 
There is evidence that Siglec-15 (a lectin that binds to sialic 
acid) prevents the lysosomal destruction of CD44, leading to 
increased migration of liver cancer cells.102,103 TIGIT is also 
affected by T-cell immunoreceptors that have immunoglobu-
lin and ITIM domains.104 To prevent the activation of T cells, 
DCs produce more IL-10 and less IL-12 by the activation of 
the TIGIT/CD155 pathway.105 Recent clinical trials showed 
that individuals who received ICIs alone had inadequate re-
sponses. Hence, future trials should examine combinations 
of different ICIs with other treatments.

The combination of atezolizumab (PD-L1 inhibitor) with 
bevacizumab (anti-angiogenic antibody) significantly de-
creased the risk of death in patients with unresectable 

HCC.106 The overall response rate of 46% was achieved by 
combining pembrolizumab with lenvatinib (TKI), and patients 
with unresectable HCC had a complete response (CR) rate of 
11% and a partial response (PR) rate of 35%.107 Other re-
cent preclinical and clinical studies showed that co-adminis-
tration of ICIs with radiation, radiofrequency ablation (RFA), 
or TACE improved therapeutic efficacy.108,109 A phase Ib/II 
clinical study of patients with advanced HCC is examining the 
effect of camrelizumab (investigational PD-1 inhibitor) with 
FOLFOX4 chemotherapy.110

The HIMALAYA phase III trial showed that treatment 
with a single PD-1 inhibitor or a single PD-L1 inhibitor led to 
significant antitumor activity.111 A study that administered 
tremelimumab (CTLA-4 inhibitor) monotherapy to patients 
who previously received sorafenib and experienced intoler-
able toxic effects or who rejected sorafenib, showed that this 
ICI provided demonstrable protection; however, the combi-
nation of tremelimumab with durvalumab (PD-L1 inhibitor) 
led to greater benefit.112 Figure 3 lists the numerous ICIs 
that have been used to treat HCC and Table 2 summariz-
es the clinical studies that examined the use of ICIs for the 
treatment of HCC during the past three years.75,90,105,112–115

Combination treatments with two ICIs
PD-1 with CTLA-4 blockers: Treatments for advanced HCC 
are currently focusing on the use of CTLA-4 inhibitors and 
PD-1 inhibitors together. For example, the CheckMate 040 
study examined the effect of ipilimumab (CTLA-4 inhibitor) 
with nivolumab (PD-1 inhibitor) in 148 individuals who devel-
oped advanced HCC after sorafenib treatment.75,116 This trial 
found that the median response time was 17 months, the 
overall response rate was 31%, and the disease control rate 
was 49%. These results led the US FDA to approve the com-

Fig. 3.  Inhibitors of immune checkpoints in hepatocellular carcinoma. CTLA-4, Cytotoxic T-lymphocyte antigen 4.
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bination of ipilimumab and nivolumab for these patients. The 
CheckMate 9DW phase III trial (NCT04039607) is currently 
assessing this combination treatment as first-line therapy for 
advanced HCC.

ICIs with vascular endothelial growth factor inhibi-
tors: The IMbrave150 phase III study examined the com-
bination of a PD-1 inhibitor (atezolizumab) with a vascu-
lar endothelial growth factor (VEGF) inhibitor that inhibits 
angiogenesis (bevacizumab) as a unique approach for the 
treatment of advanced HCC.117,118 This treatment provided 
good protection and antitumor efficacy in individuals with un-
treated late-stage HCC.119 In particular, relative to sorafenib, 
this combination reduced the risk of death by 42%. The IM-
brave150 trial led to the approval of treatment that combined 
atezolizumab and bevacizumab, instead of TKIs (sorafenib 
or lenvatinib), as a first-line therapy for unresectable HCC in 
the United States and Europe. The efficacy of this new treat-
ment is most likely due to the synergistic effects of these two 
drugs, which inhibit PD-L1 (stimulating the immune system, 
chiefly T-effector cells) and also inhibit VEGF (promoting T-
cell infiltration, reducing VEGF-mediated immunosuppres-
sion, and inhibiting angiogenesis).113

ICIs with tyrosine kinase inhibitors: The combination 
of ICIs with TKIs (rather than an anti-VEGF antibody) is an 
alternative approach. The multi-cohort COSMIC-021 phase 
Ib trial (NCT03170960) examined the effect of cabozantinib 
(TKI) and atezolizumab (PD-L1 inhibitor) for the treatment 
of HCC.120,121 This study also compared the effect of cabo-
zantinib monotherapy to sorafenib as a secondary outcome. 
A planned interim analysis demonstrated no significant dif-
ference in OS. However, a phase Ib trial showed that the 
combination of lenvatinib (TKI) with pembrolizumab (PD-1 
inhibitor) led to acceptable outcomes in 104 patients with 
unresectable HCC who did not receive a previous system-
ic therapy.107 The LEAP002 phase III trial (NCT03713593) 
compared this combination with lenvatinib monotherapy.122 
Another study examined the effect of camrelizumab (inves-
tigational PD-1 inhibitor) with apatinib (TKI) and reported 
the overall response rate was 50%.123 Moreover, an ongoing 
phase III study (NCT03764293) is evaluating camrelizumab 
with apatinib vs. sorafenib as a first-line treatment for ad-
vanced HCC.

Recent research indicated that ICI combination therapies, 
including those with TKIs, have increased anticancer efficacy 

due to their immunomodulatory effects on the TME and their 
pro-angiogenic effects on certain pro-tumor immune cells. 
Before the IMbrave150 trial, there were promising response 
rates to TKI+ICI combinations compared to individual thera-
pies. In particular, lenvatinib decreased the level of tumor-
associated macrophages and increased the level of CD8+ 
T cells.124 Regorafenib (TKI), which targets VEGFR, EGFR, 
PDGFR, and FGFR, promoted antitumor immunity by regulat-
ing macrophages and enhancing CD8+ T cell proliferation. 
Preclinical and clinical studies of cabozantinib showed it had 
synergistic effects when combined with an ICI; the effect on 
tumor antigens (such as TAMs) reduced tumor vascularity, 
and bevacizumab significantly restored an immune-support-
ive TME.125 The use of PD-1 inhibitors with TKIs and TACE 
was also an effective treatment for patients with unresecta-
ble HCC, and the ORR surpassed that achieved by the mono-
therapies.126,127 Thus, combining an ICI with anti-angiogenic 
drugs can reverse the immunosuppressive character of the 
TME, but the most effective and safe TKI to be used with an 
ICI has not yet been established.

Cellular therapies for HCC

Therapies with non-genetically altered cells
Cytokine-induced killer cells: Cytokine-induced killer 
cells (CIKs) are CD3+CD56+ NK-like T-cells that develop 
from peripheral blood mononuclear cells or cord blood fol-
lowing ex vivo incubation with anti-CD3 mAb, IL-2, IFN-γ, 
and IL-1α.128,129 CIKs have non-MHC-restricted cytotoxic 
and anti-proliferation effects.130 A phase I clinical study 
with adjuvant CIKs found there was decreased tumor re-
currence of graft-versus-host disease (GvHD) after surgery 
in patients with stage A/B liver cancer (staging based on 
the Barcelona Clinic Liver Cancer system).131,132 Three of 
these 13 patients had good tolerance to the CIKs, and this 
treatment reduced the HBV burden and slowed tumor de-
velopment.133 A second phase I basket study examined 12 
patients who received 3 cycles of CIKs over 3 weeks (me-
dian dosage: 28×109 cells, range: 6 to 61×109 cells) for 
the treatment of late-stage HCC, resistant renal cell carci-
noma, or lymphoma. After an average follow-up time of 33 
months, the CIKs were well tolerated, 3 patients attained 
CR, and 2 patients had SD.134

Table 2.  Hepatocellular carcinoma immune therapy with immune checkpoint blockers: A reported clinical trial

Treatment Patients, n ORR% OS in mo References

Camrelizumab 217 15 (0) 13.8 115

Pembrolizumab 278 18 (2) 13.9 105

Durvalumab 104 11 (0) 13.6 113

Tremelimumab 69 7 (0) 15.1 113

Durvalumab and tremelimumab 159 9.5–24.0 (1–2) 11.3–18.7 113

Pembrolizumab and lenvatinib 100 36 (1) 22 112

Nivolumab and ipilimumab 148 31–32 (0–8) 12.5–22.8 75

Atezolizumab and bevacizumab 336 27 (6) NE 112

Nivolumab and cabozantinib 36 14 (3) 21.5 75

Nivolumab, ipilimumab and cabozantinib 35 31 (6) NE 75

Atezolizumab 59 17 (5) NA 115

Nivolumab 371 15(4) 16.4 90

NE, Not evaluable; NA, Not available; OS, Overall survival; ORR, Overall response rate.
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Another study of patients with unresectable HCC assessed 
the effect of CIKs paired with TACE.135 The CIK+TACE group 
had a PFS of 6 months in 72.2% of patients, 1 year in 40.4% 
of patients, and 2 years in 25.3% of patients, and these 
numbers were better than in the TACE-alone group (34.8%, 
7.7%, and 2.6%, respectively). The median OS in the 
CIK+TACE group was 31 months (95% CI: 27–35), but was 
only 10 months (95% CI: 7–13) in the TACE-alone group. 
These findings indicate the potential benefits of combining 
an immunotherapy strategy with TACE for treating HCC.135 
A subsequent clinical study of 64 patients with HCC applied 
TACE and RFA sequentially in patients who did (n=33) or did 
not (n=31) receive prior CIK treatment.129 These research-
ers administered 8 doses of CIKs into the hepatic artery or 
a peripheral vein at intervals of 4 weeks. After 1 year, 68% 
of the control group and 88% of the CIK group were free 
of recurrence.129 Another study evaluated a DC+CIK com-
bination therapy in a basket trial, and showed that DCs en-
hanced the activation of CIKs.136 There is also evidence that 
a DC+CIK regimen can control tumor development and in-
crease OS.136,137 An in vitro study of HCC cells (BEL27402) 
compared to DC+CIK alone, sorafenib alone, and CIK alone, 
and DC+CIK with sorafenib, showed the greatest efficacy in 
the DC+CIK with sorafenib group.138

Tumor infiltrating lymphocytes: TILs are also used in 
autologous therapies. In particular, TILs are developed ex 
vivo from polyclonal, tumor-targeting T-cells that are gen-
erated against a patient’s tumor. In patients with immuno-
genic tumors, such as metastatic melanoma, these treat-
ments led to an overall response rate (ORR) of 49 to 72%, 
a CR rate of 10 to 20%, and persistent responses in 40% of 
all patients.139,140 Terminally differentiated TILs, with a pre-
dominance of immune-suppressive components (Tregs), can 
result from protracted ex vivo processing. To prevent this, 
tumor-reactive/neoantigen-responsive cytotoxic T-cells are 
now grown non-selectively in large quantities of TILs,141 and 
clinical investigations of these treatments are currently being 
conducted for patients with non-small cell lung cancer and 
melanoma. HCC TILs, by phenotype worn out in preclinical 
models, have increased production of TIM-3 and LAG-3, but 
reduced production of inflammatory mediators.142,143 Pre-
clinical studies demonstrated that TIGIT and PD-1 co-block-
ade enhanced the proliferation of these cells and the release 
of cytokines.143

Therapies with genetically altered cells
The capacity of the immune system to identify TAAs is a pre-
requisite for effective anti-tumor responses in immunothera-
peutic cancer treatments. A functional immune system has 
self-tolerance, and because all tumors consist of self-tissues, 
it is difficult to induce a strong anti-tumor response. Thera-
pies that use chimeric antigen receptor (CAR) engineered T 
cells and T cell receptor (TCR) engineered T cells use syn-
thetic receptors developed by genetic engineering to alter 
immune cells and increase the detection of TAAs and tumor-
specific antigens (TSAs).144

Chimeric antigen receptor T cells: Immune cells can 
be genetically reprogrammed to recognize and attack cells 
that express specific TAAs using artificial cell surface recep-
tors (CARs) that are independent of the MHC system.145,146 
A typical CAR structure consists of an external, antibody-de-
rived single-chain variable fragment (scFv) antigen-binding 
domain that is linked to an intracellular signaling endodo-
main, which has (at a minimum) CD3ζ signaling capabili-
ties.147 First-generation CARs with isolated CD3ζ signaling 
were mostly replaced by CARs with CD28 or 4-1BB receptors, 
leading to enhanced CAR-T cell growth and increased can-

cer cell death in vitro and in vivo.148,149 The most significant 
development in hematological malignancies during the past 
ten years was the development of CARs that target CD19 
in the subsequent phase, and have 4-1BB150 and CD28151 
co-stimulatory endodomains. There is now global approval 
of autologous CD19-targeting CAR-T cells for relapsed and 
refractory B-cell lymphoma. Notably, third-generation CARs, 
which contain two intracellular signaling domains, such as 
4-1BB and CD28, are also under development.152–155 Ongo-
ing research is examining the effect of CAR-T cell therapies 
for HCC, and there are several promising CAR-T cell tumor 
targets, including AFP, c-MET, GPC3, Mucin 1, and NK group 
2D ligand (NKG2DL).

Glypican-3 biological system and CAR-T cells: The 
placenta contains GPC3, a 65 kD (580 amino acid) hepa-
rin sulfate proteoglycan that is anchored to glycosylphos-
phatidylinositol and normally functions in morphogenesis by 
activating the Wnt pathway.129,156,157 Several solid tumors, 
including 72% of HCCs, carries a negative prediction.158,159 
Crucially, GPC3 is only weakly expressed in noncancerous tis-
sues, such as healthy tissues and cirrhotic liver tissues.160,161 
About 53% of HCC patients have soluble GPC3, and this pro-
tein is therefore under investigation as a disease biomark-
er.159 GPC3 appears to affect the onset and progression of 
HCC.162,163 Studies of primary HCC cells reported that siR-
NA-mediated GPC3 silencing reduced proliferation, increased 
apoptosis, and impaired the migration of tumor cells.164

Just like central- or stem-cell memory T-cells, GPC3-CAR-
T item characterization showed advancement for final dif-
ferentiation, CD45RA+ re-expressing effector memory T-cells 
(78.2%) and effector memory T-cells (14.1%).165 Several 
studies showed that CD19-CAR-T activity was negatively af-
fected by terminally differentiated T-cells, and this was likely 
to occur in HCC.166,167 Leukapheresis could possibly improve 
the efficacy of GPC3-CAR-T cell therapy.168

Even the responses to these therapies were inadequate, 
the toxicities were generally manageable, and this trial laid 
the groundwork for future GPC3-CAR-T strategies. For ex-
ample, current trials are examining ‘armored’ GPC3-CAR-T 
models, with components designed for 41BBL and IL-15/
IL-21 (NCT02932956),169 a combination of techniques using 
TKIs or IPIs (NCT03980288), and administration via hepatic 
artery perfusion (NCT03993743). It is not yet clear how solu-
ble GPC3 can affect GPC3-CAR-T function. However, soluble 
GPC3 might prevent accessibility to cell-surface GPC3.170 Fu-
ture studies should consider this when creating and testing 
the preclinical versions of the next-generation GPC3-CAR-T 
cell therapies.

Others: AFP can occur as a serum protein or an intra-
cellular protein, and a modified version can occur as a cell 
surface protein on MHC class I molecules. AFP is a biomarker 
for HCC, its release into the serum stimulates the growth of 
tumors, and a high serum level is associated with poor prog-
nosis.171,172 A phase I clinical trial, whose results have not 
yet been published, is examining the effect of intravenous 
and intrahepatic arterial administration of AFP-CAR-T cells in 
AFP+ patients with HCC (NCT03349255).

After processing and presenting short antigenic peptide 
fragments on HLA class I and II molecules, engineered TCRs 
can recognize intracellular TAAs and TSAs.173 The ability of 
TCR-T cells to recognize and connect intracellular antigens 
encoded on HLA, despite a low target density, can provide a 
significant benefit.174,175 Two disadvantages of this approach 
are that this treatment is limited to a small percentage of 
patients, primarily those who are HLA-A*0201 positive,174 
and it is difficult to engineer high-affinity, synthetic αβ-TCR 
for TAA-specific targeting, while avoiding the challenges of 
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TCR chain mispairing and low TCR production.176 Addition-
ally, there is a chance that production in normal and can-
cerous tissues will overlap at low antigen densities. TCR-T 
cell binder development could be advanced by adjusting 
TCR affinity with physiochemical and in silico approaches 
to facilitate discrimination of cancerous and non-cancerous 
cells.177 There are now seven phase I/II TCR-T cell clinical 
studies of HCC that are accepting participants.153 Additional 
trials listed on clinicaltrials.gov that have ‘status unknown’ 
or ‘not yet recruiting’ include three studies of patients with 
HCC relapse following liver transplantation (NCT02686372, 
NCT04677088, and NCT02719782).

Clinical studies utilizing an AFP epitope (AFP158–166, 
[NCT03132792]), AFP is managed and displayed on HLA 
and reflects a useful seek for TCR-T methods.178 Studies 
that performed in vitro testing described three novel HLA 
class I epitopes (AFP542–550, AFP137–145, and AFP325–354) that 
were cytotoxic and induced IFN- production against in HLA-
A*0201+/AFP+ tumor cells. Other research used a trans-
genic mouse model to investigate the immunogenicity of dif-
ferent AFP epitopes.179,180 Altogether, these results of these 
studies demonstrate the presence of four immunogenic AFP 
epitopes that could be used as targets of TCR-T cells.

The initial clinical findings of a study that used affinity-
boosted autologous specific peptide enhanced affinity re-
ceptor (SPEAR) T-cells targeting AFP (NCT 03132792) were 
released in 2019.129 This study examined patients with the 
HLA-A*02:01 or HLA-A*02:642 haplotypes who had serum 
AFP levels of 400 ng/mL or more or had positive immunohis-
tochemical staining for AFP (≥1+ in 20% or more HCC cells). 
Following a fludarabine/cyclophosphamide chemotherapy 
regimen, SPEAR T cells (102 to 103 million) were given to 
cohort-one (n=5) to determine the maximum tolerated dose 
(MTD). All five patients had SD as the optimal reaction. The 
MTD for cohort two (n=3) was set at 5×109 SPEAR T- cells 
(range: 5.0 to 5.6×109). One patient achieved PR, and the 
other 2 experienced progressive disease, and the treatment 
was well-tolerated.178

HBV is responsible for about 80% of all cases of HCC in Asia 
because of persistent hepatic inflammation, and the virus is 
incorporated into the hepatic cell genome.181,182 Because 
the likelihood of on-target, off-tumor toxic effects decreases 
and the low rate of target production lends itself to TCR-T 
targeting, attacking viral, non-self-antigens is an appealing 
approach for TCR-T cell treatments. HBV infections typically 
induce high-affinity TCRs, which have significant therapeutic 
potential because they can lyse HBV-infected cells. However, 
the main disadvantage of this approach is that non-malig-
nant liver tissues are also likely to have HBV antigens, raising 
the possibility of life-threatening liver injury.183

Gehring et al. presented a liver transplant patient who 
had extra-hepatic HCC, and HBV-DNA integration resulted 
in surface HBV (HBsAg), but there was no detectable HBV-
DNA in the blood.183,184 The HCC cells displayed HLAA0201/
HBV peptide complexes, and their expression was uniform 
across the tumor. To produce autologous, patient-derived 
HBV-TCR-T cells, these researchers identified a specific TCR 
that targeted the HLA-A-*0201/HBs183-91 mixture and 
cloned this gene. Without lympho-depletion, the individu-
al received only one dosage of 1.2×104 HBV-TCR-T cells/
kg. These cells multiplied and decreased the blood levels 
of HbsAg, and there was no evidence of harm to healthy 
tissues.183 However, the recurrence rate from hepatitis B is 
substantial (50% within five years)13 and the blood HbsAg 
level is linked to recurrence. An important question raised 
by this instance is if HBV-TCR-T might be utilized greater 
frequently for HCC patients who relapse after liver trans-

plantation.185 In particular, after liver transplantation in Hb-
sAg+ patients, TCR-T cells could be administered as prophy-
lactic to avert relapse.

Bispecific antibodies (BsAbs), produced using recombinant 
DNA technologies, can precisely and simultaneously bind two 
antigens or epitopes.186,187 To alter immune-suppression in 
the tumor environment, a BsAb can be used to target im-
mune checkpoints and TAAs, thereby enhancing the func-
tion of immune cells. Therefore, because BsAbs have two 
effects, they are potentially more effective than mAbs. BsAbs 
typically function as a “bridge”; they can recruit and activate 
immune cells to target cancer cells.188 Solitomab (AMG110, 
MT110) is one example of a humanized EpCAM/CD3 BsAb. 
The in vitro binding of Gamma-Delta T cells with the bispe-
cific T-cell engager (BITE) leads to the nearly complete lysis 
of HCC cells. This treatment is characterized by the attach-
ment of the anti-epithelial cell adhesion molecule (EpCAM), 
single-chain variable fragment (scFv), and the anti-CD3 
single-chain variable fragment (scFv) by a Gly4Ser linker.189 
A distinct BsAb named GPC3/CD3 BITE was designed to at-
tract CTL and target GPC3+ HCC cells. This BsAb used flex-
ible linker peptides to unite two anti-GPC3 Fab fragments 
to an asymmetric Fab-sized binding module, leading to an 
IgG-shaped Tri-Fab that activated two antigens sequentially, 
so that it could be used for the targeted delivery of different 
payloads.190

HCC vaccines
Antigenic compounds can elicit tumor-specific immune re-
sponses, leading to a reduced tumor load and prevention of 
tumor reversion. HCC vaccines can be developed from cancer 
cells, DCs, peptides, and DNA, and some of these vaccines 
have successfully prevented tumor spread and recurrence. 
Peptides are widely used as cancer vaccines, and the most 
appropriate peptide for generating a cancer vaccine is de-
termined by the type of tumor and the immunologic charac-
teristics of the patient.191,192 The search for “HCC vaccines” 
identified six general types of research (Table 3).193

Cellular vaccines
Autologous or allogenic HCC cells or extracts that have been 
physically or chemically killed or damaged so that they are 
not pathogenic can be used as antigens to induce tumor-
specific defense reactions. A phase I trial examined 8 pa-
tients with advanced HCC that tested bi-shRNA/granulocyte-
macrophage colony-stimulating factor (GM-CSF) boosted 
autologous tumor cells. The long-term follow-up showed that 
3 patients had clear immune responses to the reinfused can-
cer cells, and the long-term follow-up demonstrated survival 
times were 319, 729, 784, 931+, and 1,043+ days after 
treatment. However, the effectiveness of HCC vaccines re-
mains unknown due to their poor immunogenicity.194

Antigen peptide vaccines
Several studies used peptide-based vaccines to treat HCC, 
and these vaccines utilized AFP, GPC3, SSX-2, NY-ESO-1, 
human telomerase reverse transcriptase (hTERT), human 
carcinoma-associated antigen (HCA587), and melanoma an-
tigen gene-A (MAGE-A) as TAAs.195,196 Embryonic liver cells 
normally produce AFP, but this protein is also overexpressed 
on the surface of HCC cells. However, the development of 
acquired immunological tolerance during development limits 
immune responses to this excess AFP in patients with HCC. 
A recent study used recombinant rat AFP to trigger cross-
reactions between xenografts and endogenous molecules in 
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mice to overcome this immunological tolerance and reported 
minor cellular and humoral immune responses.197 A phase II 
trial examined 25 patients who received a GPC3-derived pep-
tide vaccine for HCC. The treatment consisted of 10 injections 
over a 1-year period following surgery. Relapse was less com-
mon in patients who received surgery and vaccination rela-
tive to those who received surgery alone (24% vs. 48% at 1 
year [p=0.047] and 52.4% vs. 61.9% at 2 years [p=0.387]), 
demonstrating the effectiveness of this vaccine.198

Many other clinical investigations have investigated 
the use of HCC vaccines (Fig. 4).193 The outcomes of one 
trial that examined a peptide vaccine developed using 
GPC3 (which typically has elevated expression in HCC) 
were published in 2011.199 These patients had advanced 
HCC, were from the National Cancer Center Hospital East 
(Kashiwa, Japan), and were recruited into this phase I 
trial to assess the protection and immunogenic response 
elicited by the vaccine.200 This study demonstrated a re-
lationship between the peptide-specific cytotoxic T lym-
phocyte level and patient privacy concerns regarding the 
GPC3 peptide vaccine utilization because RFA influences a 
specific T cell’s improvement against HCC-related antigens 
or GPC3. The same team conducted a single-arm Phase II 
trial in which some patients received adjuvant treatment 
with a GPC3-derived peptide vaccine.201 This GPC3 peptide 
vaccine induced a CTL response that efficiently destroyed 
cancer cells that expressed GPC3, so that GPC3-negative 
cells proliferated. This proof-of-concept utilizing the GPC3 
peptide and additional peptides was effective, and hence 

opened the door for studies of other peptide and antigen 
treatments.

DC vaccines
DCs are the most potent APCs, and function in the absorp-
tion, digestion, and presentation of tumor antigens. These 
cells have significant levels of MHC and Cas ligands with mul-
tiple Src homology (SH) 3 domains (CMS), such as B7-1 and 
B7-2. They also induce primary T cells and release IFN-γ, a 
cytokine that inhibits tumor angiogenesis and creates im-
munological memory. Altogether, DCs therefore have many 
anticancer effects.202,203

During the creation of a vaccine against HCC, DCs were first 
stimulated by specific mediators (e.g., rhGM-CSF and rhIL-
4) then developed in the existence of TNF-α, and eventually 
became activated by autologous tumor cells or antigens.196 
DCs with gene transfections continue to express cytokines or 
tumor antigens that enhance their function. A recent study of 
mice with HCC administered nifuroxazide (which blocks sig-
nal transduction mediated by stimulation of transcription 3 
[STAT3]), together with DCs that were loaded with tumor cell 
lysate (TCL). This combination increased the antitumor im-
mune response, slowed tumor development, and increased 
the survival time.204 A phase I/IIa trial examined the effect 
of tumor antigen-pulsed DCs for HCC patients who received 
primary treatment and showed that DC immunization was 
an efficient adjuvant therapy.205 Another study reported the 
safety and tolerability of DC vaccinations in HCC patients.206

Table 3.  The clinical trial of cancer vaccines targeting HCC193

Target Phase Start End Peptide Methods/
combination Descriptions

DNAJB1- 
PRKACA

1 Apr., 
20

– DNAJB1-PRKACA Nivolumab and 
Ipilimumab

The trial’s main goal is to determine 
the vaccine’s safety and tolerability.

16 
common 
cancer 
antigens

1 and 
2

Sep., 
17

Dec., 
19

16 newly identified, 
excessively expressed 
tumor-related peptides

Novel RNA For the treatment of (hepatocellular 
carcinoma), a new adjuvant called 
CV8102 is paired with a new cancer 
vaccination called IMA970A.

VEGFR1, 
VEGFR2

1 2007 2013 VEGFR1, VEGFR2 This study aims to evaluate the 
side effects of angiogenic peptide 
vaccine therapy in patients with 
advanced hepatocellular carcinoma 
who are HLA-A*2402 restricted.

AFP 1 and 
2

Jan., 
01

Oct., 
08

Four HLA-A*0201-restricted 
immunodominant AFP 
peptides [hAFP137-145 
(PLFQVPEPV), hAFP158-166 
(FMNKFIYEI), hAFP325-
334 (GLSPNLNRFL), and 
hAFP542-550 (GVALQTMKQ)]

Dendritic cells Phase I/II study to examine 
the efficacy of vaccination 
treatment in the management 
of patients with liver cancer.

AFP 1 and 
2

Jul., 
09

Jun., 
02

4- HLA-A*0201-restricted 
immunodominant AFP 
peptides [hAFP137-145 
(PLFQVPEPV), hAFP158-166 
(FMNKFIYEI), hAFP325-
334 (GLSPNLNRFL), and 
hAFP542-550 (GVALQTMKQ)]

Intradermal Phase I/II study to examine 
the efficacy of vaccination 
treatment in the management 
of patients with liver cancer.

Ras 
mutation

2 Oct., 
07

May., 
07

Mutated Ras Peptides 
Specific for Tumors

IL2 or GM- CSF Adults with metastatic solid tumors 
will be treated in a phase II trial to 
see whether vaccination therapy 
combined with interleukin-2 and/
or sargramostim is beneficial.

GM-CSF, Granulocyte-macrophage colony-stimulating factor; VEGFR, Vascular endothelial growth factor receptor.
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Adjuvant immunotherapies for HCC
Numerous clinical studies are examining the use of adju-
vant immunotherapies for patients with intermediate-stage 
HCC. The preliminary results suggest that tremelimumab 
with TACE or RFA has the potential for use in patients with 
early-stage HCC.109,207 This approach was also examined in 
the IMbrave150 trial, a randomized, open-label, phase III 
study that examined HCC patients after curative resection or 
RFA and compared atezolizumab with bevacizumab to active 
monitoring.208 Additionally, the phase III EMERALD-1 and 
EMERALD-2 trials are comparing durvalumab with or without 
bevacizumab to placebo for patients with intermediate-stage 
HCC who received TACE or RFA.93,209

Unlike many other cancers, HCC can be treated using lo-
coregional therapies (LRTs), including TACE or RFA. Conse-
quently, complementary therapies administered after an LRT 
may improve clinical outcomes. Sorafenib was approved in 
2007, and it remains the only treatment option for advanced 
HCC. Additional systemic medications for advanced HCC 
have recently been examined, including new TKIs (e.g., len-
vatinib) as a front-line therapy and regorafenib or cabozan-
tinib as a second-line therapy. In an effort to improve clinical 
outcomes, several researchers are now examining a com-
bination of TKIs and LRTs. Nevertheless, sorafenib followed 
by resection or ablation (STORM study)210 failed to increase 
recurrence-free survival compared to placebo. Likewise, mul-
tiple earlier trials showed that TKIs following TACE failed to 
improve clinical outcomes.211 For unresectable HCC, an ICI 

such as nivolumab is now recommended, although recent tri-
als demonstrated that ICI monotherapies did not significantly 
improve survival in HCC (in contrast to other tumors).212 As 
a result, other studies have investigated different strategies 
for overcoming the inadequate response to ICIs. As a first-
line treatment, a combined regimen of atezolizumab with 
bevacizumab provided significantly greater clinical benefit 
than sorafenib.107 Additionally, another combination treat-
ment—pembrolizumab with lenvatinib—was recently tested 
in clinical studies and has shown good clinical efficacy during 
the early stages of treatment.117 Combining LRTs with ICIs 
could be an important development in the treatment of HCC, 
and could also significantly improve the prognosis of these 
patients.

Oncolytic virotherapy
Therapeutic oncolytic viruses are engineered viruses or wild-
type viruses that reproduce and destroy cancer tissues or 
other pathological tissues without adversely affecting healthy 
tissues.213,214 Because a tumor’s defenses against viral in-
fection are compromised, most viruses can easily spread to 
cancer cells.215 Furthermore, the stimulation of immune re-
sponses against neighboring cancer cells can be facilitated 
by the presence of tumor antigens and viruses within cell 
lysates.216,217 One advantage of oncolytic virotherapy is that 
it may not be subject to some of the limitations of conven-
tional cancer therapies, such as chemotherapy and radia-

Fig. 4.  Diagram illustrating the GPC3-targeting peptide vaccination. The picture shows the various steps involved in creating the vaccine. GPC3, glypican 3.193
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tion therapy. For example, certain cancer cells can become 
resistant to chemotherapy or radiotherapy, but viruses can 
persist over time and still infect and kill tumor cells.218 In 
addition to directly killing cancer cells, oncolytic viruses can 
also stimulate the immune system to target the cancer cells 
because lysed cancer cells release TSAs that can stimulate 
an immune response. This approach therefore enhances the 
body’s ability to detect and eliminate tumor cells,219 and is 
particularly suitable for treating HCC because the liver has a 
high degree of immune surveillance.60

Oncolytic viruses can target cancer cells through several dif-
ferent mechanisms. First, several wild-type viruses can infect 
tumors by different mechanisms that evolved in nature, such 
as Sindbis viruses, reoviruses, and varicella viruses.220 Sec-
ond, genetic engineering can also be used to create oncolytic 
viruses by eliminating viral genes that are essential for repli-
cation in healthy cells but have no functionality in cancerous 
cells.221 Third, the targeted transcription of viruses in cancer 
cells can be achieved by inserting tumor-specific promoters, 
including the human telomerase reverse transcriptase pro-
moter, upstream of essential viral genes.222 Finally, viruses 
can target tumor cells after alteration by TAA-specific recep-
tors. For instance, the tumor-specific inhibition of tumor an-
giogenesis can be achieved using an oncolytic vaccinia virus 
that is engineered with anti-angiogenic genes.223

Previous research examined the effectiveness of a pro-
gressive tumor-favoring modified vaccinia virus (CVV) in an 
animal model of metastatic HCC. In this study, groups of 
rats were randomly given sorafenib, the CVV, or sorafenib 
plus the CVV. In comparison to the sorafenib-only group, 
the other two groups had smaller metastatic areas. These 
findings indicate the potential use of CVV as a treatment for 
metastatic HCC.224 JX-594 is a modified vaccinia virus that is 
particularly hazardous to cancer cells, but is stable and safe 
for people. This virus has a mutated TK gene (which regu-
lates cancer cell-specific reproduction) and an insertion in the 
human GM-CSF gene (which boosts antitumor immune reac-
tions).225 A phase II randomized open-label trial of patients 
with HCC examined the effectiveness and safety of oncolytic 
virotherapy using JX-594. The results showed that the in-
trahepatic reaction rate was 62%, 1 patient achieved CR, 
the therapy was well tolerated at high and low dosages, and 
the OS was greater in the high-dose group than in the low-
dose group.226 Numerous other studies have investigated 
other oncolytic viruses for the treatment of HCC, including 
GLV-1h68 and G47delta.227 Important safety considerations 
related to this approach are the risk of viral disease and the 
development of insertional mutations that stimulate onco-
genes or disrupt tumor suppressor genes.

Conclusions and future prospects
HCC is a complex disease that can escape immune responses 
by various mechanisms, suggesting great potential for treat-
ments that use different or multiple immunotherapy ap-
proaches. The range of immunotherapy treatments for HCC 
has expanded significantly during the past 10 years, and 
ICIs are now widely used for patients with advanced-stage 
HCC. The development of novel medicines and combination 
therapies is being shaped by the greater understanding of 
the molecular pathways responsible for cancer initiation and 
termination of the body’s anti-tumor immune responses in 
the TME. Although many trials have demonstrated the pos-
sible efficacy of different immunotherapies for HCC, only a 
few have been formally licensed. The identification of more 
focused immunological targets (such as TAAs/TSAs and new 
immune checkpoints) and the use of oncolytic viruses require 

further research. It is also important to accelerate the enroll-
ment of patients in these clinical studies and to consider the 
effectiveness and safety of novel medications. The develop-
ment of more individualized treatment programs may also 
increase the effectiveness of immune therapies.

HCC immunotherapy has progressed greatly, and although 
ICIs were initially used to treat other cancers, they are now 
commonly used to treat HCC. Our update on the use of im-
munotherapy in HCC primarily describes developments in the 
methodologies used in clinical trials.74 It is likely that the 
recently developed neoadjuvant treatments for patients with 
resectable or non-resectable HCC will soon provide benefits 
to patients, in terms of decreased cancer progression and 
mortality. ICI-based therapies may also boost the efficiency 
of locoregional and radical treatments for HCC. The expan-
sion of novel immunotherapies, such as immunostimulatory 
mAbs, BsAbs, tailored cytokines, antibody-drug conjugates, 
adoptive T cell therapies, and vaccination with neoantigens, 
will be important future developments. It is crucial to con-
sider the molecular aspects of the responses to these treat-
ments and the development of tolerance to specific drugs or 
mixtures, and to use relevant biomarkers to monitor patient 
responses to personalized immunotherapies. Clinical studies 
and other research should aim to incorporate the correlative 
findings from other investigations, and provide the results to 
other researchers while safeguarding the concerns and rights 
of patients and organizations.74

The various mechanisms that contribute to resistance to 
different ICI treatments may be overcome by the use of nov-
el immunotherapies and targeted combination treatments. 
In addition to the results that were published at the time of 
the current review, the results of other ongoing clinical stud-
ies of HCC will be available soon. It is likely that patients who 
received more advanced ICI regimens will respond favorably 
to these new combination treatments. Certain combinations 
of VEGF inhibitors, ICIs, and TKIs are effective in patients 
with other types of tumors who previously received ICIs, and 
these approaches may be extended to HCC.114 For example, 
a phase Ib/II trials of lenvatinib (a TKI that inhibits angiogen-
esis) with pembrolizumab appears to have great potential for 
the treatment of patients with metastatic HCC.115
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