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A B S T R A C T

Single-cell studies in neuroscience require precise cell type classification and consistent nomenclature that allows 
for meaningful comparisons across diverse datasets. Current approaches often lack the ability to identify fine- 
grained cell types and establish standardized annotations at the cluster level, hindering comprehensive under-
standing of the brain’s cellular composition. To facilitate data integration across multiple models and datasets, 
we designed BrainCellR. This pipeline provides researchers with a powerful and user-friendly tool for efficient 
cell type classification and nomination from single-cell transcriptomic data. While initially focused on brain 
studies, BrainCellR is applicable to other tissues with complex cellular compositions. BrainCellR goes beyond 
conventional classification approaches by incorporating a standardized nomenclature system for cell types at the 
cluster level. This feature enables consistent and comparable annotations across different studies, promoting data 
integration and providing deeper insights into the complex cellular landscape of the brain. All documents for 
BrainCellR, including source code, user manual and tutorials, are freely available at https://github.com/Wang 
Lab-SINH/BrainCellR.

1. Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized the field 
of neuroscience by enabling comprehensive characterization of cellular 
heterogeneity in the brain [1–6]. This technology provides researchers 
with unprecedented resolution to study individual cells and uncover cell 
type-specific gene expression profiles. A standard step in scRNA-seq 
downstream analysis is cell clustering, i.e., cells with a similar gene 
expression profile are grouped into clusters; groups of marker genes are 
then extracted by clusters via statistical analysis, and given a label-
—typically a cell type or subtype[7,8]. However, the accurate naming of 
cell types at the cluster level remains challenging [9–13].

Conventionally, cell type classification in the brain has been based on 
major classes, such as excitatory neurons or inhibitory neurons, and 
subclasses, such as Lamp5 or L5 IT [14,15]. These classifications are 
determined through morphology, location in the brain, electrophysio-
logical characteristics, and gene expression [16]. However, it is 
increasingly recognized that these broad categories do not adequately 
capture the full diversity of cell types within the brain [17]. To achieve a 
more nuanced understanding of cellular composition, researchers are 

now focusing on identifying and characterizing fine-grained cell types 
[18–22].

A major hurdle in precise cell type classification is the lack of a 
standardized nomenclature system at the cluster level. Due to the 
absence of uniform guidelines, different studies often use disparate 
naming conventions [23,24]. For example, cell (sub)types might be 
characterized by their cluster ID numbers [25,26], grouped by cluster at 
the subclass level (e.g., Lamp5_1, Lamp5_2), or named using a combi-
nation of cell type and marker gene (e.g., L6b P2ry12, or Sst Nts) [14]. 
This lack of a common nomenclature system leads to inconsistencies and 
difficulties in comparing cell types across datasets [27–29], hindering 
the integration of data from multiple studies and the generation of 
comprehensive cell atlases.

To address these challenges, we have developed BrainCellR (Fig. 1), 
a pipeline designed specifically for cell type nomenclature in brain 
scRNA-seq data. BrainCellR offers a comprehensive set of tools and 
functionalities to enable researchers to classify and nominate cell types 
and do comparative analysis across brain single-cell datasets.
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2. Materials and methods

2.1. The selection of clustering methods

In evaluating clustering methods, we consider both external and 
internal cluster validity indicators: consistency and the ROGUE score 
[30]. The external cluster indicator is the consistency of clustering be-
tween two datasets, defined as the proportion of corresponding clusters 
between datasets (Fig. 2A). The ROGUE score, based on entropy, serves 
as our internal indicator for clustering (Fig. 2B) [30]. Intuitively, a pure 
cell cluster is defined as a population with identical function and state 
across all cells and no variable genes. To select the best clustering 
approach, we evaluated seven methods and pipelines: the Seurat pack-
age using the Louvain algorithm [22], Monocle3 package using Louvain 
algorithm [31], SC3 using SVM algorithm [32], scCCESS-SIMLR [33], 

scCCESS-Kmeans [33], scrattch-hicat [17], and our one-iteration 
method, Consensus1, based on improvements to scrattch-hicat.

In addition to performance metrics, we also considered the execution 
time (Fig. 2C)and computational memory usage (Fig. 2D)of each 
method. We thoroughly evaluated these methods across six brain cell 
datasets (Table S1), comprising three human and three mouse datasets. 
Among the evaluated clustering methods, the ROGUE scores [30] sug-
gest that there may not be a significant difference in performance be-
tween most of the methods. However, when considering the external 
indicators, both Consensus1 and scrattch-hicat exhibit significantly 
higher scores compared to the other methods. Consequently, these two 
methods are selected as candidate methods for the clustering process in 
our pipeline. Scrattch-hicat [17], which shows the best performance in 
terms of external indicators, is a strong candidate for accurate cell type 
identification across datasets. On the other hand, Consensus1, with the 

Fig. 1. Overall workflow of BrainCellR. The cell type classification and nomination pipeline can be divided into three steps: (A) We use an iterative clustering method 
called Consensus1 to obtain the cell clustering results; (B) We employ Seurat’s FindTransferAnchors method for supervised classification of the major cell class and 
cell subclass; (C) After processing single-cell data into pseudo-cells, we identify differentially expressed genes using the ROC methods in Seurat and sequence them 
according to expression specificity scores. If we cannot find any marker gene for a cell type, we select other differential expression gene identification methods 
for processing.
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second-best performance, offers the advantage of significantly reduced 
computing time compared to scrattch-hicat (Fig. 2C). Therefore, we 
have chosen Consensus1 for the clustering process in our pipeline.

2.2. Evaluating the consistency of clusters between datasets

The consistency of clustering between datasets is used to evaluate 
whether the clustering of two data sets is similar after independent 
clustering. High consistency indicates that cells with similar expression 
characteristics are grouped into the same class in both sets of data. In 
this process, we first integrate the two sets of data together for unified 
clustering (clustering is performed using the methods described in the 
articles from which each dataset is sourced). Each cell can then obtain a 
clustering label from this integrated clustering.

Subsequently, we use the clustering algorithm to cluster the two sets 
of data separately. We then count the distribution of the number of in-
tegrated cluster labels contained by cells in each independent cluster 
and normalize this distribution by dividing it by the maximum value in 
the distribution. We then calculate the correlation coefficient between 
the quantity distribution calculated by each cluster from each dataset. If 
the correlation coefficients between two clusters from different datasets 
are the highest respectively, then we consider these two clusters to be a 
pair of clusters with cluster consistency. The proportion of cluster con-
sistency is the ratio between the number of identified clusters with 
consistency and the total number of clusters contained in the dataset.

2.3. Evaluating the purity of clusters between datasets

The purity score is an entropy-based statistic called ROGUE [30] to 
quantify the purity of identified cell clusters. The entropy can be defined 
as 

H(x) = −

∫ +∞

− ∞
p(x)⋅lnp(x)dx 

where X is the expression value and p(x) is the probability density 
function. Then the degree of disorder or randomness of gene expression 
can be represented as 

ds = lnE(Xi) −

∑n

j=1
lnXij

n 

E(Xi) is the expectation expression of X under negative binomial 
distribution for gene i. The ROGUE value which represents the purity 
score can be defined as 

ROGUE = 1 −

∑
ds

∑
ds + K 

Where K is a parameter to constrain the value between 0 and 1. Addi-
tionally, K can also serve as a reference factor to aid in interpreting the 
purity evaluation.

Fig. 2. Evaluation of clustering methods. (A) Percentage of common clusters between Dataset1 and Dataset2. Scrattch.hicat achieves the highest percentage, and the 
Consensus1 method achieves the second highest score. (B) Purity score of each clustering method. (C) Time usage (in hours) for each method. (D) Memory usage (in 
GB) for each method.
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2.4. Description of the Consensus1 method

The Consensus1 method is an improvement on the scrattch.hicat 
[17] method. With the scrattch.hicat method, a subset of cells is selected 
100 times for clustering, and then the differentially expressed genes 
between neighboring clusters are calculated. If no differentially 
expressed genes can be found between clusters, the two clusters are 
merged and the process is iterated continuously until no new clusters are 
generated. If a group of cells is grouped into the same cluster in all 100 
iterations, we consider them to be a robust cluster.

The Consensus1 method modifies this process by selecting all the 
cells for clustering only once, instead of selecting 80 % of the cells and 
clustering them 100 times as in the scrattch.hicat method. The 
Consensus1 method also preserves the process of merging clusters from 
the scrattch.hicat method. In this case, the first round of clustering is 
performed and then the differentially expressed genes between the 
current cluster and its two adjacent clusters are calculated. If no 
differentially expressed genes are detected, the cluster is merged with 
the nearest cluster. This process is iterated until no new cluster is 
generated.

2.5. The selection of supervised classification methods

The purpose of supervised classification within our pipeline is to 
assign cell types based on existing annotations for the major classes and 
subclasses of brain cells. In the case of the cortex, there is a general 
consensus on the major classes and subclasses of cell types found in 

specific regions [15,34]. For instance, in the primary motor cortex of 
mice, there are two major classes of neurons: Glutamatergic and 
GABAergic, along with several non-neuronal classes based on the neu-
rotransmitters they release [35]. The classification of these major classes 
is widely agreed upon in the mouse cortex [17]. Glutamatergic neurons 
can be further classified into different subclasses based on their cortical 
localization and projection patterns [14,36]. Similarly, GABAergic 
neurons can also be divided into various subclasses. Importantly, these 
subclasses have been found to be consistent and prevalent across 
different brain regions of the cortex [17].

We tested our approach using one biological replicate of each dataset 
(Table S1) as a training set, training the model on the training set using 
five methods: CHEATH [37], scmap [38], Seurat [22], SingleCellNet 
[39] and SingleR [40]. We then applied the trained model to another 
biological replicate of each dataset to evaluate the accuracy of the 
classification. Based on the evaluation results(Fig. 3), Seurat [22] per-
forms best in three out of four indicators: Accuracy, Precision, Recall, 
and F1-score. Several studies have evaluated different methods for cell 
type classification, with SingleR achieving the highest classification 
accuracy and Seurat ranking second [41]. While SingleR [40] has shown 
superior performance, it requires more computational time, particularly 
for large datasets [41]. By incorporating Seurat and SingleR into our 
pipeline, we achieve precise and consistent cell type classification across 
brain single-cell datasets.

Fig. 3. Comparison of supervised methods for cell subclass classification. Evaluation indicators include (A) accuracy, (B) precision, (C) recall, and (D) F1 score.
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2.6. Selection of marker gene identification methods

In BrainCellR, the identification of marker genes involves two sub-
steps: identifying differentially expressed (DE) genes within the same 
cell subclass; and selecting marker genes from these differentially 
expressed genes. We evaluated four differential expression gene iden-
tification methods: Wilcoxon, ROC curve, T-test, and linear regression, 
as implemented and described in Seurat [22]. These methods were 
combined with three marker gene screening methods: 1) Sorting by 
Specific Score: The top three genes are sorted based on a specific score, 
which represents their expression specificity across clusters; 2) Top 10 % 
Ranking: Genes sorted by specific score are required to be ranked in the 
top 10 % of all expressed genes; 3) P-value Selection: The top three 
genes are selected based on the p-value identified by the differential 
gene detection algorithm. We also explored additional approaches for 
marker gene detection based on Machine Learning: Random forest [42], 
PCA [43], and Node2Vec+CNN [44]. Finally, we consider whether to 
use cells or pseudo-cells as an input. We therefore evaluated two 
methods based on pseudo-cells: Processing the input data by randomly 
selecting 10 cells of the same cell type and averaging their expression 
levels to create pseudo-cells; and the hdWGCNA method [45]. We tested 
the performance of dozens of methods by combining various input data 
processing approaches (Raw data, Pseudo-cell, Hdwgcna-generated), 
four distinct methods for identifying differential gene expression, and 
multiple marker gene selection methods. We found that the best per-
formance was achieved when using pseudo-cell data as input, identi-
fying differentially expressed genes with ROC, and then selecting the top 
10 % of highly expressed genes ordered by specific score(Fig. 4). We 
incorporate this combination of methods into our pipeline. For cell types 
where differentially expressed genes could not be identified by the ROC 
method, we utilized Wilcox test, t-test, and linear regression which are 

ranked by our evaluation result to identify DE genes and extract marker 
genes. By incorporating these methods into our pipeline, we ensured to 
empirically select the most accurate approach for marker genes identi-
fication, which is essential for distinguishing and characterizing specific 
cell types.

2.7. Detailed method for identifying marker gene

The Wilcoxon, ROC, t-, and linear regression tests used to identify 
differentially expressed genes were the methods provided by Seurat 
package [22]. Specific score is used to measure the degree of specificity 
of genes, and the formula is as follows: 

Score =

∑n
i=11 −

MED(yi)
MED(yc)

n − 1
× PERyi=0 × PERyc !=0 

Where, c represents the cell type which currently concerned, i rep-
resents other cell types except for c, MED represents the median 
expression level, and PERyc !=0 refers to the proportion of cells where the 
gene expression is non-zero, while PERyi=0 represents the proportion of 
cells where the gene expression is zero.

The input data for both the random forest and PCA consist of 
expression matrices. Marker genes are identified based on the feature 
extraction ability of the model. For the random forest, genes are sorted 
according to Gini importance [46], while for PCA, genes are sorted 
based on their ranking on PC1. The input for the Node2Vec+CNN 
method is the co-expression matrix of expression data between each 
gene, and the objective of the training is to classify the input genes. The 
training set comprises the marker genes identified after integrating the 
two sets of data. Since Node2Vec [44] does not limit the number of 
co-expressed genes that can be imported, we used the correlation co-
efficients among all differentially expressed genes for classification.

Fig. 4. Comparison of the percentage of common cell types between Dataset1 and Dataset2 using different marker gene identification methods. Rank index is 
provided for each method.
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2.8. Identifying the same cell type

In our pipeline, the name of the cell type is composed of the major 
class of the cell type, the subclass of the cell type, and the top marker 
genes of the cell type. If the three marker genes of one cell type overlap 
with the three marker genes of another cell type within the same sub-
class, these two cell types are considered to be the same cell type.

3. Results

The BrainCellR pipeline can be divided into three steps (Fig. 1). The 
first step involves clustering single-cell data at a fine scale. The second 
step involves supplying the clusters to a supervised cell type classifier, 
which outputs major and subclass cell types. The third step is the se-
lection of marker genes from the identified differentially expressed 
genes. Each step of the pipeline is systematically evaluated to select the 
most appropriate approach for cell type nomenclature as shown in 
methods section. The final cell label is then constructed by combining 
the major class and subclass annotations derived from the classifier with 
the top three marker genes associated with each cell type.

The single-cell data types obtained from different biological samples, 
different individuals, or different sequencing platforms often vary, 
presenting a challenge in single-cell classification. To evaluate the 
effectiveness of our pipeline, we conducted studies using (a) six datasets 
to assess the consistency among different biological data [1,2,17,47,48]; 
(b) a mouse dataset to assess the consistency among biological replica-
tions [2]; (c) a human dataset to assess the consistency across different 
individuals [48]; and (d) external mouse datasets [2], derived from 
various sequencing methods, showcasing its adaptability to technical 
variations. This diverse range of datasets allows for a thorough evalua-
tion of BrainCellR’s performance and applicability across species, 
developmental stages, and sequencing technologies, emphasizing its 
versatility and reliability in single-cell data analysis.

3.1. Identification of optimal parameters

In our study, we compared several widely used single-cell analysis 
methods and optimized their parameters to evaluate each method’s 
performance. By comparing seven different analysis methods, including 
Seurat, Monocle3, SC3, etc. (Fig. 2), we found that Consensus1 and 
scrattch-hicat performed the best in terms of consistency and accuracy, 
particularly in cross-dataset cell type classification. Further optimization 
revealed that Consensus1 outperformed scrattch-hicat in computational 
efficiency, especially in terms of computing time (Fig. 2C) and memory 
usage (Fig. 2D).

Additionally, we systematically optimized the methods for differ-
ential gene expression detection and marker gene selection. After 
comparing ROC, Wilcoxon, and T-tests, we ultimately selected the ROC 
method to identify differentially expressed genes in pseudo-cell data, 
combining specificity scores to select marker genes from the top 10 % of 
highly expressed genes. This ensured the accuracy of marker gene 
selection.

3.2. Assessing consistency and comparability of cell types across diverse 
datasets

We aimed to evaluate whether cell types, labeled identically across 
different datasets, display similar expression patterns. To determine this 
similarity, we utilized four metrics: Euclidean distance, Spearman cor-
relation, Pearson correlation, and Cosine similarity, comparing gene 
expression counts between pairs of cell types. Our analysis incorporated 
six datasets, which included both human and mouse data (Table S1) [1, 
2,17,47,48]. In five out of these six datasets, we found that the Euclidean 
distance between cell types with the same label was significantly smaller 
than the distance between cell types with different labels. A similar 
trend was observed for the other three metrics(Fig. 5). These results 
indicate that cell types identified using BrainCellR are consistent and 
comparable across different datasets, exhibiting significant similarities 
when labeled identically.

Fig. 5. Comparison of similarities across distinct biological datasets. (A) Euclidean distance comparison between identical and different cell types. (B) Spearman 
correlation comparison between identical and different cell types. (C) Pearson correlation comparison between identical and different cell types. (D) Cosine similarity 
comparison between identical and different cell types. ’.I’: identical cell types; ’.D’: different cell types.
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3.3. Evaluating cell type consistency across biological replicate data

We evaluated cell type consistency in biological replication data. 
Using data from the primary motor cortex of mice (Table S2), we 
selected two sets of biological replicate data, containing 42,108 and 
35,303 cells, respectively. We clustered each set independently, then 
proceeded with the classification of the major cell class and subclass, as 
well as marker gene selection using the BrainCellR pipeline with the 
Consensus1 and Seurat methods selected. As a result, we identified 62 
cell types in one dataset and 60 cell types in the other, along with their 
marker genes(Fig. 6A). Remarkably, 57 cell types were found to be 
common between the two datasets, showcasing a high consistency level 
of 95 %. To exemplify this, we selected the Pvalb subclass for display 
(Table S3). Within the data annotated by our pipeline, the Pvalb subclass 
was further subdivided into seven clusters. Importantly, we observed 
that the distance between the two datasets for cells belonging to the 
same cell type was close compared to different cell types in the UMAP 
plot(Fig. 7). This finding indicates that BrainCellR is capable of effec-
tively comparing cell types across different datasets, thus highlighting 
its utility for cross-dataset analysis.

3.4. Evaluating cell type consistency across different individual sources

Next, we evaluated the cell type consistency in different individual 
sources. We utilized data from the human middle temporal gyrus (MTG) 
as our test dataset (Table S2), and segregated the cells into two subsets 
based on the individuals they originated from [48]. These two subsets 
consisted of 7206 cells and 7421 cells, respectively. After conducting 
marker gene screening using BrainCellR pipeline, we successfully 
identified a total of 50 and 63 cell types. Remarkably, 43 of these cell 
types (86 %) were found to be consistent across both subsets (Fig. 6B).

3.5. Evaluating cell type consistency across different sequencing 
techniques

Then, we evaluated cell type consistency across data from different 
sequencing techniques. We conducted a test to examine the consistency 
of cell type identification within our pipeline across data from high- 

noise sequencing technology and various batches of experiments [2]. 
Specifically, we utilized data from 122,641 cells obtained from the 
primary motor cortex of mice using 10X v2 single-cell sequencing, as 
well as data from 76,525 cells acquired through 10X v3 single nuclei 
sequencing (Table S2). The analysis of the 10X v2 single-cell data 
revealed 77 distinct cell types.

while the 10X v3 single-nuclei data comprised 56 cell types, with an 
overlap of 44 cell types (79 %). It’s important to note that deviations in 
cell extraction due to variations in sequencing techniques and cell states, 
as well as inconsistencies in the number of cells between the datasets, 
could potentially impact the extraction of certain cell types from the 10X 
v3 single-nuclei data. In comparison, according to the original data 
annotations, the two datasets were classified into 90 and 67 categories, 
with only 32 categories intersecting, resulting in an intersection ratio of 
merely 47.76 %(Fig. 6C).

3.6. Comparative analysis of cell types across developmental stages in the 
mouse somatosensory cortex

To test the applicability of our method to developmental data, we 
analyzed single-cell RNA sequencing data from the mouse somatosen-
sory cortex [49] across several key developmental stages (E13.5, E14.5, 
E15.5, and E16.5). These stages represent critical periods during which 
progenitor cells give rise to various neuronal and glial subtypes 
(Table S4).

Our analysis revealed that Apical Progenitors, serving as early stem 
cell types, were consistently identified across all developmental stages 
from E13.5 to E16.5. These progenitor cells play a continuous role in 
generating new cells during brain development. Genes associated with 
proliferation and differentiation, such as Pcna-ps2 and Kif18b, were 
highly expressed at E15.5, indicating an active proliferative state. This 
finding aligns with previous studies showing that apical progenitors 
produce large numbers of neurons and glial cells during early brain 
development. The generation of excitatory neurons became particularly 
notable after E14.5, especially at E15.5 and E16.5, where their migra-
tion was clearly observed. Marker genes such as Sema6d and Sp9 were 
highly expressed in migrating neurons at E15.5, suggesting active dif-
ferentiation from progenitor cells and migration to designated cortical 

Fig. 6. Comparison of cell types from different replicates, individuals, and sequencing techniques. (A) Comparison between different biological replicates, (B) 
different individuals, and (C) different sequencing techniques.
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layers.
Lastly, the generation of interneurons was observed at E15.5 and 

E16.5, demonstrating their gradual emergence. Inhibitory neurons, 
which typically develop later than excitatory neurons, showed expres-
sion of marker genes such as Gsx2 and Dlk1, indicating differentiation 
and migration to functional regions of the cortex. This gradual devel-
opmental pattern aligns with the known role of inhibitory neurons in 
regulating local circuits during the later stages of cortical formation.

4. Discussion

Understanding the diversity of cell types in the brain is a funda-
mental pursuit in neuroscience research. To facilitate this exploration, 
we have developed BrainCellR, a powerful pipeline that enables auto-
mated classification and nomination of cell types from single-cell tran-
scriptome data. BrainCellR leverages marker genes for cell type 
annotation, standardizing nomenclature at the cluster level to ensure 
consistency and high computational efficiency. This approach facilitates 
comparable cell type annotations across diverse datasets, enabling 
comprehensive investigations into the complex cellular landscape of the 
brain. In addition, BrainCellR has the potential to discover new cell 
types, making it particularly useful for exploring datasets where novel or 
rare cell types may be present, and providing unique opportunities to 
expand our understanding of cellular diversity. Please note that the 
comparison of cell types across datasets is influenced by the number of 
clusters within the cell subclass. This suggests that our pipeline is better 
suited for datasets with deep sequencing, a large number of cells, and 
extensive sampling. BrainCellR holds great promise in advancing our 
understanding of brain cell diversity and its functional implications. 
More importantly, BrainCellR can be applied to other tissues with 
complex compositions of cell types, not only just to the brain.
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