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Abstract 

Cancer is a leading cause of death and poor quality of life globally. Even though several strategies are 
devised to reduce deaths, reduce chronic pain and improve the quality of life, there remains a shortfall in 
the adequacies of these cancer therapies. Among the cardinal steps towards ensuring optimal cancer 
treatment are early detection of cancer cells and drug application with high specificity to reduce 
toxicities. Due to increased systemic toxicities and refractoriness with conventional cancer diagnostic 
and therapeutic tools, other strategies including nanotechnology are being employed to improve 
diagnosis and mitigate disease severity. Over the years, immunotherapeutic agents based on 
nanotechnology have been used for several cancer types to reduce the invasiveness of cancerous cells 
while sparing healthy cells at the target site. Nanomaterials including carbon nanotubes, polymeric 
micelles and liposomes have been used in cancer drug design where they have shown considerable 
pharmacokinetic and pharmacodynamic benefits in cancer diagnosis and treatment. In this review, we 
outline the commonly used nanomaterials which are employed in cancer diagnosis and therapy. We have 
highlighted the suitability of these nanomaterials for cancer management based on their physicochemical 
and biological properties. We further reviewed the challenges that are associated with the various 
nanomaterials which limit their uses and hamper their translatability into the clinical setting in certain 
cancer types. 
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Introduction 
Cancer is a leading cause of death and a global 

health burden. It was estimated that there would be 
18.1 million new cancer cases and 9.6 million 
cancer-related deaths by 2018[1]. Cancer is a disease 
characterized by uncontrolled cell proliferation that 
spreads from an initial focal point to other parts of the 
body to cause death. For these reasons, it is key to 
ensure earlier detection and treatment of cancers to 
reduce disease spread and mortalities. Amongst the 
widely used strategies, today in cancer research is 
nanotechnology. Nanotechnology has led to several 
promising results with its applications in the 
diagnosis and treatment of cancer, including drug 
delivery[2], gene therapy, detection and diagnosis, 
drug carriage, biomarker mapping, targeted therapy, 

and molecular imaging. Nanotechnology has been 
applied in the development of nanomaterials[3], such 
as gold nanoparticles and quantum dots, which are 
used for cancer diagnosis at the molecular level. 
Molecular diagnostics based on nanotechnology, such 
as the development of biomarkers, can accurately and 
quickly detect the cancers[4]. Nanotechnology 
treatments, such as the development of nanoscale 
drug delivery, can ensure precise cancerous tissue 
targeting with minimal side effects[5, 6]. Due to its 
biological nature, nanomaterials can easily cross cell 
barriers[7]. Over the years, nanomaterials have been 
used in the treatment of tumors, due to their active 
and passive targeting. Although many drugs can be 
used to treat cancers, the sensitivity of the drugs 
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generally leads to inadequate results and can have 
various side effects, as well as damage to the healthy 
cells. In view of that, several studies have examined 
different forms of nanomaterials, such as liposomes, 
polymers, molecules, and antibodies, with the 
conclusion that a combination of these nanomaterials 
in cancer drug design can achieve a balance between 
increasing efficacy and reducing the toxicity of 
drugs[8]. However, due to the potential toxicity of 
nanomaterials, there is still a lot of advancement to be 
done on them before their readily acceptance in the 
clinic for cancer management[9]. With the rapid 
development of nanotechnology, this paper will 
review its application in cancer diagnosis and 
treatment with focus on their benefits and limitations 
during use (Figure 1). 

 

 
Figure 1. Application of nanomaterials in cancer diagnosis and therapy. 

 

Nanotechnology in Cancer Diagnosis 
Genetic mutations can cause changes in the 

synthesis of certain biomolecules leading to 
uncontrolled cell proliferation and ultimately 
cancerous tissues[7]. Cancers can be classified as 
either benign or malignant. Benign tumors are 
confined to the origin of cancer while malignant 
tumors actively shed cells that invade surrounding 
tissues as well as distant organs. Cancer diagnostic 
and therapeutic strategies are targeted at early 

detection and inhibition of cancerous cell growth and 
their spread. Notable among the early diagnostic tools 
for cancers is the use of positron emission 
tomography (PET), magnetic resonance imaging 
(MRI), computed tomography (CT) and 
ultrasound[10]. These imaging systems, however, are 
limited by their inadequate provision of relevant 
clinical information about different cancer types and 
the stage. Hence it makes it difficult to obtain a full 
evaluation of the disease state based on which an 
optimum therapy can be provided [11, 12].  

Nanotechnology aids in tumor imaging 
In the past few decades, the application of 

nanoparticles in cancer diagnosis and monitoring has 
attracted a lot of attention with several nanoparticle 
types being used today for molecular imaging. Due to 
their advantages including small size, good 
biocompatibility, and high atomic number, they have 
gained prominence in recent cancer research and 
diagnosis. Nanoparticles used in cancer such as 
semiconductors, quantum dots and iron oxide 
nanocrystals possess optical, magnetic or structural 
properties that are less common in other molecules 
[13]. Different anti-tumor drugs and biomolecules 
including peptides, antibodies or other chemicals, can 
be used with nanoparticles to label highly specific 
tumors, which are useful for early detection and 
screening of cancer cells[14]. 

For cancer diagnostics, imaging of tumor tissue 
with nanoparticles has made it possible to detect 
cancer in its early stages. In lung cancer, the detection 
of metastases can be determined by developing 
immune superparamagnetic iron oxide nanoparticles 
(SPIONs) that can be used in MRI imaging with the 
cancer cell lines as the target for the SPIONs [15]. 
Recent studies have shown a high specificity of 
SPIONs with no known side effects, making them 
suitable building blocks for aerosols in lung cancer 
MRI imaging[16-18,19].  

Magnetic powder imaging has also been used in 
tomographic imaging technology where it has shown 
a high resolution and sensitivity to cancer tissues[20]. 
In animal experiments, nebulization of the lungs has 
been achieved using magnetic nanoparticles (MNPs) 
with Epidermal growth factor receptor (EGFR), a 
commonly expressed protein in non-small cell lung 
cancer (NSCLC) cases as a target. Further, in vitro 
studies using nanosystem for positron emission 
tomography (PET) have also been developed based on 
self-assembled amphiphilic dendritic molecules. 
These dendritic molecules spontaneously assemble 
into uniform supramolecular nanoparticles with 
abundant PET reporting units on the surface. By 
taking advantage of dendritic multivalence and the 
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enhanced penetration and retention (EPR) effect, the 
dendritic nanometer system effectively accumulates 
in tumors, resulting in extremely sensitive and 
specific imaging of various tumors while reducing 
treatment toxicities. 

Nanotechnology Tools Used in Cancer 
Diagnosis 

In current research, nanotechnology can validate 
cancer imaging at the tissue, cell, and molecular 
levels[20]. This is achieved through the capacity of 
nanotechnology applications to explore the tumor's 
environment, For instance, pH- response to 
fluorescent nanoprobes can help detect fibroblast 
activated protein-a on the cell membrane of 
tumor-associated fibroblasts[21]. Hereon, we will 
discuss some nanotechnology-based spatial and 
temporal techniques that can help accurately track 
living cells and monitor dynamic cellular events in 
tumors. 

Near Infrared (NIR) Quantum Dots   
The lack of ability to penetrate objects limits the 

use of visible spectral imaging. Quantum dots that 
emit fluorescence in the near-infrared spectrum (i.e., 
700-1000 nanometers) have been designed to 
overcome this problem, making them more suitable 
for imaging colorectal cancer, liver cancer, pancreatic 
cancer, and lymphoma[22-24]. A second near-infrared 
(NIR) window (NIR-ii, 900-1700 nm) with higher 
tissue penetration depth, higher spatial and temporal 
resolution has also been developed to aid cancer 
imaging.  Also, the development of a silver-rich 
Ag2Te quantum dots (QDs) containing a sulfur source 
has been reported to allow visualization of better 
spatial resolution images over a wide infrared 
range[25]. 

Nanoshells   
Another commonly used nanotechnology 

application is the use of nanoshells. Nanoshells are 
dielectric cores between 10 and 300 nanometers in 
size, usually made of silicon and coated with a thin 
metal shell (usually gold)[26, 27]. These nanoshells 
work by converting plasma-mediated electrical 
energy into light energy and can be flexibly tuned 
optically through UV-infrared emission/absorption 
arrays. Nanoshells are desirable because their 
imaging is devoid of the heavy metal toxicity[28] even 
though their uses are limited by their large sizes. 

Colloidal Gold Nanoparticles   
Gold nanoparticle (AuNPs) is a good contrast 

agent because of its small size, good biocompatibility, 
and high atomic number. Research shows that AuNPs 
work by both active and passive ways to target cells. 

The principle of passive targeting is governed by a 
gathering of the gold nanoparticles to enhance 
imaging because of the permeability tension effect 
(EPR) in tumor tissues[29]. Active targeting, on the 
other hand, is mediated by the coupling of AuNPs 
with tumor-specific targeted drugs, such as EGFR 
monoclonal antibodies, to achieve AuNP active 
targeting of tumor cells (Figure 2). When the energy 
exceeds 80kev, the mass attenuation rate of gold 
becomes higher than alternative elements like iodine, 
indicating a greater prospect gold nanoparticles [30]. 
Rand et al. mixed AuNPs with liver cancer cells and 
found that using X-ray imaging, the clusters of liver 
cancer cells in the gold nanocomposite group were 
significantly stronger than those in the liver cancer 
cells alone. These findings have important 
implications for early diagnosis, with the technique 
allowing tumors as small as a few millimeters in 
diameter to be detected in the body[31]. 

Nanotechnology used in cancer biomarker 
screening 

Cancer biomarkers are biological features whose 
expression indicates the presence or state of a tumor. 
Such markers are used to study cellular processes, to 
monitor or identify changes in cancer cells, and these 
results could ultimately lead to a better 
understanding of tumors. Biomarkers can be proteins, 
protein fragments or DNA. Among them, tumor 
biomarkers, which are indicators of a tumor, can be 
tested to verify the presence of specific tumors. Tumor 
biomarkers ideally should possess a high sensitivity 
(>75%) and specificity (99.6%)[32]. Under current 
medical conditions, biomarkers from blood, urine, or 
saliva samples are used to screen individuals for 
cancer risk. But these biomarkers have not proven 
adequate for cancer screening. Therefore, several 
researchers have resorted to the study of extract 
patterns of abnormally expressed proteins, peptide 
fragments, glycans and autoantibodies from serum, 
urine, ascites or tissue samples from cancer 
patients[33-35]. With the development of proteomics 
technology, protein biomarkers for many cancers 
have been discovered. 

In general, protein profiling tests would remove 
the high molecular weight proteins such as albumin 
and immunoglobulins. However, the removal of these 
proteins also removes the low molecular weight 
protein biomarkers conjugated to them, resulting in 
the loss of the biomarkers of interest. These low 
molecular weight proteins represent a potential 
biomarker-rich population[36-38]. Two studies led by 
Geho and Luchini came up with the method of 
capturing and enriching low molecular weight 
proteins by nanoparticles to obtain biomarkers from 
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biological liquids, thus improving the screening of 
biomarkers[39, 40]. Nanoparticles compete with the 
carrier proteins by their surface characteristics, such 
as electric charge, or functional biomolecules, which 
are currently possessed by mesoporous silica 
particles, hydrogel nanoparticles, and carbon 
nanotubes[39-46]. 

Another method to improve screening with 
nanocarrier is to improve the sensitivity of mass 
spectrometry. The unique optical and thermal 
properties of carbon nanotubes enhance the 
energy-transfer efficiency of the analyte, contributing 
to the absorption and ionization of the analyte, and 
eliminate the interference of inherent matrix 
ions[46-48]. A third approach is to use 
nanotechnology to make lab-on-chip microfluidics 
devices that can be used for immuno-screening or to 
study the properties of tumor cells. For example, a 
system showing great promise is lab-on-a-chip for 
high performance multiplexed protein detection 
using quantum dots made of cadmium selenide 
(CdSe) core with a zinc sulfide (ZnS) shell linked to 
antibodies to carcinoembryonic antigen, cancer 
antigen 125 and Her-2/Neu[49]. Another example is 
that cells growing on the surface of different sized 
nanometres, which were discovered by these 
nanometres across can differentiate between tumor 
cells[50]. Suffice it to say that there are still 
false-positive and false-negative results from 
screening of biomarkers by nanotechnology, and we 
need to improve sensitivity without compromising 
specificity. 

Nanotechnology in Cancer Therapy  
Tools of Nanotechnology for Cancer Therapy   

The development of nanotechnology is based on 
the usage of small molecular structures and particles 
as tools for delivering drugs. Nano-carriers such as 
liposomes, micelles, dendritic macromolecules, 
quantum dots, and carbon nanotubes have been 
widely used in cancer treatment. 

Liposomes 
Liposomes are one of the most studied 

nanomaterials, which are nanoscale spheres 
composed of natural or synthesized phospholipid 
bilayer membrane and water phase nuclei[51]. 
Because of the amphiphilicity of phospholipids, 
liposomes form spontaneously[51], allowing 
hydrophilic drugs to preferentially stay in the 
monolayer liposome while hydrophobic ones form 
before the multilayer liposome[52]. Some drugs could 
be incorporated into liposomes by exchanging them 
from acidic buffer to the neutral buffer. Neutral drugs 
can be transported in liposomes also, but due to a 
poor avidity for acidic environments, they are not 
readily released from the inside of the liposomes[53]. 
Other mechanisms of drug delivery are the 
combination of saturated drugs with organic solvents 
to form liposomes[51]. Under the influence of the EPR 
effect[53], the vesicle of size around 4000 kDa or 500 
nm can be allowed into the tumor by the gaps in 
vessels[52]. In tumors they can fuse with cells, are 
internalized by endocytosis, and release drugs in the 

 

 
Figure 2. Various types of gold nanoparticles (different sizes, morphologies, and ligands) accumulate in tumor tissues by the action of osmotic tension effect (termed Passive 
targeting) or localize to specific cancer cells in a ligand-receptor binding way (termed Active targeting). 
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intracellular space[52]. In the case of the appropriate 
pH, redox potential, ultrasonic and under the 
electromagnetic field, the liposome can also release 
the drug through passive or active ligand-mediated 
activity[52]. The targeted therapy has an advantage in 
the vascular system, micrometastases, and blood 
cancers[54]. It has been shown that the half-life of 
liposome is affected by size. The liposome up to 100 
nanometers easily penetrate the tumor and stay 
longer, while the half-life of the bigger liposome is 
shorter because they are easily recognized and cleared 
by the mononuclear phagocyte system[55]. 
Liposome-bound antibodies target tumor-specific 
antigens to ensure active targeting and then transport 
drugs to the tumor. With a lot of pharmacokinetic 
benefits, some liposomal drugs are approved for 
clinical therapy (Table 1). For instance, liposomal 
forms of adriamycin have been used for the 
management of metastatic ovarian cancer where they 
have shown appreciable clinical benefit[56, 57].  

Carbon Nanotubes 
Based on the structure and the diameter,  Carbon 

nanotubes (CNTs) can be categorized into two kinds, 
the single-walled CNTs (SWNTs) and the multiwalled 
CNTs (MWNTs)[58]. The SWNTs are composed of 
monolithic cylindrical graphene, and the MWNTs are 
composed of concentric graphene[58]. Because of the 
physical and chemical properties of carbon 
nanotubes, that include surface area, mechanical 
strength, metal properties, electrical and thermal 
conductivity, it is a candidate well suited for 

large-scale biomedical applications[59]. Carbon 
nanotubes also possess a property that allows them to 
absorb light from the near-infrared (NIR) region, 
causing the nanotubes to heat up by the thermal 
effect, hence can target tumor cells[60-62]. The natural 
forms of carbon nanotubes promote noninvasive 
penetration of biofilms and are regarded as highly 
competent carriers for the transport of various drug 
molecules into living cells[63]. Due to the suitability of 
carbon nanotubes, drugs such as paclitaxel are 
assembled with them and administered both in vitro 
and in vivo for cancer treatment[64]. 

Polymeric Micelles  
Polymeric nanoparticles (PNPs) are the 

inventions that relate to a solid micelle with a particle 
size range of 10-1000 nm[65]. PNPs are collectively 
known as polymer nanoparticle, nanospheres, 
nanocapsules or polymer micelles and they were the 
first polymers reported for drug delivery systems. 
PNPs serve as drug carriers for hydrophobic drugs 
and are widely used for drug discovery[66-68]. The 
PNPs constructed from amphiphilic polymers with a 
hydrophilic and hydrophobic block can perform rapid 
self-assembly because of the hydrophobic interactions 
in an aqueous solution[69]. The PNPs can capture the 
hydrophobic drugs because of a covalent bond or the 
interaction via a hydrophobic core. Thus, to carry the 
hydrophilic charged molecules, such as proteins, 
peptides, and nucleic acids, these blocks are switched 
to allow interactions in the core and neutralize the 
charge[67].

 

Table 1. Nanomaterial-carrying drugs in clinical trials of cancer treatment in the past five years. 

 Year Drugs Disease Findings Reference 
Liposome 2015 Doxorubicin Platinum-Sensitive Ovarian Cancer favorable risk-benefit profile [97] 

 Paclitaxel Non-Small Cell Lung Cancer considerable disease response and resection rate, with acceptable 
toxicity 

[98] 

 Ursolic acid Advanced Solid Tumors tolerable, manageable toxicity, improving patient remission rates [99] 
 Mitomycin C advanced cancer long circulation time, tolerable, effective [100] 
2016 miR-34a Mimic Advanced Solid Tumors effective [101] 
 Vincristine Sulfate Refractory Solid Tumors or Leukemias without dose-limiting neurotoxicity [102] 
 5-fluorouracil and 

Leucovorin 
Advanced Solid Tumors lower peak plasma concentration, longer half-life, and increased area [103] 

 Cytarabine Childhood Acute Lymphoblastic 
Leukemia 

no permanent adverse neurological sequelae [104] 

2017 Amphotericin Acute Lymphoblastic Leukaemia effective [105] 
 Irinotecan Recurrent High-Grade Glioma no unexpected toxicities [106] 
2018 Cytarabine and 

Daunorubicin 
Newly Diagnosed Secondary Acute 
Myeloid Leukemia 

significantly longer survival rate [107] 

 Curcumin Locally Advanced or Metastatic Cancer durable [108] 
 Daunorubicin Pediatric Relapsed/Refractory Acute 

Myeloid Leukemia 
well-tolerated and showed high response rates [109] 

 Lipovaxin-MM Malignant Melanoma well-tolerated and without clinically significant toxicity [110] 
 Vincristine Sulfate Acute Lymphoblastic Leukemia provided a meaningful clinical benefit and safety  [111] 
 Oligodeoxynucleotide Refractory or Relapsed Haematological 

Malignancies 
well-tolerated, effective [112] 

2019 Eribulin Solid Tumours well-tolerated with a favorable pharmacokinetic profile [113] 
Polymeric 
Micelles 

2017 Epirubicin Solid tumors Well tolerated in patients with various solid tumors and exhibited less 
toxicity than conventional epirubicin formulations 

[114] 

2018 Genexol-PM plus 
carboplatin 

Ovarian Cancer Non-inferior efficacy and well-tolerated toxicities [115] 

2019 Paclitaxel (PTX) Breast cancer NK105 had a better PSN toxicity profile than PTX [116] 
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The advantages of the higher thermodynamic 
stability and the smaller volume make the PNPs a 
suitable drug carrier with good endothelial cell 
permeability while avoiding kidney rejection[70-73]. 
The hydrophobic macromolecules and drugs can be 
transferred to the center of the PNPs, hence, the 
injection of PNPs suspension after being separated in 
an aqueous solution could achieve therapeutic 
effect[73]. Importantly, by oral or parenteral 
administration, drugs can reach the target cells in 
different ways, potentially provide alternative ways 
to lower cytotoxicity in healthy tissues compared to 
the cancer cells. However, the major challenges in the 
use of PNPs for cancer nanomedicine still exist in how 
to effectively deliver the drugs to the target site with 
limited side effects or drug resistance. Recently, the 
PNPs have been used widely in the 
nanotechnology-based cancer drug design due to 
their excellent potential benefits for patient care. For 
example, adriamycin conjugated nanomaterial was 
used to treat several types of cancers where it 
achieved therapeutic effects to a decent degree. 
However, it also presented with many side-effects, 
such as toxicity and heart problems, thereby limiting 
its use. Such problems are overcome by Doxil (a 
liposomal form of doxorubicin), which is less 
associated with cardiotoxicity in patients, and hence 
may provide a safer nanomaterial synthetic approach 
for researchers in the future[74-77]. 

Dendrimers 
The dendrimers are nanocarriers that have a 

spherical polymer core with regularly spaced 
branches[78]. As the dendritic macromolecule 
diameter increases, the tendency to tilt towards a 
spherical structure increases[79]. There are usually 
two ways to synthesize dendrimers, a divergent 
method in which the dendrimers can grow outward 
from the central nucleus, and a convergence method, 
where the dendrimers grow inward from the edges 
and end up in the central nucleus[80, 81]. Various 
molecules including polyacrylamide, polyglycerol- 
succinic acid, polylysine, polyglycerin, poly2, 2bis 
(hydroxymethyl) propionic acid, and melamine are 
commonly used to form dendrimers[82]. These 
dendritic macromolecules exhibit different chemical 
structures and properties, such as alkalinity, 
hydrogen bond capacity and charge, which can be 
regulated by growing dendritic macromolecules or 
changing the groups on the surface of dendritic 
macromolecules. In general, the dendritic drug 
conjugates are formed by the covalent binding of 
antitumor drugs to dendritic peripheral groups[83]. 
Thus, several drug molecules can attach to each 
dendritic molecule and the release of these 

therapeutic molecules is controlled in part by the 
nature of the attachment. The physicochemical and 
biological properties of the polymer including the 
size, charge, multi-ligand groups, lipid bilayer 
interactions, cytotoxicity, internalization, plasma 
retention time, biological distribution, and filtration of 
dendritic macromolecules, have made dendrimers 
potential nanoscale carriers[81]. Several studies have 
further shown that cancer cells with a high expression 
of folate receptors could form foils from dendritic 
molecules bound to folate[84-86]. An added 
advantage of dendrimers is their ability to bind to 
DNA as seen with the DNA-polyamides clustering 
DNA-poly(amidoamine) (DNAPAMAM), making 
them highly effective at killing cancer cells that 
express the folate receptor[87]. 

Quantum Dots  
Quantum dots (QDs) are small particles or 

nanocrystals of semiconductor materials between 2 
and 10 nanometers in size[88]. The ratio of the height 
of the surface to the volume of these particles gives 
the QDs the intermediate electron property which is 
between a mass semiconductor and a discrete 
atom[89]. Over the years, various QDs based 
techniques such as modification of QD conjugates and 
QD immunostaining have been developed. With the 
improvement of multiplexing capability, QDs 
conjugation greatly exceeds the monochromatic 
experiment in both time and cost-effectiveness[90]. 
Moreover, at low protein expression levels and in a 
low context, QD immunostaining is more accurate 
than traditional immunochemical methods. In 
cancer diagnosis, QD immunostaining is a potential 
tool for the detection of various tumor biomarkers, 
such as a cell protein or other components of a 
heterogeneous tumor sample[91]. Quantum dots can 
gather in specific parts of the body and transfer the 
drugs to those parts. The ability of the QDs to 
concentrate in a single internal organ makes them a 
potential solution against untargeted drug delivery, 
and possibly avoid the side effects of chemotherapy. 
The latest advancement in surface modification of 
QDs, which combine with biomolecules, including 
peptides and antibodies, in vivo, can be used to target 
tumors and make possible their potential applications 
in cancer imaging and treatment. Some studies 
combine QDs with prostate-specific antigen to label 
cancer, while others use QDs to make biomarkers that 
speed up the process with such immune markers 
having a more stable light intensity than traditional 
fluorescent immunomarkers[92]. High sensitivity 
probes based on quantum dots have been reported for 
multicolor fluorescence imaging of cancer cells in vivo 
and can also be used to detect ovarian cancer marker 
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cancer antigen 125 (CA125) in different types of 
specimens (such as fixed cells, tissue sections, and 
xenograft) [93]. Besides, the light stability of quantum 
dot signals is more concrete and brighter than that of 
traditional organic dyes[94]. Chen et al. successfully 
detected BC using quantum-dot-based probes, 
confirming that unlike traditional immunohisto-
chemistry, quantum dot immunohistochemistry 
(IHC) can detect the very low expressions of Human 
Epidermal Growth Factor Receptor 2 (HER2) as well 
as multichannel detection[95, 96].  

Conclusion and Future directions 
Nanotechnology has shown a lot of promise in 

cancer therapy over the years. By their improved 
pharmacokinetic and pharmacodynamic properties, 
nanomaterials have contributed to improved cancer 
diagnosis and treatment. Nanotechnology allows 
targeted drug delivery in affected organs with 
minimal systemic toxicities due to their specificities. 
However, as with other therapeutic options, 
nanotechnology is not completely devoid of toxicities 
and comes with few challenges with its use including 
systemic and certain organ toxicities, hence, causing 
setbacks with their clinical applications. Given the 
limitations with nanotechnology, more advancements 
must be done to improve drug delivery, maximize 
their efficacy while keeping the disadvantages to the 
minimum. By improving the interactions between the 
physicochemical properties of the nanomaterials 
employed, safer and more efficacious derivatives for 
diagnosis and treatment can be made available for 
cancer management. In sum, we sought to highlight 
the key advantages of nanotechnology and the 
shortfalls in their use to meet clinical needs for cancer. 
Adding to that, the therapeutic benefits of 
nanotechnology and future advancements could 
make them a therapeutic potential to be applied in 
other disease conditions. These may include ischemic 
stroke and rheumatoid arthritis which would require 
targeted delivery of a suitable pharmacologic agent at 
the affected site. 
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