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Abstract 
Pervasive genetic overlap across human complex traits necessitates developing 
multivariate methods that can parse pleiotropic and trait-specific genetic signals. Here, we 
introduce Genomic Network Analysis (GNA), an analytic framework that applies the 
principles of network modelling to estimates of genetic overlap derived from genome-wide 
association study (GWAS) summary statistics. The result is a genomic network that 
describes the conditionally independent genetic associations between traits that remain 
when controlling for shared signal with the broader network of traits. Graph theory metrics 
provide added insight by formally quantifying the most important traits in the genomic 
network. GNA can discover additional trait-specific pathways by incorporating gene 
expression or genetic variants into the network to estimate their conditional associations 
with each trait. Extensive simulations establish GNA is well-powered for most GWAS. 
Application to a diverse set of traits demonstrate that GNA yields critical insight into the 
genetic architecture that demarcate genetically overlapping traits at varying levels of 
biological granularity.   
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Introduction  
Pleiotropic genetic variants associated with multiple traits are the norm rather than the 
exception1, with only 10% of variants estimated to be trait-specific2. Widespread pleiotropy 
will, in part, reflect the fact that most traits under study are the multifaceted consequence of 
core disease pathways and secondary risk factors that are both being captured in GWAS 
estimates. Comprehensive characterization of GWAS findings thereby necessitates parsing 
shared and unique signal across sets of genetically correlated traits. Refinement of more 
specific genetic signals would assist to prioritise cross-trait genetic overlaps and GWAS loci 
that should be subjected to further experimental or clinical interrogation. For example, 
complex human diseases often show pervasive genetic overlap with circulating biochemical 
markers like lipids and enzymes3,4; however, it is difficult to understand which estimates of 
genetic overlap represent true shared biology as opposed to what arises due to pleiotropy 
between these biochemical traits. In response to these challenges, we introduce Genomic 
Network Analysis (GNA), a flexible framework for network modelling of multivariate GWAS 
data, enabling the identification of conditional genetic associations at genome-wide, genetic 
variant, and gene centric levels of analysis.  

Network modelling has been used to describe complex multivariate relationships within a 
wide range of biological, social, economic and psychological systems (e.g., gene co-
expression networks, neural networks, social networks, psychopathological networks)5. 
Rather than focus on the functioning of individual system components, network approaches 
examine how these components interact and are organised within the larger system. A 
graphical model, for example, reflects a network of conditionally independent relationships 
(edges) between a set of variables (nodes). Once a network model is estimated, properties 
of the network such as topological features, sparsity, node centrality, and node clustering, 
can provide important insight into the structure and functioning of the overall system6.  

Leveraging these principles of network models in the context of genetics with GNA allows 
for the characterization of genetic signals that arise only due to associations with other 
variables in the network as compared to those that are specific to a particular trait. At the 
genome-wide level, this can take a complex web of genetic correlations between a set of 
traits and deconvolve to a sparse network that describes the most critical connections. The 
construction of genome-wide networks in GNA requires only GWAS summary statistics as 
input and can be applied to GWAS data from participant samples with varying and unknown 
degrees of sample overlap. GNA can also incorporate into the network individual genetic 
variants (network GWAS) or individual genes (network TWAS), facilitating the identification 
of trait-specific biology by estimating of effect of a variant or gene conditional on other traits 
in the network. Below we validate GNA via extensive simulations that demonstrate this 
approach is well-calibrated, adequately powered, and has high accuracy for sample sizes 
and SNP-based heritability estimates typical of modern day GWAS. Through a range of 
empirical applications to real-world GWAS, we demonstrate GNA’s ability to provide novel 
insight into disease aetiology and the identification of trait-specific disease pathways that 
are otherwise masked by overlapping signal with genetic correlates.  
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Results 

Overview of GNA 

GNA estimates a network model for a set of traits at a genomic level, where nodes represent 
the genetic component of each trait (ℎ!"#$ ), which are connected by edges representing the 
partial genetic correlation (𝑝𝑟%) between traits (i.e. the genetic correlation between a pair of 
traits while conditioning on all other traits in the network). Specifically, our approach fits a 
Gaussian graphical model (GGM)7 to a genetic variance-covariance matrix (obtained from 
multivariable LDSC8,9). Therefore, GNA requires only GWAS summary statistics as input 
and can be applied to GWAS data from participant samples with varying and unknown 
degrees of participant sample overlap. 

GNA implements a stepdown model search procedure to select a sparse network model; a 
saturated (fully connected) GGM is estimated; non-significant parameters are pruned and 
the GGM is refit recursively until only significant edges remain in the network. This edge 
selection process serves to produce a network that reflects a more parsimonious and readily 
interpretable system of relationships. We provide several model fit statistics to assess the 
adequacy of the sparse network model in describing the data. Such model fit statistics are 
typically calculated using participant sample (N). However, our genomic network approach 
allows for including GWAS summary statistics that will often have varying sample sizes. To 
circumvent this issue, we develop and validate via simulations a summary-based approach 
for calculating common model fit metrics such as comparative fix index (CFI)10 and 
standardized root mean square residual (SRMR)11. 

Simulations 

Simulations were conducted to evaluate GNA across a realistic range of population 
generating scenarios that varied the three key parameters related to power in the genomic 
network: sample size, number of traits in the network (K), and SNP-based heritability (ℎ!"#$ ). 
We find that GNA has well-controlled Type I error across all simulating conditions (Fig 1A), 
and produces unbiased parameter estimates (Fig 1C and 1D) and well-calibrated standard 
errors in the presence of participant sample overlap (ratio between estimated standard 
errors and standard deviation of point estimates = 1.01). The simulations suggest that GNA 
has sufficient statistical power (>0.80) to estimate a 5 trait network when trait ℎ!"#$  Z > 7, a 
10 trait network when ℎ!"#$  Z > 17, a 15 trait network when ℎ!"#$  Z > 21, and a 20 trait network 
when ℎ!"#$  Z > 23 (Fig 1B).  

Criticisms of phenotypic networks include poor reliability12 or low accuracy13 that stem from 
estimating partial correlations with small participant sample sizes. By comparison, GWAS 
data often has extremely large participant sample sizes to ensure adequate power for 
genetic discovery. Importantly, we find that, given the thresholds above, we have high 
accuracy, as indicated by the percentage of 95% confidence intervals that include the 
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population generating parameter and high reliability (indexed by the fact that the estimated 
edges are correlated at or near 1 with the population generating edges).  

 
Figure 1: GNA simulation results   
Results from 12,000 simulation runs of GNA varying the number of traits in the network (K) and the power of 
traits in the network (SNP-based heritability Z statistic (Z ℎ!"#$ ); which is dependent upon both the SNP-based 
heritability and sample size of the traits). Each dot represents the mean value across all simulation runs for 
that set of parameters, with 95% confidence intervals plotted as bands. A) False positive rate, where a ‘positive’ 
represents a non-zero edge weight and a ‘negative’ represents a null edge weight.  B) Statistical power (false 
negative rate). C) Bias in estimated edge weights, calculated as the mean of the absolute differences between 
the true network edge weights and estimated edge weights. D) Correlation between the set of estimated edge 
weights and the set of true edge weights within each run.  

Conditional genetic relationships between type 2 diabetes and cardiometabolic traits 

First, we demonstrate the simplest use of GNA – to identify conditional genetic relationships 
(partial genetic correlations) between a set of traits. We applied GNA to East Asian ancestry 
GWAS of type 2 diabetes (T2D) and a set of cardiometabolic traits that have all been 
previously  observationally and genetically implicated to be involved in the pathogenesis of 
T2D14,15, including fasting plasma glucose (FPG), body mass index (BMI), systolic blood 
pressure (SBP), triglycerides (TG) and high-density lipoprotein cholesterol (HDL; Suppl. 
Table 1). T2D and the five measured cardiometabolic traits are all significantly genetic 
correlated with each other (Fig 2A). 
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We applied GNA to these traits, which identified 8 significant partial genetic correlations. In 
other words, from the 15 total trait pair associations, only 8 remained significant after 
conditioning on all other traits (Fig 2B, edge density = 0.53). To assess the extent to which 
these 8 partial correlations capture the full genetic overlap between the traits, we estimated 
a sparse network model in GNA, in which non-significant parameters are fixed to zero and 
the remaining network parameters are re-estimated (Fig 2B; Suppl. Table 2). The network 
model had excellent fit to the observed genetic covariance matrix (CFI = 0.97, SRMR = 
0.04), implying the sparse network captures the genetic overlap between the 
cardiometabolic traits well. 

We highlight two broad types of conditional relationships that emerged from this analysis. 
As expected, the strong genetic overlap between T2D and FPG remained very consistent in 
the sparse network conditioned on all remaining traits (𝑟% = 0.66, se = 0.05, p = 6.9×10-43; 
𝑝𝑟%= 0.65, se = 0.04, p = 6.9×10-75), with similar findings for  BMI (𝑟% = 0.34, se = 0.03, p = 
6.7×10-29;  𝑝𝑟%= 0.29, se = 0.04, p = 2.7×10-15). In contrast, T2D and HDL levels were 
conditionally independent, such that their association (𝑟% = -0.27, se = 0.03, p = 1.1×10-19) 
did not hold given the other traits in the network (𝑝𝑟%= -0.06, se = 0.05, p = 0.20). This finding 
is in line with previous genetic and observational evidence that has challenged the existence 
of direct relationship between lower circulating HDL and liability to T2D in a similar vein to 
what has been found with respect to HDL and cardiovascular disease16–18. 

 
Figure 2. Network of type 2 diabetes (T2D) and other cardiometabolic traits.   
A) Genetic correlations (marginal associations) between T2D and cardiometabolic traits estimated via LD 
Score Regression. B) Partial genetic correlations (conditional associations) between T2D and cardiometabolic 
traits estimated via GNA after non-significant parameters (FDR > 0.05) are pruned from the network. T2D = 
Type 2 Diabetes; FPG = fasting plasma glucose; BMI = body mass index; SBP = systolic blood pressure; TG 
= triglycerides; HDL = high-density lipoprotein cholesterol. 

Genetic Network Analysis of Neuroticism Items Reveals Crucial Components 

Phenotypic networks are increasingly applied in the psychiatric literature to gain clinically 
relevant insight into the symptoms that most likely affect disease onset and progression19,20. 
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How important an item is in a network can be formally quantified using developed graph 
theory metrics that are included as part of the output from the GNA R package. Here we 
show how two of these metrics, expected influence and clustering coefficients (Online 
Supplement and Suppl. Figure 1 for additional metrics), can be used to identify critical 
items within a genomic network of 12 neuroticism items from the Eysenck Personality 
Questionnaire Revised-Short Form21 (Suppl. Table 3; Method). Expected influence is 
calculated as the sum of the edge weights connected to a given node22, thereby quantifying 
the direct effects of a focal node on the remaining nodes. Clustering coefficients assess the 
degree to which an individual node’s neighbours (the other nodes it is connected to) are 
interconnected. A high clustering coefficient of a given node indicates that its neighbours are 
highly connected. These coefficients have been discussed as a measure of the node’s 
redundancy in the network, where removing a node with a larger clustering coefficient would 
still produce a similar network23. The combination of high centrality values and low clustering 
coefficients can demarcate key nodes in a network.  

 
Figure 3. Neuroticism Network Results. 
A) Genetic correlations between the 12 neuroticism items, the full set of partial genetic correlations, and the 
pruned, sparse network model (FDR < 0.05). Edge thickness corresponds to the size of the edge weight, with 
blue and red edges indicating positive and negative values, respectively. B) Left: the neuroticism network 
plotted using multidimensional scaling. The nodes are shaded according to their centrality in the network and 
the borders of the nodes are shaded according to their clustering coefficient. Right: expected influence 
(measure of node centrality) and the Zhang clustering coefficient24 for each node in the network, standardized 
relative to all other nodes in the network. 
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LDSC estimated genetic correlations for 12 neuroticism items in the UK Biobank21 were all 
highly significant (maximum p-value = 4.36 x 10-22) and revealed pervasive genetic overlap 
(mean rg = .63; range = .37 - .89). The full set of genetic correlations, and even partial genetic 
correlations, form a complex web of interconnections that are difficult to interpret (Fig 2A). 
The application of GNA, which recursively estimates the network model until only significant 
edges remain, produced a much sparser and more interpretable network that continued to 
provide good fit to the data (CFI = .98; SRMR = .08; Fig 2B; Suppl. Table 4). Evaluating 
node importance in this sparse network revealed that nervousness had the largest expected 
influence and, relative to other nodes in the network, a lower clustering coefficient (Suppl. 
Table 5). This indicates that the genetic signal for nervousness reflects a crucial component 
that uniquely links various aspects of neuroticism. As neuroticism is a robust predictor of a 
range of adverse  outcomes, including risk for psychopathology23, life satisfaction26, and 
mortality27, this may reflect a more efficacious intervention target within this predictive 
personality construct. 

Genomic Network Analysis of Biochemical Markers 

We then applied GNA to 19 blood biochemical traits from the UK Biobank4 (Suppl. Table 6). 
From the 171 total trait pairs, 115 were significantly genetically correlated (edge density = 
0.67). We estimated a sparse genomic network model in GNA, which reduced this set of 
cross-trait correlations to 37 (Fig 4A, edge density = 0.22, Suppl. Table 7). The model had 
good fit to the data (CFI = .920; SRMR = .055) and recapitulated strong genetic relationships 
between biochemical traits that are known to be biologically related – for example, large 
genetic overlaps remained in the sparse network between enzymes used clinically as 
markers of liver function (gamma-glutamyl transferase, alanine aminotransferase, and 
aspartate aminotransferase).  

Once a network is estimated, insight into its structure can be gained by assessing the global 
properties of the network (that is, the properties of the overall network rather than of any 
individual nodes). GNA provides three main metrics of global network structure: the global 
clustering coefficient (degree of clustering across the whole network)28, average path length 
(average distance between nodes in the network)29, and the small-worldness index (the 
degree to which the network possesses small-world properties, i.e. high clustering and a 
short average path length)30,31. The small-worldness index of the biochemical trait network 
was 0.42, suggesting its structure lies somewhere between a random and a small-world 
network. Further inspection of the metrics show that the average path length (2.19) was 
extremely similar to that from equivalent random networks (mean = 2.14; 2.5% and 97.5% 
quantiles = [1.89,2.31]), and the clustering coefficient (0.25) was less than found in 
equivalent lattice networks (mean = 0.45; 2.5% and 97.5% quantiles = [0.35,0.54]). This 
suggests that while the biochemical trait network has a short average path length, it does 
not possess a high degree of clustering, and therefore does not show a clear small-world 
structure. 
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Figure 4. Genomic network of biochemical markers.   
A) Genomic network of 19 biochemical markers from the UK Biobank. Sparse network model estimated via 
GNA by recursively pruning non-significant edges (Pbonf < 0.05) from the network. Edge thickness corresponds 
to the size of the edge weight, with blue and red edges indicating positive and negative values, respectively. 
B) Conditional genetic associations (partial genetic correlations) between type 2 diabetes (T2D) and the 
biochemical markers, estimated via a sparse network model in GNA. C) Conditional genetic associations 
between bronchial asthma (BA) and the biochemical markers. 

Next, we incorporated disease traits into the biochemical network as a hypothesis free 
search for relevant and conditionally associated disease-biochemical marker genetic 
overlap. First, we included T2D, which was genetically correlated with 14 of the 19 
biomarkers. However, application of GNA revealed that, after controlling for the other 
biomarkers, T2D was only associated with 6 biomarkers (Suppl. Table 8). In line with 
glycaemic dysregulation being the key pathological process of T2D, glycated haemoglobin 
(HbA1c; 𝑝𝑟%= 0.38, se = 0.033) and glucose (random blood sample, GLU; 𝑝𝑟%= 0.39, se = 
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0.042) still exhibited the strongest correlation estimates, followed by triglycerides (TG; 𝑝𝑟%= 
0.26, se = 0.040), low-density lipoprotein cholesterol (LDL; 𝑝𝑟%= -0.25, se = 0.041), C-
reactive protein (CRP; 𝑝𝑟%= 0.25, se = 0.040), and alanine transaminase (ALT; 𝑝𝑟%= 0.16, se 
= 0.036). We note that the preserved negative genetic correlation between LDL and T2D is 
of interest given the putative relationship between statin usage and increased risk of T2D32. 
Further, our data aligns with existing genetic evidence, such as the inverse relationship 
between the key LDL-associated gene PCSK9 with T2D relative to coronary artery disease 
that may arise due to the role of PCSK9 in pancreatic islets33,34, although further work is 
needed to fully understand the role of LDL in T2D pathogenesis.  

Second, we analysed cross-trait genetic relationships between the respiratory disorder 
asthma and the 19 biochemical measures in the same fashion, with asthma liability also 
genetically correlated with 14 of the 19 biomarkers. The network revealed that asthma was 
conditionally associated with just 2 biomarkers, including C-reactive protein (CRP, 𝑝𝑟%= 0.20, 
se = 0.027) and glycated haemoglobin (HbA1c, 𝑝𝑟%= 0.11, se = 0.024; Suppl. Table 9). The 
conditional positive correlation between asthma and CRP, which is used as an inflammatory 
biomarker, is biologically plausible, whilst potential shared biology with HbA1c may arise 
due to the impact of elevated blood glucose on lung function and the immune system35,36. 

Network GWAS in GNA 

Overview. A GWAS for any given trait reflects a mixture of the biological pathways that are 
most proximal to that trait, along with the pleiotropic pathways shared with genetic 
correlates. Methodologies that can separate out these trait-specific and pleiotropic pathways 
offer the opportunity to better characterize and understand emergent GWAS signal. To this 
end, GNA can incorporate individual genetic variants (SNPs) into the network to produce 
GWAS summary statistics that reflect the conditional associations between the SNP and 
each trait in the network. This can provide insight into the biological pathways that are unique 
to, or more strongly associated with, a given trait. In an empirical application using the same 
East Asian genetic ancestry summary statistics for T2D and related metabolic traits 
presented above we show how network GWAS can uncover primary disease pathways that 
are otherwise masked by overlapping signal with genetically correlated outcomes.  

Network GWAS reveals core Type 2 Diabetes disease pathways. We focus here on 
findings for T2D, but a list of significantly associated loci and corresponding Manhattan plots 
are provided for the other traits in the network in Suppl. Tables 10-15 and Suppl. Figures 
2-6. Fifty significant loci (p < 5 x 10-8) were conditionally associated with the unique genetic 
variance for T2D (Method for definition of locus). Figure 5 depicts a genetic variant 
(rs12507026) that was genome-wide significant for the univariate GWAS of BMI (p = 1.02 x 
10-19) and T2D (p = 1.72 x 10-8). Results from the network GWAS revealed this same variant 
was also associated with the genetic variance unique to BMI (p = 5.02 x 10-10) but was not 
conditionally associated with T2D (p = 0.83). This variant falls within the gene region for 
THAP12P9 and PRDX4P1 and has been previously linked to childhood obesity37 and BMI38 
in external European samples.  
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Figure 5: Network GWAS of type 2 diabetes and cardiometabolic traits.  
A) Associations between a genetic variant (rs12507026) and the included traits from univariate GWAS 
(marginal) and network GWAS (conditional). The width of the line indicates the effect size. While this variant 
initially had broad associations across traits only the conditional association with BMI remained significant in  
the network GWAS. B) Manhattan plot of conditional genetic associations for T2D from the network GWAS. 
Independent significant loci that were significant for both network GWAS and univariate GWAS results are 
depicted as purple diamonds, whereas loci that were only significant for univariate GWAS are shown as orange 
diamonds. The grey dashed line denotes the genome-wide significance threshold (p < 5e-8). The final two 
panels depict scatter plots of gene set enrichment results for C) gene sets from the Molecular Signatures 
Database and D) gene sets defined by Anatomical Therapeutic Chemical (ATC) codes, obtained when using 
the conditional T2D results from network GWAS (x-axis) and univariate GWAS (y-axis) as input. Grey dashed 
lines in both panels denote the p-value at which FDR < 0.05. Specific results depicted in green were significant 
using the network GWAS results whereas gene sets annotated in red reflect those that were significant only 
when using the univariate GWAS results.  

The signal captured by univariate GWAS and network GWAS results for T2D were 
characterized using gene set analyses (GSA) performed in MAGMA39. GSA results 
estimated using the univariate GWAS effects reflected extremely broad biological pathways 
(Suppl. Table 16), including the top result (negative regulation of biosynthetic processes, p 
= 3.93 x 10-12) for a gene set capturing biological processes that inhibit chemical reactions 
in the body. There were 16 novel gene sets that were identified using the network GWAS, 
but not univariate GWAS, results as input. Within these novel gene sets, the most significant 
reflected the biological processes that define T2D40, namely insulin secretion (p = 6.04 x 10-

6) and pancreatic β-cell pathways (p = 3.74 x 10-5; Suppl. Table 17). The third most 
significant novel gene set, glucagon like peptide 1 (GLP-1) pathways (p = 3.71 x 10-5), also 
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reflects the biology targeted by GLP-1 receptor agonists that have demonstrated clinical 
efficacy in T2D management41. Further, we performed GSA using gene sets defined by 
Anatomical Therapeutic Chemical (ATC) codes from DrugBank42. The conditional T2D 
GWAS effects were significantly enriched in three ATC code gene sets: A10BX (Other blood 
glucose lowering drugs, excl. insulins; p = 1.25 x 10-5), A10AE (Insulins and analogues for 
injection, long-acting; p = 9.06 x 10-5), and J01GB (Other aminoglycosides; p = 2.15 x 10-5). 
Notably, two of these codes indicate drugs that are currently used to treat diabetes. In 
contrast, the univariate T2D GWAS effects were not significantly enriched in any ATC code 
gene-set (Suppl. Table 18). This illustrates how the GNA framework can remove broadly 
pleiotropic signal with genetic correlates to produce conditional SNP-level associations that 
provide unique insight into disease specific biology. 

Network TWAS in GNA 

Overview. Gene expression data in disease relevant tissue types (e.g., specific brain 
regions) can be costly and difficult to obtain. TWAS circumvents these pragmatic barriers by 
imputing gene expression using genetic variants associated with expression and integrating 
their effect size with that of those same variants from GWAS summary statistics for a trait of 
interest. These functional weights are publicly available for most tissues and are calculated 
from secondary, reference datasets that include both genotypes and gene expression data. 
The network TWAS extension within GNA uses this TWAS output to incorporate imputed 
gene expression into the genomic network (Method; Online Supplement). As in other GNA 
applications, estimated edges between a gene and trait in the network reflect partial genetic 
associations controlling for genetic overlap with the other nodes in the network. These 
conditional associations capture the conditional effect of gene expression on each trait, 
thereby providing insight into trait-specific biology. We highlight the utility of network TWAS 
through application to a set of psychiatric disorders.  

Characterizing Disorder-specific Gene Expression across Psychiatric Disorders. 
Phenotypic comorbidity43 and genetic overlap44 are pervasive across psychiatric disorders, 
raising central questions about etiological divergence. We began by fitting a genome-wide 
network model to 7 well-powered psychiatric disorders (i.e., SNP-based heritability Z-
statistic > 10, which was deemed appropriate based on reported simulations above; Suppl. 
Table 19). These traits were schizophrenia (SCZ)45, bipolar disorder (BIP)46, major 
depressive disorder (MDD)47, autism spectrum disorder (ASD)48, cannabis use disorder 
(CUD)49, anorexia nervosa (AN)50, and attention-deficit hyperactivity disorder (ADHD)51. The 
network structure at the genome-wide level fit the data well (CFI = .99, SRMR = .03; Figure 
6; Suppl. Table 20). The strongest partial correlation in the broader network was observed 
between bipolar disorder and schizophrenia (prg = .60, SE = .03), with the next largest 
between ADHD and CUD (prg = .57, SE = .07), followed by a conditional association between 
two neurodevelopmental disorders (ADHD and ASD; prg = .46, SE = .07).  

Univariate imputed gene expression was calculated using the FUSION TWAS package52 in 
combination with functional weights from 14 public brain-tissue datasets from GTEx v853 
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and PsychENCODE54. These models of imputed gene expression (genetically predicted 
expression) for each psychiatric disorder was then added to the genomic network model to 
run the network TWAS, which estimated the association between each gene and the 
residual (disorder-specific) genetic variance for each psychiatric disorder not accounted for 
by the broader network (Figure 6A, Suppl. Tables 21-25 for full set of results across 
disorders).  

Firstly, we discuss the findings for SCZ. The network TWAS identified 279 genes whose 
imputed expression was significantly associated with the residual genetic variance in SCZ 
not shared with the other disorders in the genomic network (Figure 6B,C). We highlight how 
modelling these conditional associations with SCZ can refine known risk genes that may 
have a more specific relationship with SCZ liability, as opposed to more pleiotropic, 
transdiagnostic effects in psychiatry. To explore this, the univariate versus network TWAS 
results for the most confidently prioritised SCZ risk genes from the most recent psychiatric 
genomics consortium SCZ GWAS45 were extracted from our results (Figure 6D, Methods, N 
= 11 with TWAS data available). This revealed that two of these high-confidence SCZ risk 
genes (RERE and KANSL1, both involved in epigenetic regulation) remained conditionally 
associated with schizophrenia and are functionally interesting in the context of SCZ. For 
instance, RERE is a gene that is known to be involved in the regulation of the genomic 
actions retinoic acid via its canonical nuclear receptor repertoire55, with altered retinoic 
signalling previously been linked to SCZ through multiple-lines of evidence, including 
preliminary positive clinical trial outcomes, as reviewed previously56. Conversely, the 
remaining high-confidence genes were not significant upon performing the network 
modelling across the different psychiatric disorders, suggesting that they may have more 
pleiotropic, transdiagnostic relevance.  

Secondly, modelling conditional associations between genetically predicted expression and 
liability to each psychiatric disorder using this network approach also revealed several novel 
risk genes (FDR < 0.05) that did not survive multiple-testing correction in the univariate 
analyses (Figure 6C). We provide these novel signals uncovered as conditionally associated 
with each of the disorders as a resource to the literature to further characterise their 
biological significance, with two examples presented forthwith. In ADHD, the most 
conditionally significant novel finding was with genetically predicted expression of the gene 
IRAK2 (Z = -4.07, p = 4.66 x 10-5, PsychENCODE cortical panel), which is a kinase that is 
involved in signal transduction after the interleukin-1 receptor is stimulated57. IRAK2 was 
only nominally associated with ADHD in the univariate TWAS (p = 2.23 x 10-3), 
demonstrating how modelling conditional relationships between the psychiatric disorders 
can reveal novel insights. We were also able to uncover novel genes for CUD using this 
approach, which is one of the psychiatric disorders with less known risk genes to date. For 
example, the most significant novel conditionally significant gene associated with CUD was 
the gene that encodes Adipocyte Enhancer-Binding Protein 1 (AEBP1, Z = 3.60, p = 3.18 x 
10-4, q = 0.03, Basal ganglia panel), a gene known to be involved in processes including 
adipogenesis and pro-inflammatory signalling58. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.03.24318432doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318432
http://creativecommons.org/licenses/by-nc-nd/4.0/


14  GNA
   

   

 

 
Figure 6. Network TWAS of psychiatric disorders.  
A) The psychiatric network model incorporating gene expression effects for the gene VPS29, that was 
estimated to have directionally opposing (antagonistic) effects on schizophrenia and bipolar disorder in the 
network TWAS. B) Miami plot of network TWAS results for schizophrenia. The dotted horizontal lines depicts 
the threshold for significance (FDR < 0.05). C) Number of genes significantly associated (FDR < 0.05) with 
each disorder in the univariate TWAS (marginal genes); number of genes significantly associated (FDR < 0.05) 
with each disorder in the network TWAS (conditional genes); proportion of genes associated with each disorder 
in the univariate TWAS that remained significantly associated in the network TWAS; proportion of conditional 
genes that were novel relative to the marginal genes (i.e. genes associated with each disorder in the network 
TWAS that were not significantly associated in the univariate GWAS). D) univariate TWAS vs. network TWAS 
results for 11 high confidence genes prioritised for schizophrenia. E) Schizophrenia vs. bipolar disorder 
conditional associations for genes that were associated with both disorders in univariate TWAS. AN: anorexia 
nervosa; BIP: bipolar disorder; MDD: major depressive disorder; CUD: cannabis use disorder; ADHD: 
attention-deficit/hyperactivity disorder. 
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Finally, we highlight how genes for which genetically predicted expression was associated 
with multiple disorders, but with opposite directions of effect, can be recovered by our 
network approach (Figure 6A, 6E). Upon comparing the conditionally significant signals 
uncovered for SCZ and BIP, respectively, we found genes like VPS29 as strong conditional 
signals for both disorders but with discordant direction of effect. For example, increased 
genetically predicted expression of VPS29 in the anterior cingulate cortex was associated 
with increased odds of SCZ (p = 6.22 x 10-8, q = 3.23 x 10-5), whilst increased genetically 
predicted expression in that same brain region was found to be protective for BIP (p = 1.94 
x 10-7, q = 8.67 x 10-5). Given that the VPS29 is a purported to have important neuronal 
functionality59, further mechanistic dissection of its differential relationship with two disorders 
is warranted in light of their considerable overlap in clinical features and genetic architecture. 
However, we do emphasise that further finemapping of this region would be needed to 
confirm that the same underlying causal variants contribute to both SCZ and BIP in the 
VPS29 region. In summary, our application of genetically predicted expression to a sparse, 
cross-disorder psychiatric network both refined more specific association signals, as well as 
uncovering novel putative risk genes. 

Discussion 
Here we introduce Genomic Network Analysis (GNA), an analytic tool that applies the 
principles of network analysis to model the conditional genetic associations across 
multivariate systems of traits. GNA can take an otherwise dense structure of genetic 
correlations and deconvolve it to a sparse genomic network that retains the most crucial 
components. The sparse network can be further characterized using centrality metrics, 
clustering coefficients, global metrics, and graphing options made available through the 
open-source GNA R package. Our empirical results demonstrate how tangible insights into 
the most critical items in a network of neuroticism and relevant associations between 
biomarkers and clinical outcomes can be gained though its application. As GNA takes GWAS 
summary statistics as input, it can also move beyond phenotypic approaches to incorporate 
rare or even mutually exclusive traits with varying and unknown levels of participant sample 
overlap within the same statistical model.  

GNA additionally offers the ability to incorporate other biological units of analysis into the 
genomic network. Via an empirical application to seven psychiatric disorders, we show how 
GNA can be used to identify patterns of gene expression that biologically differentiate the 
traits in the network. At the level of individual genetic variants, we apply GNA to pinpoint 
SNPs that have conditionally significant associations with T2D and its clinical correlates. 
Follow-up analyses revealed that standard univariate GWAS captured broad biological 
pathways (e.g., downward regulation of chemical reactions). This was compared to network 
GWAS results that identified novel biological pathways relevant to the clinically defining 
features (i.e., insulin secretion; pancreatic β-cells), treatment targets (e.g., GLP-1 pathways) 
and existing interventions (e.g., glucose-lowering drugs) for T2D. This demonstrates how 
GNA can refine genetic signal to pull out core trait biology that is otherwise masked by the 
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broadly pleiotropic pathways captured by traditional univariate GWAS. While the biology for 
T2D is well-defined, future applications of GNA stand to provide valuable insights into the 
fundamental biological processes that delineate disease states with currently ambiguous 
etiologies. 

GNA has unique advantages relative to existing approaches. Network analysis is often 
juxtaposed with factor analysis, a multivariate approach used to model shared architecture 
via latent factors, which can be implemented for GWAS data using Genomic SEM9. Relative 
to factor models, networks do not require an a priori specification of structure and are 
uniquely identified2. In addition, while factor models are well-suited for identifying shared risk 
pathways, GNA reflects a useful tool for identifying unique signal via its estimation of 
conditional genetic associations. Among existing approaches that are focused on trait-
specific signal (e.g. mtCOJO60, GWAS-by-subtraction61, LAVA62), GNA stands apart from 
these methods with respect to its ability to examine networks, and trait-specific signal 
therein, in an integrated framework that can incorporate multiple levels of biological analysis. 
Even with these distinctions, multiple methods in human complex trait genomics designed 
to assess trait-specific genetic pathways carries the advantage of being able to produce 
particularly robust lines of evidence via triangulation across methods5.  

The GNA framework has several limitations. As the estimates from LDSC are used as input 
to the genomic network, any biases from LDSC will transfer over to GNA. In particular, we 
highlight recent work showing that cross-trait assortative mating (xAM) can bias estimates 
of genetic overlap from GWAS data63, though also note that many genetic correlations are 
sizeable enough that xAM is highly unlikely to be the sole driver of these estimates and 
phenotypes like biochemical traits with simpler genetic architectures are less likely to be 
impacted by upward bias due to xAM64. Recent whole-genome sequencing efforts indicate 
rare variants harbor a substantial proportion of trait heritability65. As the current GNA 
framework is limited to common genetic variants, results should be interpreted as capturing 
this specific component of the genetic signal. An exciting avenue for future methods 
development reflects extending recent work detailing genetic correlations estimated from 
rare variants66 to multivariate frameworks like GNA. We note that when the traits in the 
network are theorized to have causal links that the GNA network GWAS framework could 
be applied in future work as a multivariate tool for identifying genetic instruments for 
Mendelian randomization analyses. This is because SNPs that are initially associated with 
multiple traits, but are only conditionally associated with a primary trait in the network, satisfy 
the exclusion restriction assumption67 and are in line with a model of vertical pleiotropy 
where the SNP only affects the secondary traits via its association with the primary trait.  

A standard GWAS will capture a mixture of biological pathways that are more directly 
associated with the phenotype along with pleiotropic pathways shared with genetic 
correlates. This is evident in the fact that the vast majority of associated genetic variants are 
likely pleiotropic2 and sizeable genetic correlations are observed across even disparate 
phenotypes8. Here we validate and empirically apply GNA, a multivariate genomic 
framework that uses the principles of network analysis to parse these shared and trait-
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specific pathways. GNA can thereby produce more detailed etiological models by identifying 
and characterizing the biological boundaries that genetically distinguish correlated 
outcomes at the genome-wide, gene expression, and genetic variant level of analysis. 
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Methods 

Gaussian graphical model 

A network represents a system of conditionally independent relationships (edges) between 
a set of variables (nodes). In the case of a Gaussian graphical model (GGM)7, the degree 
of conditional independence between two variables is represented by partial correlation 
coefficients – the correlation between two variables that results after partialling out all other 
variables in the network. The partial correlations between a set of variables Y are computed 
by standardising elements of the inverse of the variance-covariance matrix Σ:   

𝜌&'.)*{&,'} = − .%&
/.%%.&&

,          (1) 

where 𝜅 is an element of the precision matrix, 𝛫 =	Σ*0, and 𝑌 − {𝑖, 𝑗} denotes the set of 
variables excluding variable i and j. These partial correlation coefficients are directly used to 
represent edge weights in the network; if the partial correlation coefficient between two 
variables is zero, there is conditional independence and hence no edge in the network.  

The model-implied variance-covariance matrix 𝚺2 of a GGM can be formed as: 

Σ3 = ∆(𝐼. − Ω)*0∆,          (2) 

where Ω is a symmetric weight matrix with zeros on the diagonal and off-diagonal element 
𝜔&' represents the edge weight between node i and node j, ∆ is a diagonal scaling matrix 
which is a function of the diagonal of the precision matrix (𝛫), 𝛿&& = 𝑘&&*1.2, and 𝐼. is an identity 
matrix of size k68. Given that sample partial correlations will almost never be exactly zero 
even when the population partial correlation is zero, the partial correlation matrix represents 
a fully connected network, where all nodes are connected to all other nodes (i.e. the model 
is saturated; Σ3 = Σ). A sparse network can be obtained by constraining some elements of Ω 
to be zero (i.e. assuming that the two nodes are conditionally independent given all other 
nodes in the network). 

Network model estimation 

GNA takes an empirical genetic variance-covariance matrix (S) and its associated sampling 
covariance matrix (Vs; obtained from multivariable LDSC8,9) to estimate a GGM. The S 
matrix reflects the SNP-based heritabilities (ℎ!"#$ ) on the diagonal and genetic covariances 
on the off-diagonal (genetic correlations [rg] in the standardized case). The Vs matrix has as 
many columns as there are unique elements in the S matrix and is estimated directly from 
the GWAS data using a block jackknife resampling procedure. The diagonal of V contains 
the sampling variances (the squared standard errors [SEs]) for each of the estimates 
populating the S matrix, which allow for GWAS with varying precision to be included in the 
same model. The off-diagonal contains sampling dependencies, which allow for GWAS with 
varying and unknown levels of participant sample overlap to be appropriately modelled. GNA 
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uses the psychonetrics R package for specification of the GGM and numerical 
optimization69.  

Network parameters are obtained in GNA using a maximum likelihood (ML) estimator, which 
minimises the following fit function: 

𝐹34(θ) = logAΣ3A − log|𝑆| + trG𝑆Σ3*0H − k       (3) 

To obtain accurate SEs of model parameters we apply a sandwich correction to the sampling 
covariance matrix: 

𝑉5 = (Π2′𝑊*0Π2)*0	Π2′𝑊*0V6𝑊*0Π2	(Π2′𝑊*0Π2)*0      (4) 

Where Π2 is the Jacobian matrix of model derivatives evaluated at the parameter estimates, 
𝑊 = 0.5𝐷.′(Σ3*0⨂Σ3*0)𝐷., and 𝑉7 is the sampling covariance matrix of Σ obtained using 
multivariable LDSC. Specifically, Π2 = [𝑑Σ8				𝑑Σ∆], where 𝑑Σ8 and 𝑑Σ∆ are the derivatives of 
Σ with respect to Ω and ∆, respectively: 

𝑑Σ8 = 𝐿	(∆(𝐼 − Ω)*0	⨂	∆(𝐼 − Ω)*0)	𝐷∗       (5) 

𝑑Σ∆ = 𝐿	((∆(𝐼 − Ω)*0	⨂	𝐼) + (𝐼	⨂	∆(𝐼 − Ω)*0))	𝐴      (6) 

where L is an elimination matrix, I is an identity matrix, D* is a duplication matrix, and A is a 
diagonalisation matrix.  

Edge selection 

A key benefit of network analysis is the ability to take a complex web of relationships and 
distil it down to a more tractable, sparse network. This can be achieved in GNA by pruning 
non-significant edges at some significance threshold. The default behaviour in the GNA R 
package is for this edge pruning to occur via an iterative process. This process begins with 
estimating the full network of partial genetic correlations, followed by pruning out all non-
significant edges, re-estimating the network with those non-significant edges fixed to 0 (i.e., 
specified to be conditionally independent), and repeating this network estimation process 
until only significant edges remain. An alternative to pruning on significance described in the 
phenotypic network literature is to control the network sparsity using some form of 
regularisation technique (e.g., a graphical lasso [glasso]70). We do not employ this approach 
for several reasons. First, regularisation methods rely on a single participant sample size. 
As one of the benefits of GNA reflects the ability to incorporate GWAS of varying size there 
is not a single sample size that can be used to describe the genomic network. Second, 
simulation studies have shown that glasso regularization produces more estimation errors 
at larger sample sizes71. As GWAS datasets are by necessity much larger than typical 
phenotypic data, this suggests that regularization techniques may not be well suited for 
these kinds of genomic dataset. In addition, regularization approaches assume minimal true 
connections in the population (i.e., a highly sparse population generating network)72. Given 
pervasive documented pleiotropy, this assumption is arguably unrealistic for genomic 
networks that may often have dense structures. Finally, our simulations described in detail 
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below demonstrate that this iterative process of pruning on significance (p < .05 after 
applying an FDR multiple testing correction) closely recaptures population estimates at 
sample sizes typical of modern day GWAS. 

Validation via simulation  

We conducted a set of realistic simulations to evaluate the performance of GNA, varying 
trait sample size (N = {25k, 50k, 100k, 200k, 400k}), SNP-based heritability (hsq = {0.05, 
0.075, 0.10, 0.15, 0.20 ,0.30}), and the number of traits in the network (K = {5, 10, 15, 20}). 
Each condition was repeated 100 times, such that the total number of simulation runs was 
12000. 

First, we generated random population networks with K traits, edge density of 0.4 and 
proportion of positive edges of 0.8, using the genGGM function in the bootnet R package. 
We used the GWASBrewer73 package to simulate GWAS summary statistics for sets of K 
traits with a given N and ℎ!"#$ , and genetically correlated as implied by the population 
network structure. Summary statistics were simulated for ~1.1 million hapmap3 SNPs, with 
a realistic LD structure based on LD matrices calculated from 50000 random White British 
UK Biobank participants. The proportion of causal variants was set to 1%. 

Multivariable LD score regression (Genomic SEM package) was run on each set of K traits 
to estimate the genetic covariance matrix and its associated sampling covariance matrix for 
each run. This is unique from standard bivariate LDSC in that it produces the noted sampling 
covariance matrix. GNA requires a positive definite genetic covariance matrix. Out of the 
12000 simulation runs, 1206 produced non-positive definite covariance matrices. These 
were exclusively for low powered conditions (N <= 50k and hsq <= 0.1). Conditions with less 
than 70% non-positive definite runs were excluded. The genomic networks were estimated 
with GNA for each run with edges pruned recursively based on FDR.  

Analysing the structure of networks 

Local network structure. Once a network has been estimated it can be further 
characterized using different metrics that characterize the relative importance of individual 
nodes within the network. These fall into two main categories of centrality metrics and 
clustering coefficients. Centrality metrics take various approaches to quantifying how central 
a node is in the network. We specifically report and describe expected influence in the main 
text as it may be preferred to other measures of centrality74 (see Online Supplement for 
description of additional measures). Expected influence quantifies the degree to which a 
node is directly connected to other nodes by taking the sum of the edge weights connected 
to that focal node. Unlike different centrality metrics that are designed to assess the node’s 
position in the network with distinct analytic approaches, clustering coefficients generally 
reflect different formulations designed to evaluate the same question of how redundant a 
node is in the network. This is achieved by calculating the degree to which the secondary 
nodes a focal node is connected to are themselves connected. A node with a high clustering 
coefficient thereby reflects one whose neighbours are often directly connected to one 
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another. We specifically utilize a version of the Zhang clustering coefficient24 that takes into 
account the size and sign of the edges among neighbours75 and has been shown to have 
higher stability relative to alternative clustering coefficients76.  

Centrality metrics and clustering coefficients can be computed on unstandardized or 
standardized scales. Standardized values are computed using a Z-score metric that is 
scaled relative to the mean and standard deviation for a given metric or coefficient across 
nodes. Values above 0 on a standardized scale thereby reflect nodes that, on average, have 
a higher value relative to other nodes in the network. Standardization thereby facilitates 
ranking and comparing nodes within the network. For this reason, the GNA package and the 
results presented in the main text follow the default behaviour for phenotypic network 
packages (e.g., qgraph77) to report values on a standardized scale (Suppl. Table 5 for 
unstandardized results).  

Global network structure. Insight can also be gained by analysing the properties of the 
overall network. The GNA R package provides three metrics to assess global network 
structure: 1) The global clustering coefficient (also known as transitivity) measures the 
overall probability for the network to have adjacent nodes interconnected28. It is closely 
related to the local clustering coefficient, but captures the degree of clustering across the 
entire network rather than for individual nodes. Networks with a high clustering coefficient 
are characteristic of random-type networks. 2) Average path length describes the average 
distance between nodes in the network, and is calculated as the mean of the lengths of the 
shortest paths between all pairs of nodes29. Networks with small average path lengths are 
characteristic of lattice-type networks. 3) The small-worldness index measures the degree 
to which the network possesses small-world properties31. Small-world networks are 
distinguished from random networks or lattice networks, in that they are defined as 
possessing both a high clustering coefficient and a short average path length. In GNA, we 
implement the small-world index proposed by Telesford and colleagues30, which measures 
small-worldness by comparing the clustering coefficient of the network, C, to that of an 
equivalent lattice network, Clattice, and comparing average path length, L, to that of an 
equivalent random network, Lrandom: small-worldness = (Lrandom / L) – (C / Clattice). Clattice and 
Lrandom are estimated as the mean value across 1000 simulated networks (with the same 
number of nodes and edges) fixed to a lattice or random structure, respectively. Values close 
to 0 suggest a small-world structure (L » Lrand and C » Clatt), positives values indicate the 
network possesses more random properties (L » Lrand, and C ≪	Clatt), and negative values 
indicating more lattice network properties (L ≫	Lrand, and C » Clatt). We note that many 
network indices exist beyond those described above78; the output from GNA can easily be 
used to compute these with external packages. 

Network GWAS and TWAS 

Network TWAS in GNA utilizes the covariance between imputed gene expression and each 
included trait. These gene expression-trait covariances reflect a rescaling of the Z-statistics 
obtained from standard univariate TWAS (e.g., those obtained from the FUSION TWAS 
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software). For each individual gene with imputed expression, these rescaled estimates are 
used to expand the LDSC genetic covariance matrix to include the gene expression-trait 
covariances. This expanded matrix, which now includes both the gene expression-trait 
covariance and the trait-trait genetic covariances, is input to GNA. Additionally, the LDSC 
estimated sampling covariance matrix is expanded to include the sampling covariances 
among the TWAS estimates. GNA iteratively estimates a separate genomic network model 
for each gene to obtain the conditional genetic associations between the gene and the traits 
in the network.  

In the case of a network GWAS, the LDSC estimated genetic covariance matrix is instead 
expanded to incorporate the covariance between the individual genetic variants and the 
included traits. These SNP-trait covariances reflect a rescaling of the standard univariate 
GWAS results. The LDSC sampling covariance matrix is expanded to incorporate the 
sampling covariances across the SNP-level GWAS estimates and these expanded matrices 
are used to then iteratively estimate the conditional genetic association between each SNP 
and the traits in the genomic network. The Online Supplement provides additional details 
about the rescaling and expansion of the genetic covariance and sampling covariance 
matrices needed to conduct network GWAS or TWAS. We highlight here that this rescaling 
is automated by existing software9 and the expansion of LDSC matrices is performed by the 
GNA R package.  

An optional Ω matrix can be provided to GNA to estimate a sparse network that constrains 
edges between traits to be 0. This denotes that the two traits are conditionally independent 
of one another within the network. Which values to fix to 0 is determined by estimating the 
genome-wide network (i.e., not including imputed gene expression or SNP-level 
associations) using the default process in GNA of recursively pruning nonsignificant edges 
to obtain the sparse network. When using an Ω matrix, associations with gene expression 
or SNPs are conditional only on the included edges in the trait-trait portion of the genomic 
network. Taken to the extreme, if there is a singular trait with no estimated edges with other 
traits, then the function will reproduce the univariate TWAS or GWAS estimates for that trait. 
The advantage of using the Ω matrix is that conditional associations are not influenced by 
underpowered estimates that may increase the ratio of bias to precision. This recursively 
pruned Ω matrix was used for the empirical examples for psychiatric (TWAS) and 
metabolic/T2D (GWAS) traits.  

Empirical applications  

Genome-wide. Prior to running GNA, all GWAS summary statistics were aligned to the same 
reference allele and restricted to SNPs with minor allele frequency > 1% and imputation 
score > 0.9 when this information was available. In addition, SNPs were restricted to 
HapMap3 SNPs as these tend to be well-imputed in GWAS samples and reference panel 
LD-scores within this subset of SNPs have been shown to produce accurate estimates of 
SNP-based heritability in external samples79. Separate LD-scores for European and East 
Asian genetic ancestry calculated from the 1000 Genomes Phase 3 reference data were 
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used for LDSC estimation with GWAS of the corresponding genetic ancestry group. These 
LD-scores excluded the MHC region due to complex patterns of LD that can unduly bias 
estimates.  

Network TWAS. For our empirical TWAS application to psychiatric disorders, univariate 
TWAS was run in FUSION using functional weights for the prefrontal cortex data from 
PsychENCODE54 and 13 brain tissue types from the Genotype-Tissue Expression project 
(GTEx v8)53. We utilized the quality control (QC) defaults in FUSION to restrict results to 
genes whose expression was imputed with an estimated accuracy of R2 > 0.7 and removed 
any genes for which > 50% of the SNPs with functional weights were missing. When 
restricting down to genes that passed these QC thresholds across all seven psychiatric 
disorders, this yielded 65,312 tissue-specific gene expression estimates for 17,297 unique 
transcripts. This data was then used as input to GNA to incorporate gene expression effects 
into the psychiatric network. Hits were defined as FDR < 0.05. FDR multiple testing 
correction was applied (using the p.adjust R package) to all p-values across both univariate 
and network TWAS, to ensure the FDR is controlled analysis-wide. This also carries the 
advantage of facilitating comparisons between disorders and between univariate and 
network findings, by ensuring the same significance threshold is used throughout (which 
would not be the case if the correction was applied per disorder). We considered the 
conditional association for SCZ of 12 highly-confident risk genes prioritised by the 
psychiatric genomics consortium in the latest SCZ GWAS, as described extensively 
elsewhere45.  Briefly, these were genes supported by at least two of the following lines of 
evidence: i) single genes annotated to the credible set probabilistic finemapping, ii) genes 
strongly supported by eQTL-based Mendelian randomisation and its integration with 
chromatin conformation analysis (Hi-C) of adult or fetal brain, and iii) genes implicated by 
rare coding variants in schizophrenia, ASD or developmental disorders. We note that two of 
the high-confidence genes (ZNF823 and SLC39A8) were not significantly associated with 
SCZ even in the univariate TWAS, which suggests that these risk loci are involved in SCZ 
through mechanisms not directly linked to mRNA expression in the bulk-tissues tested (e.g., 
a missense variant is the most confidently fine mapped variant in the SLC39A8 locus45,80). 

Network GWAS. The empirical network GWAS application to metabolic traits restricted the 
GWAS summary statistics to genetic variants with an INFO > 0.6 when this information was 
available. This resulted in a list of 5,753,287 SNPs that were present across the included 
traits. Independent loci were identified using the clumping and pruning algorithm in FUMA81. 
Significance was set at the genome-wide threshold of p < 5 x 10-8 and independent hits were 
defined as those that were not within 250 kb of one another and had an r2 < 0.1, where LD 
was defined using the 1000 Genomes East Asian Phase 3 reference sample. This same 
reference panel was utilized for follow-up gene set analyses (GSA) implemented with the 
default parameters in MAGMA39 that were provided either univariate GWAS or network 
GWAS associations with T2D as input. GSA were conducted using two different resources: 
1) 17,009 gene sets and go terms defined using the Molecular Signatures Database 
(MSigDB)82, and 2) 548 gene sets defined by Anatomical Therapeutic Chemical (ATC) 
codes, which included all level 2, level 3 and level 4 codes for all annotated medicinal 
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substances in DrugBank42. Significance for GSA results was defined at FDR < 0.05 at an 
FDR multiple testing correction threshold obtained from a single set of p-values across 
results obtained from univariate GWAS and network GWAS. 

Guidelines when applying GNA 

Selecting GWAS Traits. At a minimum, we recommend only including traits with ℎ!"#$  Z-
statistic > 7 to ensure accuracy of the estimated network. This is consistent with existing 
recommendations for other genomic approaches utilizing LDSC data83 and with the 
indicated cut-off from our simulations for a network of five traits. If estimating a network with 
many traits, we recommend using our simulations as a guide for the power requirements of 
traits. Additionally, for traits with genetic correlations that are > 0.9 should be excluded to 
avoid issues with multicollinearity.  

Evaluating the network. Provided model fit indices give an indication of how well a genomic 
network that is pruned on significance does of describing the data. Consistent with the field 
standards, we recommend a comparative fix index (CFI)10 > 0.9 and a standardized root 
mean square residual (SRMR)11 < 0.1. All empirical examples follow our recommended 
guidelines for trait selection and reported networks far exceed these model fit thresholds.  

Run Times. Our empirical applications of trait networks (e.g., Figures 2-4) each took less 
than a minute to on a personal computer. The GNA package functions for running a network 
GWAS or network TWAS contain arguments that allow these processes to be run in parallel 
across multiple computing cores. For most applications, a network TWAS can still be run on 
a personal computer; our empirical application to seven psychiatric disorders and 65,312 
imputed gene expression levels took 28.1 minutes when run in parallel on a personal 
computer with 8 cores. For network GWAS applications, and similar to traditional GWAS, it 
will be pragmatic to perform analyses on a computing cluster environment. The conditional 
associations estimated for the genes and genetic variants in GNA are all independent of one 
another, which further allows for splitting analyses across multiple jobs without affecting 
results. Our empirical network GWAS application to six traits (T2D and cardiometabolic 
traits) for 5,753,287 SNPs was split across 10 jobs on computing nodes with 36 cores each, 
wherein each job finished in an average of 38.6 minutes. Collectively, these run times 
indicate that GNA analyses are computationally efficient and can be expediently completed 
on a personal computer for trait network and network TWAS applications and on a 
computing cluster for network GWAS applications.  
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