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Abstract

In a number of estimation problems in bioinformatics, accuracy measures of the target problem are usually given, and it is
important to design estimators that are suitable to those accuracy measures. However, there is often a discrepancy between
an employed estimator and a given accuracy measure of the problem. In this study, we introduce a general class of efficient
estimators for estimation problems on high-dimensional binary spaces, which represent many fundamental problems in
bioinformatics. Theoretical analysis reveals that the proposed estimators generally fit with commonly-used accuracy
measures (e.g. sensitivity, PPV, MCC and F-score) as well as it can be computed efficiently in many cases, and cover a wide
range of problems in bioinformatics from the viewpoint of the principle of maximum expected accuracy (MEA). It is also
shown that some important algorithms in bioinformatics can be interpreted in a unified manner. Not only the concept
presented in this paper gives a useful framework to design MEA-based estimators but also it is highly extendable and sheds
new light on many problems in bioinformatics.
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Introduction

In estimation problems in bioinformatics, the space of solutions

is generally large and often high-dimensional. Among them, a

number of fundamental problems in bioinformatics, such as

alignment of biological sequences, prediction of secondary

structures of RNA sequences, prediction of biological networks,

and estimation of phylogenetic trees, are classified into estimation

problems whose solutions are in a high-dimensional binary space.

Such problems are generally difficult to solve, and the estimates

are often unreliable.

The popular solutions for these problems, such as for the

secondary structure of RNA with minimum free energy, are the

maximum likelihood (ML) estimators. The ML estimator maxi-

mizes the probability that the estimator is exactly correct, but that

probability is generally very small. Noticing the drawbacks of the

ML estimators, Carvalho and Lawrence have proposed the centroid

estimator, which represents an ensemble of all the possible solutions

and minimizes the expected Hamming loss of the prediction [1].

In this paper, we conduct a theoretical analysis of estimation

problems in high-dimensional binary space, and present examples

and solutions in bioinformatics. The theories in this paper provide

a unified framework for designing superior estimators for

estimation problems in bioinformatics. The estimators discussed

in this paper, including the ML estimator and the centroid

estimator, are formalized as maximum expected gain (MEG)

estimators, which maximize the estimator-specific gain functions

with respect to the given probability distribution. The objective of

the estimation is not always to find the exact solution with an

extremely small probability or to find the solution with the

minimum Hamming loss, but rather to find the most accurate

estimator. Therefore, we adopt the principle of maximum

expected accuracy (MEA), which has been successfully applied

to various problems in bioinformatics, such as the alignment of

biological sequences [2–4], the secondary structure prediction of

RNA [5–8] and other applications [9–11].

Theoretical analysis, however, shows that those MEA estimators

are not always robust with respect to accuracy measures. To

address this, we previously proposed the c-centroid estimator in a

few specific problems [4,12]. In this paper, in order to make the c-

centroid estimator easily applicable to other estimation problems,

we introduce an abstract form of the c-centroid estimator, which is

defined on general binary spaces and designed to fit to the

commonly used accuracy measures. The c-centroid estimator is a

generalization of the centroid estimator, and offers a more robust

framework for estimators than the previous estimators. We extend

the theory of maximum expected gain (MEG) estimators and c-

centroid estimators for two advanced problems: the estimators that

represent the common solutions for multiple entries, and the

estimators for marginalized probability distributions.

Materials and Methods

Problem 1 (Pairwise alignment of two biological
sequences) Given a pair of biological (DNA, RNA, protein) sequences

x and x’, predict their alignment as a point in A(x,x’), the space of all the

possible alignments of x and x’.
Problem 2 (Prediction of secondary structures of RNA

sequences) Given an RNA sequence x, predict its secondary structure as a

point in S(x), the space of all the possible secondary structures of x.
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A point in A(x,x’), can be represented as a binary vector of

DxDDx’D dimensions by denoting the aligned bases across the two

sequences as ‘‘1’’ and the remaining pairs of bases as ‘‘0’’. A point

in S(x) can also be represented as a binary vector of DxD(DxD{1)=2
dimensions, which represent all the pairs of the base positions in x,

by denoting the base pairs in the secondary structures as ‘‘1’’.

In each problem, the predictive space (A(x,x’) or S(x)) is a subset

of a binary space (f0,1gDxDDx’D
or f0,1gDxD(DxD{1)=2

) because the

combinations of aligned bases or base pairs are restricted (see

‘‘Discrete (binary) spaces in bioinformatics’’ in Appendices for

more formal definitions). Therefore, Problem 1 and Problem 2 are

special cases of the following more general problem:

Problem 3 (Estimation problem on a binary space)
Given a data set D and a predictive space Y (a set of all candidates of a

prediction), which is a subset of n-dimensional binary vectors f0,1gn
, that is,

Y5f0,1gn
, predict a point y in the predictive space Y .

Not only Problem 1 and Problem 2 but also a number of other

problems in bioinformatics are formulated as Problem 3, including

the prediction of biological networks and the estimation of

phylogenetic trees (Problem 4).

To discuss the stochastic character of the estimators, the

following assumption is introduced.

Assumption 1 (Existence of probability distribution) In

Problem 3, there exists a probability distribution p(yDD) on the predictive

space Y .

For Problem 3 with Assumption 1, we have the following

Bayesian maximum likelihood (ML) estimator.

Definition 1 (Bayesian ML estimator [1]) For Problem 3

with Assumption 1, the estimator

ŷy(ML)~ argmax
y [ Y

p(yDD),

which maximizes the Bayesian posterior probability p(yDD), is referred to as a

Bayesian maximum likelihood (ML) estimator.

For problems classified as Problem 3, Bayesian ML estimators

have dominated the field of estimators in bioinformatics for years.

The classical solutions of Problem 1 and Problem 2 are regarded

as Bayesian ML estimators with specific probability distributions,

as seen in the following examples.

Example 1 (Pairwise alignment with maximum score)
In Problem 1 with a scoring model (e.g., gap costs and a substitution matrix),

the distribution p(yDD) in Assumption 1 is derived from the Miyazawa

model [13] (See ‘‘Probability distributions p(a)(hDx,x’) on A(x,x’)’’ in

Appendices), and the Bayesian ML estimator is equivalent to the alignment that

has the highest similarity score.

Example 2 (RNA structure with minimum free energy)
In Problem 2 with a McCaskill energy model [14], the distribution p(yDD)
in Assumption 1 can be obtained with the aid of thermodynamics (See

‘‘Probability distributions p(s)(hDx) on S(x)’’ in Appendices for details), and

the Bayesian ML estimator is equivalent to the secondary structure that has the

minimum free energy (MFE).

When a stochastic model such as a pair hidden Markov model

(pair HMM) in Problem 1 or a stochastic context-free grammar

(SCFG) in Problem 2 is assumed in such problems, the distribution

and the ML estimator are derived in a more direct manner.

The Bayesian ML estimator regards the solution which has the

highest probability as the most likely one. To provide more general

criteria for good estimators, here we define the gain function that

gives the gain for the prediction, and the maximum expected gain

(MEG) estimator that maximizes the expected gain.

Definition 2 (Gain function) In Problem 3, for a point h [ Y
and its prediction y [ Y , a gain function is defined as G : Y|Y?Rz,

G(h,y).

Definition 3 (MEG estimator) In Problem 3 with Assumption 1,

the maximum expected gain (MEG) estimator is defined as

ŷy(MEG)~ argmax
y [ Y

ð
G(h,y)p(hDD)dh:

If the gain function is designed according to the accuracy measures

of the target problem, the MEG estimator is considered as the

maximum expected accuracy (MEA) estimator, which has been

successfully applied in bioinformatics (e.g., [9]).Although in

estimation theory a loss function that should be minimized is often

used, in order to facilitate the understanding of the relationship

with the MEA, in this paper, we use a gain function that should be

maximized.

The MEG estimator for the gain function d(y,h) is the ML

estimator. Although this means that the ML estimator maximizes

the probability that the estimator is identical to the true value,

there is an extensive collection of suboptimal solutions and the

probability of the ML estimator is extremely small in cases where n
in Problem 3 is large. Against this background, Carvalho and

Lawrence proposed the centroid estimator, which takes into account

the overall ensemble of solutions [1]. The centroid estimator can

be defined as an MEG estimator for a pointwise gain function as

follows:

Definition 4 (Pointwise gain function) In Problem 3, for a

point h [ Y and its prediction y~fyign
i~1 [ Y , a gain function G(h,y)

written as

G(h,y)~
Xn

i~1

Fi(h,yi), ð1Þ

where Fi : Y|f0,1g?Rz (i~1,2, . . . ,n), is referred to as a pointwise

gain function.

Definition 5 (Centroid estimator [1]) In Problem 3 with

Assumption 1, a centroid estimator is defined as an MEG estimator for the

pointwise gain function given in Eq. (1) by defining Fi(h,yi)~
I(hi~1)I(yi~1)zI(hi~0)I(yi~0).

Throughout this paper, I(:) is the indicator function that takes a

value of 1 or 0 depending on whether the condition constituting its

argument is true or false. The centroid estimator is equivalent to

the expected Hamming loss minimizer [1]. If we can maximize the

pointwise gain function independently in each dimension, we can

obtain the following consensus estimator, which can be easily

computed.

Definition 6 (Consensus estimator [1]) In Problem 3 with

Assumption 1, the consensus estimator ŷy(c)~fŷy(c)
i g

n
i~1 for a pointwise

gain function is defined as

ŷy
(c)
i ~ argmax

yi [ f0,1g
EhDD Fi(h,yi)½ �~ argmax

yi [ f0,1g

ð
Fi(h,yi)p(hDD)dh:

The consensus estimator is generally not contained within the

predictive space Y since the predictive space Y usually has

complex constraints for each dimension (see ‘‘Discrete (binary)

spaces in bioinformatics’’ in Appendices). Carvalho and Lawrence

proved a sufficient condition for the centroid estimator to contain

the consensus estimator (Theorem 2 in [1]). Here, we present a

more general result, namely, a sufficient condition for the MEG

estimator for a pointwise function to contain the consensus

estimator.

Generalized Centroid Estimators in Bioinformatics
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Theorem 1 In Problem 3 with Assumption 1 and a pointwise gain

function, let us suppose that a predictive space Y can be written as

Y~
\K
k~1

Ck, ð2Þ

where Ck is defined as

Ck~fy [ f0,1gnD
X
i [ Ik

yiƒ1g for k~1,2, . . . ,K

for an index-set Ik5f1,2, . . . ,ng. If the pointwise gain function in Eq. (1)

satisfies the condition

Fi(h,1){Fi(h,0)zFj(h,1){Fj(h,0)ƒ0 ð3Þ

for every h [ Y and every i,j [ Ik (1ƒkƒK), then the consensus estimator

is in the predictive space Y , and hence the MEG estimator contains the

consensus estimator.

The above conditions are frequently satisfied in bioinformatics

problems (see Appendices for examples).

Results

c-centroid estimator: generalized centroid estimator
In Problem 3, the ‘‘1’’s and the ‘‘0’’s in the binary vector of a

prediction y can be interpreted as positive and negative

predictions, respectively. The respective numbers of true positives

(TP), true negatives (TN), false positives (FP) and false negatives

(FN) for a point h and its prediction y are denoted by TP (h,y),
TN (h,y), FP(h,y) and FN (h,y), respectively (See also Eqs (15)–

(18)).

To design a superior MEG estimator, it is natural to use a gain

function of the following form, which yields positive scores for the

number of true predictions (TP and TN) and negative scores for

those of false predictions (FP and FN):

G(h,y)~a1TP(h,y)za2TN(h,y){a3FP(h,y){a4FN(h,y), ð4Þ

where ak is a positive constant (k~1,2,3,4). Note that this gain

function is a pointwise gain function.

This gain function is naturally compatible with commonly used

accuracy measures such as sensitivity, PPV, MCC and F-score (a

function of TP, TN, FP and FN; see ‘‘Evaluation measures defined

using TP, TN, FP and FN’’ in Appendices for definitions). The

following Definition 7 and Theorem 2 characterize the MEG

estimator for this gain function.

Definition 7 (ª-centroid estimator) In Problem 3 with

Assumption 1 and a fixed c§0, the c-centroid estimator is defined as the

MEG estimator for the pointwise gain function given in Eq. (1) by

Fi(h,yi)~I(hi~0)I(yi~0)zcI(hi~1)I(yi~1): ð5Þ

Theorem 2 The MEG estimator for the gain function in Eq. (4) is

equivalent to a c-centroid estimator with c~
a1za4

a2za3
.

Theorem 2 (see Appendices for a formal proof) is derived from

the following relations:

TPzFN~
X

i

I(hi~1) and TNzFP~
X

i

I(hi~0):

The c-centroid estimator maximizes the expected value of

TNzcTP, and includes the centroid estimator as a special case

where c~1. The parameter c adjusts the balance between the gain

from true negatives and that from true positives.

The expected value of the gain function of the c-centroid

estimator is computed as follows (see Appendices for the derivation):

Xn

i~1

(cz1)pi{1½ �I(yi~1)z
Xn

i~1

(1{pi) ð6Þ

where

pi~p(hi~1DD)~
X
h [ H

I(hi~1)p(hDD): ð7Þ

Since the second term in Eq. (6) does not depend on y, the c-

centroid estimator maximizes the first term. The following

theorem is obtained by assuming the additional condition

described below.

Theorem 3 In Problem 3 with Assumption 1, the predictive space Y

satisfies the following condition: if y~fyig [ Y , then y’~fy’ig [ Y where

y’i [ fyi,0g for all i. Then, the c-centroid estimator is equivalent to the

estimator that maximizes the sum of marginalized probabilities pi that are

greater than 1=(cz1) in the prediction.

The condition is necessary to obtain 0 for the i that produces

negative values in the first term in Eq. (6). Problem 2, Problem 1,

and many other typical problems in bioinformatics satisfy this

condition. Because the pointwise gain function of the c-centroid

estimator satisfies Eq. (3) in Theorem 1, we can prove the

following Corollary 1.

Corollary 1 (ª-centroid estimator for 0ƒªƒ1) In Problem

3 with Assumption 1, the predictive space Y is given in the same form in Eq.

(2) of Theorem 1. Then, the c-centroid estimator for c [ ½0,1� contains its

consensus estimator. Moreover, the consensus estimator is identical to the

following estimator y�~fy�i g:

y�i ~

1 if piw
1

cz1

0 if piƒ
1

cz1

8>><
>>: for i~1,2, . . . ,n ð8Þ

where pi~p(hi~1DD)~I(hi~1)p(hDD).

Here, pi is the marginalized probability of the distribution for

the i-th dimension of the predictive space. In Problem 1, it is

known as the alignment probability, which is defined as the

probability of each pair of positions across the two sequences being

aligned. In Problem 2, it is known as the base pairing probability,

which is defined as the probability of each pair of positions

forming a base pair in the secondary structure. These marginal-

ized probabilities can be calculated by using dynamic program-

ming algorithms, such as the forward-backward algorithm and the

McCaskill algorithm, depending on the model of the distributions.

(see ‘‘Probability distributions on discrete spaces’’ in Appendices

for those distributions).

Corollary 1 does not hold for cw1, but in typical problems in

bioinformatics the c-centroid estimator for cw1 can be calculated

Generalized Centroid Estimators in Bioinformatics
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efficiently by using dynamic programming, as shown in the

following examples.

Example 3 (ª-centroid estimator of pairwise align-
ment) In Problem 1 with Assumption 1, the c-centroid estimator maximizes the

sum of the alignment probabilities which are greater than 1=(cz1) (Theorem

3), and for c [ ½0,1� it can be given as the consensus estimator calculated from

Eq. (8) (Corollary 1). For cw1, the c-centroid estimator is obtained by using

a dynamic programming algorithm with the same type of iterations as in the

Needleman-Wunsch algorithm:

Mi,k~max

Mi{1,k{1z(cz1)pik{1

Mi{1,k

Mi,k{1

8><
>: ð9Þ

where Mi,k stores the optimal value of the alignment between two sub-

sequences, x1 � � � xi and x’1 � � � x’k (see ‘‘Secondary structure prediction of an

RNA sequence (Problem 2)’’ in Appendices for detailed descriptions).

Example 4 (ª-centroid estimator for prediction of
secondary structures) In Problem 2 with Assumption 1, the c-

centroid estimator maximizes the sum of the base pairing probabilities that are

greater than 1=(cz1) (Theorem 3), and for c [ ½0,1� it can be given as the

consensus estimator calculated from Eq. (8) (Corollary 1). For cw1, the c-

centroid estimator is obtained with the aid of a dynamic programming algorithm

with the same type of iterations as in the Nussinov algorithm:

Mi,j~max

Miz1,j

Mi,j{1

Miz1,j{1z cz1ð Þpij{1

max
k

Mi,kzMkz1,j

� �

8>>>><
>>>>:

ð10Þ

where Mi,j stores the best score of the sub-sequence xixiz1 � � � xj (see

‘‘Pairwise alignment of biological sequences (Problem 1)’’ in Appendices for the

detail descriptions).

The c-centroid estimators are implemented in LAST [4] for

Problem 1 and in CentroidFold [12,15] for Problem 2.

Problem 4 (Estimation of phylogenetic trees) Given a set

of operational taxonomic units S, predict their phylogenetic trees (unrooted and

multi-branched trees) as a point in T (S), the space of all the possible

phylogenetic trees of S.

The phylogenetic tree in T (S) is represented as a binary vector

with 2n{1{n{1 dimension where n is the number of units in S,

based on partition of S by cutting every edge in the tree (see ‘‘The

space of phylogenetic trees: T (S)’’ in Appendices for details). A

sampling algorithm can be used to estimate the partitioning

probabilities approximately [16].

Example 5 (ª-centroid estimator of phylogenetic
estimation) In Problem 4 with Assumption 1, the c-centroid estimator

maximizes the number of the partitioning probabilities which are greater than

1=(cz1) (Theorem 3), and for c [ ½0,1� it can be give as the consensus

estimator calculated from Eq. (8) (Corollary 1) (see ‘‘Estimation of

phylogenetic trees (Problem 4)’’ in Appendices for details).

Because the Hamming distance between two trees in T (S) is

known as topological distance [17], the 1-centroid estimator

minimizes the expected topological distance. In contrast to

Example 3 and Example 4, it appears that no method can

efficiently compute the c-centroid estimator with cw1 in Example

5. Despite the difficulties of the application to phylogenetic trees,

recently, a method applying the concept of generalized centroid

estimators was developed [18].

Generalized centroid estimators for representative
prediction

Predictions based on probability distributions on the predictive

space were discussed in the previous sections. However, there are

certain even more complex problems in bioinformatics, as

illustrated by the following example.

Problem 5 (Prediction of common secondary struc-
tures of RNA sequences) Given a set of RNA sequences

D~fxig,i~1, . . . K and their multiple alignment of length L and the

same energy model for each RNA sequence, predict their common secondary

structure as a point in S0(L), which is the space of all possible secondary

structures of length L.

In the case of Problem 5, although the probability distribution is

not implemented in the predictive space, each RNA sequence xi

has a probability distribution on its secondary structure derived

from the energy model. Therefore, the theories presented in the

previous section cannot be applied directly to this problem.

However, if we devise a new type of gain function that connects

the predictive space with the parameter space of the secondary

structure of each RNA sequence, we can calculate the expected

gain over the distribution on the parameter spaces of RNA

sequences. In order to account for this type of problem in general,

we introduce Assumption 2 and Definition 8 as follows.

Assumption 2 In Problem 3 there exists a probability distribution

p(hDD) on the parameter space H which might be different from the predictive

space Y .

Definition 8 (Generalized gain function) In Problem 3 with

Assumption 2, for a point h [ H and a prediction y [ Y , a generalized gain

function is defined as G : H|Y?Rz, G(h,y).

It should be emphasized that the MEG estimator (Definition 3),

pointwise gain function (Definition 4) and Theorem 1 can be

extended to the generalized gain function.

In the case of Problem 5, for example, the parameter space is

the product of the spaces of the secondary structures of each RNA

sequence, and the probability distribution is the product of the

distributions of secondary structures of each RNA sequence. Here,

the general form of the problem of representative prediction is

introduced.

Problem 6 (Representative prediction) In Problem 3 with

Assumption 2, if the parameter space is represented as a product space

(H~PK
k~1 H

(k)~Y K ) and the distribution of h [ H has the form

p(hDD)~PK
k~1 p(k)(hk DD), predict a point y in the predictive space Y .

The generalized gain function for the representative prediction

should be chosen such that the prediction reflects as much as each

data entry. Therefore, it is natural to use the following generalized

gain function that integrates the gain for each parameter.

Definition 9 (Homogeneous generalized gain function)
In Problem 6, a homogeneous generalized gain function is defined as

G(h,y)~
XK

k~1

G’(hk,y),

where G’ is the gain function in Definition 2.

Definition 10 (Representative estimator) In Problem 6,

given a homogeneous generalized gain function G(h,y)~
PK

k~1 G’(hk,y),
the MEG estimator defined as

ŷy(rMEG)~ argmax
y [ Y

[ tG(h,y)p(hDD)dh

is referred to as the representative estimator.

Generalized Centroid Estimators in Bioinformatics
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Proposition 1 The representative estimator is equivalent to an MEG

estimator with averaged probability distribution on the predictive space Y :

p(yDD)~
1

K

X
k

p(k)(yDD)

and a gain function G’.
This proposition shows that a representative prediction problem

with any homogeneous generalized gain function can be solved in

a manner similar to Problem 3 (H~Y ) with averaged probability

distribution. Therefore, the c-centroid estimator for a representa-

tive prediction satisfies Corollary 2.

Corollary 2 In Problem 6, the representative estimator where G’(hk,y)
is the gain function of the c-centroid estimator on Y , is the c-centroid estimator

for the averaged probability distribution and satisfies the same properties in

Theorem 2, Theorem 3, and Corollary 1.

Estimators based on marginal probabilities
In the previous section, we introduced Assumption 2, where

there is a parameter space H that can be different from the

predictive space Y , and we discussed the problem of representa-

tive prediction. In this section, we discuss another type of problems

where H=Y . An example is presented below.

Problem 7 (Pairwise alignment using homologous
sequences) Given a data set D~fx,x’,hg, where x and x’ are two

biological sequences to be aligned and h is a sequence that is homologous to both

x and x’, predict a point y in the predictive space Y~A(x,x’) (the space of

all possible alignments of x and x’).
The precise probabilistic model of this problem might include

the phylogenetic tree, ancestor sequences and their alignments.

Here, we assume a simpler situation where the probability

distribution of all possible multiple alignments of D is given. We

predict the pairwise alignment of two specific sequences according

to the probability distribution of multiple alignments. Although the

parameter space H, which is the space of all the possible multiple

alignments, can be parametrized using the parameters of the

spaces of the alignments of all pairs that can be formed from the

sequences in D, H itself is not the product space of these spaces

because these pairwise alignments are not independent: for

x,x’,h [ D, xi must be aligned to x’j if both xi and x’j are aligned

to hk. This type of problems can be generalized as follows.

Problem 8 (Prediction in a subspace of the parameter
space) In Problem 3 with Assumption 2, if the parameter space H is

represented as H5H’|H’\, predict a point y in the predictive space

Y~H’.
For the problem of representative prediction (Problem 6),

generalized gain functions on H|Y were introduced (Definition 8

and Definition 9). In contrast, in Problem 8, the values of the

parameters in H’\ are not important, and a point in Y~H’ is

predicted. In Problem 7, for example, the optimal multiple

alignment of D, the pairwise alignment of h and x, and the

pairwise alignment of h and x’ are irrelevant, but instead we

predict the pairwise alignment of x and x’. The MEG estimator

for the gain function defined on H’|Y can be written as

ŷy(sMEG)~ argmax
y [ Y

[ tG(h’,y)p(h’DD)dh’,

where p(h’DD) on H’ is the marginalized distribution

p(h’DD)~ [ tp(hDD)dh’\~ [ tp(h’,h’\DD)dh’\: ð11Þ

From the above MEG estimator, it might appear that Problem 8 is

trivial. However, it is not a simple task to calculate the

marginalized distribution in Eq. (11) in actual problems.

To reduce the computational cost, we change Problem 8 by

introducing an approximated probability distribution on the

product space H’|H’\ a follows.

Problem 9 (Prediction in product space) In Problem 3 with

Assumption 2, if the parameter space H is represented as H~H’|H’\ and

the probability distribution on H is defined as

�pp(hDD)~p(h’DD)p(h’\DD), ð12Þ

predict a point y in the predictive space Y~H’.
This factorization of spaces and probability distributions creates

a number of inconsistencies in the parameter space with respect to

the original Problem 8. In other words, the approximated

distribution yields non-zero values for a point that is not included

in the original H (in Problem 8) but in H’|H’\. To reduce these

inconsistencies, a new type of gain function and a new estimator

are introduced as follows.

Definition 11 (ª-type pointwise gain function) In Problem

8, a c-type pointwise gain function is defined as G(h,y) in Eq. (1) in

Definition 4 having

Fi(h,yi)~c:di(h’):I(yi~1)z(1{di(h’))I(yi~0), ð13Þ

where the value di(h’) [ ½0,1� in the gain function should be designed to reduce

the inconsistencies resulting from the factorization.

Definition 12 (Approximated ª-type estimator) In

Problem 9, with a c-type pointwise gain function with Fi(h,yi) in Eq.

(13) on H|Y , an approximated c-type estimator is defined as an MEG

estimator:

ŷy(capp)~ argmax
y [ Y

[ t½
Xn

i~1

Fi(h,yi)��pp(hDD)dh:

Example 6 (PCT in pairwise alignment) We obtain the

approximate estimator for Problem 7 with the following settings. The parameter

space is given as H~H’|H’\, where

H’~A(x,x’)(~Y ) and H’\~A(x,h)|A(x’,h)

and the probability distribution on the parameter space H is given as

p(hDD)~p(a)(hxx’Dx,x’)p(a)(hxhDx,h)p(a)(hx’hDx’,h)

for h~(hxx’,hxh,hx’h) [ H~H’|H’\. The di(h’) in Eq. (13) of the c-

type pointwise gain function is defined as

dik(h’)~
1

2
fI(hxx’

ik ~1)z
X

v

I(hxh
iv ~1)I(hx’h

kv ~1)g:

The approximated c-type estimator for this c-type pointwise gain function is

employed in a part of probabilistic consistency transformation (PCT)

[19], which is an important step toward accurate multiple alignments. See

‘‘Pairwise alignment using homologous sequences’’ in Appendices for precise

descriptions.

It is easily seen that Theorem 3 applies to the approximated c-

type estimator if pi in Theorem 3 is changed as follows:

pi~ [ tdi(h’)p(h’DD)dh’:

Generalized Centroid Estimators in Bioinformatics
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Moreover, to confirm whether approximated c-type estimator

contains the consensus estimator for the same gain function, it is

only necessary to check if

(cz1) di(h’)zdj(h’)
� �

{2ƒ0, ð14Þ

instead of Eq. (3) in Theorem 1. (Note that Theorem 1 can be

extended to the generalized (pointwise) gain function: see Theorem

4.)

Discussion

Properties of the c-centroid estimator
In this paper, general criteria for designing estimators are given

by the maximum expected gain (MEG) estimator (Definition 3).

The Bayesian ML estimator is an MEG estimator with the delta

function d(y,h) as the gain function, which means that only the

probability for the ‘‘perfect match’’ is counted. To overcome the

drawbacks of the Bayesian ML estimator, the centroid estimator

[1] takes into account the overall ensemble of solutions and

minimizes the expected Hamming loss. Because the Hamming loss

is not the standard evaluation measures for actual problems, we

have proposed an estimator of a more general type, the c-centroid

estimator (Definition 7), which includes the centroid estimator as a

special case, c~1. The c-centroid estimator is an MEG estimator

that maximizes the expected value of TNzcTP, which generally

covers all possible linear combination of the numbers of true

positives (TP), true negatives (TN), false positives (FP) and false

negatives (FN) (Theorem 2). Since most of the evaluation measures

of the prediction accuracy are functions of these numbers [20], the

c-centroid estimator is related to the principle of maximum

expected accuracy (MEA). It should be noted that MEG

estimators have been proposed that are similar to the c-centroid

estimator for some specific problems, for example, the alignment

metric accuracy (AMA) estimator [21] (see Appendices for the

formal definition) for pairwise alignment (Problem 1) and the

MEA-based estimator [5] (see Appendices for the formal

definition) for prediction of secondary structure of RNA (Problem

2). However, these estimators display a bias with respect to the

accuracy measures for the problem (see Eqs. (20) and (22)), and are

therefore inappropriate from the viewpoint of the principles of

MEA. Moreover, these estimators cannot be introduced in a

general setting, that is, Problem 3. It has been also shown that the

c-centroid estimator outperforms the MEA-based estimator [5] for

various probability distributions in computational experiments

[12]. (See ‘‘Pairwise alignment of biological sequences (Problem

1)’’ and ‘‘Secondary structure prediction of an RNA sequence

(Problem 2)’’ in Appendices for relations between the c-centroid

estimator and other estimators in Problems 1 and 2, respectively.)

How to determine the parameter in c-centroid estimator
The parameter c in c-centroid estimators adjusts sensitivity and

PPV (whose relation is tradeoff). MCC or F-score is often used to

obtain a balanced measure between sensitivity and PPV. In RNA

secondary structure predictions, it has been confirmed that the

best c (with respect to MCC) of the c-centroid estimator with

CONTRAfold model was larger than that with McCaskill model

[12]. It shows that the best c (with respect to a given accuracy

measure) depends on not only estimation problems but also

probabilistic models for predictive space. The parameter c trained

by using reference structures was therefore employed as the default

parameter in CentroidFold [12]. In order to select the parameter

automatically (with respect to a given accuracy measure such as

MCC and F-score), an approximation of maximizing expected

MCC (or F-score) with the c-centroid estimator can be utilized

[22].

Accuracy measures and computational efficiency
The reader might consider that it is possible to design estimators

that maximize the expected MCC or F-score which balances

sensitivity (SEN) and positive predictive value (PPV). However, it is

much more difficult to compute such estimators in comparison

with the c-centroid estimator, as described below.

The expected value of the gain function of the c-centroid

estimator can be written with marginalized probabilities as in Eq.

(7), which can be efficiently computed by dynamic programming

in many problems in bioinformatics, for example, the forward-

backward algorithm for alignment probabilities and the McCaskill

algorithm for base pairing probabilities. Under a certain condition

of the predictive space, which many problems in bioinformatics

satisfy, the c-centroid estimator maximizes the sum of marginal-

ized probabilities greater than 1=(cz1) (Theorem 3). Moreover,

under an additional condition of the predictive space and the

pointwise gain function, which again many problems in bioinfor-

matics satisfy, the c-centroid estimators for c [ ½0,1� can be easily

calculated as the consensus estimators, which collect in the binary

predictive space the components that have marginalized proba-

bilities greater than 1=(cz1) (Corollary 1). For cw1, there often

exist dynamic programming algorithms that can efficiently

compute the c-centroid estimators (Examples 4 & 3), but there

are certain problems, such as Problem 4, which seem to have no

efficient dynamic programming algorithms.

The gain function of the estimators that maximize MCC or F-

score, and also SEN or PPV contain multiplication and/or division of

TP, TN, FP and FN, while the gain function of the c-centroid

estimator contains only the weighted sums of these values (i.e.,

TNzc:TP). Therefore, the expected gain is not written with

marginalized probabilities as in Eq. (7), and it is difficult to design

efficient computational algorithms for those estimators. In

predicting secondary structures of RNA sequences (Problem 2),

for example, it is necessary to enumerate all candidate secondary

structures or sample secondary structures for an approximation in

order to compute the expected MCC/F-score of a predicted

secondary structure.

Probability distributions are not always defined on
predictive space

After discussing the standard estimation problems on a binary

space where the probability distribution is defined on the

predictive space, we have proposed a new category of estimation

problems where the probability distribution is defined on a

parameter space that differs from the predictive space (see

Assumption 2). Two types of estimators for such problems, for

example, estimators for representative prediction and estimators

based on marginalized distribution, have been discussed.

Prediction of the common secondary structure from an

alignment of RNA sequences (Problem 5) is an example of

representative prediction. The probability distribution is not

implemented in the predictive space, the space of common

secondary structure, but each RNA sequence has a probability

distribution for its secondary structure. Because the ‘‘correct’’

reference for the common secondary structure is not known in

general, direct evaluation of the estimated common secondary

structure is difficult. In the popular evaluation process for this

problem, the predicted common secondary structure is mapped to

each RNA sequence and compared to its reference structure.

Using the homogeneous generalized gain function exactly

implements this evaluation process and the MEG estimator for

Generalized Centroid Estimators in Bioinformatics
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the averaged probability distribution is equivalent to the MEG

estimator for homogeneous generalized gain function. Therefore,

we can use the averaged base pairing probabilities according to the

alignment as the distribution for the common secondary structure

(see ‘‘Common secondary structure prediction from a multiple

alignment of RNA sequences’’ in Appendices for detailed

discussion). The representative estimator for Problem 5 is

implemented in software CentroidAlifold. Another example of

representative prediction is the ‘‘alignment of alignments’’

problem, which is the fundamental element of progressive multiple

alignment of biological sequences. The evaluation process using

the sum of pairs score corresponds to using the homogeneous

generalized gain function. (see ‘‘Alignment between two alignments

of biological sequences’’ in Appendices for detailed discussion).

Estimation problems of marginalized distributions can be

formalized as prediction in a subspace of the parameter space

(Problem 8). If we can calculate the marginalized distribution on

the predictive space from the distribution on the parameter space,

all general theories apply to the predictive space and the

marginalized distribution. In actual problems, such as pairwise

alignment using homologous sequences (Problem 7), however,

computational cost for calculation of the marginalized probability

is quite high. We introduced the factorized probability distribution

(Eq. (12)) for approximation, the c-type pointwise gain function

(Definition 11) to reduce the inconsistency caused by the

factorization, and the approximated c-type estimator (Definition

12). In Problem 7, the probability consistency transformation

(PCT), which is widely used for multiple sequence alignment, is

interpreted as an approximated c-type estimator. Prediction of

secondary structures of RNA sequences on the basis of

homologous sequences [23] (see Problem 13 in Appendices) and

pairwise alignment for structured RNA sequences are further

examples of this type of problems.

Application of c-centroid estimator to cluster centroid
In case probability distribution on the predictive space is multi-

modal, c-centroid estimators can provide unreliable solutions. For

example, when there are two clusters of secondary structures in

predictive spaces and those structures are exclusive, the c-centroid

estimator might give a ‘‘chimeric’’ secondary structure whose free

energy is quite high. To avoid this situation, Ding et al. [24]

proposed a notion of the cluster centroid, which is computed by the

centroid estimator with a given cluster in a predictive space. We

emphasize that the extension of cluster centroid by using c-

centroid estimator is straightforward and would be useful.

Conclusion
In this work, we constructed a general framework for designing

estimators for estimation problems in high-dimensional discrete

(binary) spaces. The theory is regarded as a generalization of the

pioneering work conducted by Carvalho and Lawrence, and is

closely related to the concept of MEA. Furthermore, we presented

several applications of the proposed estimators (see Table 1 for

summary) and the underlying theory. The concept presented in

this paper is highly extendable and sheds new light on many

problems in bioinformatics. In future research, we plan to

investigate further applications of the c-centroid and related

estimators presented in this paper.
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Appendices

Discrete (binary) spaces in bioinformatics
In this section, we summarize three discrete spaces that appear in

this paper. These discrete spaces are often used in the definition of the

predictive spaces and the parameter spaces. It should be noted that

every discrete space described below is identical in form to Eq. (2).

The space of alignments of two biological sequences:

A(x,x’). We define a space of the alignments of two biological

(DNA, RNA and protein) sequences x and x’, denoted by A(x,x’),
as follows. We set I (0)~ (i,k)D1ƒiƒDxD,1ƒkƒDx’Df g as a base

index set, and a binary variable hik for (i,k) [ I (0) is defined by

hik~
1 positions i in x and k in x’ are aligned

0 positions i in x and k in x’ are not aligned

�
:

ThenA(x,x’) is a subset of B : ~ h~ hikf g(i,k) [ I (0) Dhik [ f0,1g
n o

and is defined by

A(x,x’)~
\

I [ I
C(I), C(I)~fx’ [ BD

X
(i,k) [ I

hikƒ1g:

Here I is a set of index-sets:

I~ I I~I
(1)
i (1ƒiƒjxj) or I~I

(2)
k (1ƒkƒjx0j) or I

���n
~I

(3)
ikjl (1ƒivjƒjxj,1ƒlvkƒjx0j)

o
where

I
(1)
i ~ (i,k)j1ƒkƒjx’jf g,I (2)

k ~ (i,k)j1ƒiƒjxjf g and

I
(3)
ikjl~ (i,k),(j,l)f g:

The inclusion y [ C(I
(1)
i ) means that position i in the sequence

x aligns with at most one position in the sequence x’ in the alignment

y, y [ C(I
(2)
j ) means that position j in the sequence x’ aligns with

at most one position in the sequence x and y [ C(I
(3)
ikjl) means the

alignment (i,k) and (j,l) is not crossing. Note that A(x,x’) depends

on only the length of two sequences, namely, DxD and Dx’D.
The space of secondary structures of RNA: S(x). We

define a space of the secondary structures of an RNA sequence x,

denoted by S(x), as follows. We set I (0)~ (i,j)D1ƒivjƒDxDf g as a

base index set, and a binary variable hij for (i,j) [ I (0) is defined by

hij~
1 the positions i of x and j of x form a base pair

0 the positions i of x and j of x do not form a base pair:

�

Then S(x) is a subset of B : ~ h~ hij

� 	
(i,j) [ I (0) Dhij [ f0,1g

n o
and is defined by
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S(x)~
\

I [ I
C(I), C(I)~fh [ BD

X
(i,j) [ I

hijƒ1g:

Here I is a set of index-sets

I~ I DI~I
(1)
i (1ƒiƒDxD) or I~I

(2)
ijkl (1ƒivkvjvlƒDxD)

n o
where

I
(1)
i ~ (i,j)DivjƒDxDf g| (j,i)D1ƒjvif g and I

(2)
ijkl~ (i,j),(k,l)f g:

The inclusion y [ C(I
(1)
i ) means that position i in the sequence x

belongs to at most one base-pair in a secondary structure y, and

y [ C(I
(2)
ijkl) means two base-pairs whose relation is pseudo-knot are

not allowed in y. Note that S(x) depends on only the length of the

RNA sequence x, that is, DxD.
The space of phylogenetic trees: T (S). We define a space

of phylogenetic trees (unrooted and multi-branch trees) of a set of

S~f1, � � � ,ng, denoted by T (S), as follows. We set I (0)~ X Df
X5S2,DX Dvn=2 _ (DX D~n=2 ^ 1 [ X )g, where S2~ X DX5S,f
DX Dw1 ^ DX Dvn{1g, as a base index set and we define binary

variables hX for X [ I (0) by

Table 1. Summary of applications in bioinformatics.

Alignment
(1) Pairwise alignment of
biological sequences

(4) Pairwise alignment of
two multiple alignments

(6) Pairwise alignment using
homologous sequences

Section Section Section Section

Data D fx,x’g fA,A’g fx,x’,Hg
Predictive
space Y

A(x,x’) A(A,A’) A(x,x’)

Parameter
space H

A(x,x’) Px[A Px’[A’ A(x,x’) A(x,x’)|Ph[H ½A(x,h)|A(x’,h)�

Probability
p(hDD)

p(a)(hDx,x’) Px[A Px’[A’ p
(a)(hDx,x’) p(a)(hxx’ Dx,x’)Ph[H ½p(a)(hxh Dx,h)p(a)(hx’h Dx’,h)�

Type of
estimator

c-centroid representative approximate

Software LAST { {

Reference [4] [19], This work [19], This work

RNA (2) Secondary structure
prediction of RNA

(5) Common secondary
structure prediction

(7) Secondary structure prediction
using homologous sequences

(8) Pairwise alignment of
structured RNAs

Section Section Section Section Section

Data D fxg fAg fx,Hg fx,x’g
Predictive
space Y

S(x) S(A) S(x) A(x,x’)

Parameter
space H

S(x) Px[A S(x) S(x)|Ph[H A(x,h)|S(h)½ � A(x,x’)|S(x)|S(x’)

Probability
p(hDD)

p(s)(hDx) Px[A p(s)(hDx) p(s) hx Dxð Þ|Ph[D p(a)(hxh Dx,h)p(s)(hh Dh)
� �

p(a)(hxx’ Dx,x’)p(s)(hx Dx)p(s)(hx’ Dx’)

Type of
estimator

c-centroid representative approximate approximate

Software CENTROIDFOLD CENTROIDALIFOLD CENTROIDHOMFOLD CENTROIDALIGN

Reference [12] [12,49] [23] [52]

Phylogenetic
tree

(3) Estimation of
phylogenetic tree

Section Section

Data D S

Parameter
space H

T (S)

Predictive
space Y

T (S)

Probability
p(hDD)

p(t)(hDS)

Type of
estimator

c-centroid

Reference This work

The top row includes problems about RNA secondary structure predictions and the middle row includes problems about alignment of biological sequences. Note that
the estimators in the same column corresponds to each other.
doi:10.1371/journal.pone.0016450.t001
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hX ~

1 if S can be partitioned into X and S\ X

by cutting an edge in the tree

0 otherwise

8><
>:

Then T (S) is a subset of B : ~ h~ hXf gX [ I (0) DhX [ f0,1g
� 	

and is defined by

T (S)~
\

I [ I
C(I), C(I)~fh [ BD

X
X [ I

hX ƒ1g

where I~ I~fX ,YgDX\Y=[ 1,X ,Yf gf g. Note that T (S) de-

pends on only the number of elements in S. We now give several

properties of T (S) that follow directly from the definition.

Lemma 1 The number of elements in T (S) (i.e. DI (0)D) is equal to

2n{1{n{1 where n~DSD.
Lemma 2 The topological distance [17] between two phylogenetic

trees T1 and T2 in T (S) is

d(T1,T2)~
X

X [ I(0)

I(hX (T1)=hX (T2))

where I(:) is the indicator function.

Remark 1 If we assume the additional condition
P

X hX ~
((4n{6){2n)=2~n{3, then T (S) is a set of binary trees.

Probability distributions on discrete spaces
We use three probability distributions in this paper.

Probability distributions p(a)(hDx,x’) on A(x,x’). For two

protein sequences x and x’, a probability distribution p(a)(hDx,x’)
over the space A(x,x’), which is the space of pairwise alignments

of x and x’ defined in the previous section, is given by the

following models.

1. Miyazawa model [13] and Probalign model [25]:

p(a)(hDx,x’)~
1

Z(T)
exp

S(h)

T


 �

where S(h) is the score of an alignment h under the

given scoring matrix (We define S(h)~
P

hij~1 s(xi,xj){

(penalty for gaps) where s(xi,xj) is a score for the correspon-

dence of bases xi and xj ), T is the thermodynamic temperature

and Z(T) is the normalization constant, which is known as a

partition function.

2. Pair Hidden Markov Model (pair HMM) [19]:

p(a)(hDx,x’)~p(s1)( P
n{1

i~1
a(si?siz1))( P

n

i~1
b(oi Dsi))

where p(s) is the initial probability of starting in state s,

a(si?siz1) is the transition probability from si to siz1 and

b(oi Dsi) is the omission probability for either a single letter or

aligner residue pair oi in the state si.

3. CONTRAlign (pair CRF) model [26]:

p(a)(hDx,x’)~
exp(wtf (h,x,x’))P

h’ [ V(x,x’) exp(wtf (h’,x,x’))

where w is a parameter vector and f (h,x,x’) is a vector of

features that indicates the number of times each parameter

appears, V(x,x’) denotes the set of all possible alignments of x

and x’. We do not describe the feature vectors and refer readers

to the original paper [26].

Remark 2 Strictly speaking, the alignment space in the pair hidden

Markov model and the CONTRAlign model consider the patterns of gaps. In

these cases, we obtain the probability space on A(x,x’) by a marginalization.

Probability distributions p(s)(hDx) on S(x). For an RNA

sequence x, a probability distribution p(s)(hDx) over S(x), which is

the space of secondary structures of x defined in the previous

section is given by the following models.

1. McCaskill model [14]: This model is based on the energy

models for secondary structures of RNA sequences and is

defined by

p(s)(hjx)~
1

Z(x)
exp {

E(h,x)

kT


 �

where Z(x)~
X

h [ S(x)

exp {
E(h,x)

kT


 �
:

where E(h,x) denotes the energy of the secondary structure

that is computed using the energy parameters of Turner Lab

[27], k and T are constants and Z(x) is the normalization term

known as the partition function.

2. Stochastic Context free grammars (SCFGs) model [28]:

p(s)(hDx)~

P
s [ V(h) p(x,s)P
s [ V’(x) p(x,s)

where p(x,s) is the joint probability of generating the parse s
and is given by the product of the transition and emission

probabilities of the SCFG model and V’(x) is all parses of x,

V(h) is all parses for a given h.

3. CONTRAfold (CRFs; conditional random fields) model [5]:

This model gives us the best performance on secondary

structure prediction although it is not based on the energy

model.

p(s)(hDx)~

P
s [ V(h) exp(wtf (x,s))P
s [ V’(x) exp(wtf (x,s))

where w [ Rn, f (x,s) [ Rn is the feature vector for x in parse

s, V’(x) is all parses of x, V(h) is all parses for a given h.

Probability distributions p(t)(hDS) on T(S). A probability

distribution p(t)(hDS) on T (S) is given by probabilistic models of

phylogenetic trees, for example, [29, 30]. Those models give a

probability distribution on binary trees and we should marginalize

these distributions for multi-branch trees.

Evaluation measures defined using TP, TN, FP and FN
There are several evaluation measures of a prediction in

estimation problems for which we have a reference (correct)

prediction in Problem 3. The Sensitivity (SEN), Positive Predictive

Value (PPV), Matthew’s correlation coefficient (MCC) and F-score

for a prediction are defined as follows.

SEN~
TP

TPzFN
,
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PPV~
TP

TPzFP
,

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p ,

F{score~
2:TP

2:TPzFPzFN

where TP (the number of true positive), TN (the number of true

negative), FP (the number of false positive) and FN (the number of

false negative) are defined by

TP~TP(h,y)~
X

i

I(yi~1)I(hi~1), ð15Þ

TN~TN(h,y)~
X

i

I(yi~0)I(hi~0), ð16Þ

FP~FP(h,y)~
X

i

I(yi~1)I(hi~0), ð17Þ

FN~FN(h,y)~
X

i

I(yi~0)I(hi~1): ð18Þ

It should be noted that these measures can be written as a

function of TP, TN, FP and FN. See [20] for other evaluation

measures.

Schematic diagrams of representative and approximated
c-type estimators

The schematic diagrams of the MEG estimator (Definition 3),

the representative estimator (Definition 10) and the approximated

c-type estimator (Definition 12) are shown in Figure 1, Figure 2

and Figure 3, respectively.

Applications in bioinformatics
In this section we describe several applications to bioinformatics

of the general theories. Some of these applications have already

been published. In those cases, we briefly explain the applications

and the readers should see the original paper for further

descriptions as well as the computational experiments. All of the

applications in this section are summarized in Table 1.
Pairwise alignment of biological sequences (Problem

1). The pairwise alignment of biological (DNA, RNA, protein)

sequences (Problem 1) is another fundamental and important

problem of sequence analysis in bioinformatics (cf. [31]).

The c-centroid estimator for Problem 1 can be introduced as

follows:

Estimator 1 (ª-centroid estimator for Problem,:align)
For Problem 1, we obtain the c-centroid estimator where the predictive space Y
is equal to A(x,x’) and the probability distribution on Y is taken by

p(a)(hDx,x’).
First, Theorem 2 and the definition of A(x,x’) lead to the

following property.

Property 1 (A relation of Estimator 1 with accuracy
measures) The c-centroid estimator for Problem 1 is suitable for the

accuracy measures: SEN, PPV, MCC and F-score with respect to the

aligned-bases in the predicted alignment.

Note that accurate prediction of aligned-bases is important for

the analysis of alignments, for example, in phylogenetic analysis.

Therefore, the measures in above are often used in evaluations of

alignments e.g. [4].

The marginalized probability pik~p(a)(hik~1Dx,x’)~
P

h[A(x,x’)
I(hik~1)p(a)(hDx,x’) is called the aligned-base (matching) probability in

this paper. The aligned-base probability matrix fpikgi,k can be

computed by the forward-backward algorithm whose time

complexity is equal to O(DxDDx’D) [31]. Now, Theorem 3 leads to

the following property.

Property 2 (Computation of Estimator 1) The pairwise

alignment of Estimator 1 is found by maximizing the sum of aligned-base

probabilities pik (of the aligned-bases in the predicted alignment) that are larger

than 1=(cz1). Therefore, it can be computed by a Needleman-Wunsch-style

dynamic programming (DP) algorithm [32] after calculating the aligned-base

matrix fpikg:

Mi,k~max

Mi{1,k{1z(cz1)pik{1

Mi{1,k

Mi,k{1

8><
>: ð19Þ

where Mi,k stores the optimal value of the alignment between two sub-

sequences, x1 � � � xi and x’1 � � � xk.

The time complexity of the recursion of the DP algorithm in Eq.

(19) is equal to O(DxDDx’D), so the total computational cost for

predicting the secondary structure of the c-centroid estimator

remains O(DxDDx’D).

Figure 1. Schematic diagram of the MEG estimator (Definition 3).
doi:10.1371/journal.pone.0016450.g001
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By using Corollary 1, we can predict the pairwise alignment of

Estimator 1 with c[½0,1� without using the DP algorithm in Eq. (19).

Property 3 (Computation of Estimator 1 with 0ƒªƒ1)
The pairwise alignment of the c-centroid estimator can be predicted by

collecting the aligned-bases whose probabilities are larger than 1=(cz1).

The genome alignment software called LAST (http://last.cbrc.

jp/) [4, 33] employs the c-centroid estimator accelerated by an X-

drop algorithm, and the authors indicated that Estimator 1

reduced the false-positive aligned-bases, compared to the conven-

tional alignment (maximum score estimator).

Relations of Estimator 1 with existing estimators are summa-

rized as follows:

1. A relation with the estimator by Miyazawa [13] (i.e. the

centroid estimator):

Estimator 1 where c~1 and the Miyazawa model is

equivalent to the centroid estimator proposed by Miyazawa

[13].

2. A relation with the estimator by Holmes et al. [34]:

Estimator 1 with sufficiently large c is equivalent to the

Figure 2. Schematic diagram of the representative estimator (Definition 10). The parameter space H is a product space and is different
from the predictive space Y .
doi:10.1371/journal.pone.0016450.g002

Figure 3. Schematic diagram of the approximated ª-type estimator (Definition 12). The estimator in the top figure shows the c-centroid
estimator with the marginalized probability distribution, and the one in the bottom figure shows its approximation.
doi:10.1371/journal.pone.0016450.g003
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estimator proposed by Holmes et al., which maximizes the sum

of matching probabilities in the predicted alignment.

3. A relation with the estimator in ProbCons: In the program,

ProbCons, Estimator 1 with pair HMM model and the

sufficient large c was used. This means that ProbCons only

take care the sensitivity (or SPS) for the predicted alignment.

4. A relation with the estimator by Schwartz et al.:

For Problem 1, Schwartz et al. [21] proposed an Alignment

Metric Accuracy (AMA) estimator, which is similar to the c-

centroid estimator (see also [3]). The AMA estimator is a

maximum gain estimator (Definition 3) with the following gain

function.

G(AMA)(h,y)~2
X

i,j

I(hij~1)I(yij~1)z

Gf

X
i

Pj I(hij~0)I(yij~0)z
X

j

PiI(hij~0)I(yij~0)

( )

for h,y [ A(x,x’). In the above equation, Gf §0 is a gap factor,

which is a weight for the prediction of gaps. We refer to the

function G(AMA)(h,y) as the gain function of the AMA

estimator. In a similar way to that described in the previous

section, we obtain a relation between G(AMA)(h,y) and

G(centroid)(h,y) (the gain function of the c-centroid estimator).

If we set 1=Gf ~c, then we obtain

G(AMA)(h,y)~
2

c
G(centroid)(h,y)z

1

c
A(h,y)zCh ð20Þ

where

A(h,y)~
X

i

X
(j1,j2):j1=j2

I(hij1
~1)I(yij2

~1)z

X
j

X
(i1,i2):i1=i2

I(hi1j~1)I(yi2j~1)

and Ch is a value which does not depend on y. If

I(hij1
~1)I(yij2

~1)~1 for j1=j2, then we obtain I(hij1

~1)I(yij1
~0)~1 and I(hij2

~0)I(yij2
~1)~1, and this means

that (i, j1) is an aligned pair that is a false negative and (i,j2) is

an aligned pair that is a false positive when h is a reference

alignment and y is a predicted alignment. Therefore, the terms

A(h, y) (in Eq. (20)) in the gain function of AMA are not

appropriate for the evaluation measures SEN, PPV, MCC and

F-score for aligned bases. In summary, the c-centroid estimator

is suitable for the evaluation measures: SEN, PPV and F-score

with respect to the aligned-bases while the AMA estimator is

suitable for the AMA.

Secondary structure prediction of an RNA sequence

(Problem 2). Secondary structure prediction of an RNA

sequence (Problem 2) is one of the most important problems of

sequence analysis in bioinformatics. Its importance has increased

due to the recent discovery of functional non-coding RNAs

(ncRNAs) because the functions of ncRNAs are closely related to

their secondary structures [35].

c-centroid estimator for Problem 2 can be introduced as follows:

Estimator 2 (ª-centroid estimator for Problem 2) For

Problem 2, we obtain the c-centroid estimator (Definition 7) where the

predictive space Y is equal to S(x) and the probability distribution on Y is

taken by p(s)(hDx).

The general theory of the c-centroid estimator leads to several

properties. First, the following property is derived from Theorem 2

and the definition of S(x).

Property 4 (A relation of Estimator 2 with accuracy
measures) The c-centroid estimator for Problem 2 is suitable for the

widely-used accuracy measures of the RNA secondary structure prediction:

SEN, PPV and MCC with respect to base-pairs in the predicted secondary

structure.

Because the base-pairs in a secondary structure are biologically

important, SEN, PPV and MCC with respect to base-pairs are

widely used in evaluations of RNA secondary structure prediction,

for example, [5, 12, 36].

The marginalized probability pij~p(s)(hij~1Dx)~
P

h [ S(x)

I(hij~1)p(s)(hDx) is called a base-pairing probability. The base-paring

probability matrix fpijgivj can be computed by the Inside-Outside

algorithm whose time complexity is equal to O(DxD3) where DxD is

the length of RNA sequence x [14, 31]. Then, Theorem 3 leads to

the following property.

Property 5 (Computation of Estimator 2) The secondary

structure of Estimator 2 is found by maximizing the sum of the base-pairing

probabilities pij (of the base-pairs in the predicted structure) that are larger

than 1=(cz1). Therefore, it can be computed by a Nussinov-style dynamic

programming (DP) algorithm [37] after calculating the base-pairing

probability matrix fpijg:

Mi,j~max

Miz1,j

Mi,j{1

Miz1,j{1z(cz1)pij{1

max
k

Mi,kzMkz1,j

� �

8>>>><
>>>>:

ð21Þ

where Mi,j stores the best score of the sub-sequence xixiz1 � � � xj .

If we replace ‘‘(cz1)pij{1’’ with ‘‘1’’ in Eq. (21), the DP

algorithm is equivalent to the Nussinov algorithm [37] that

maximizes the number of base-pairs in a predicted secondary

structure. The time complexity of the recursion of the DP

algorithm in Eq. (21) is equal to O(DxD3). Hence, the total

computational cost for predicting the secondary structure of the c-

centroid estimator remains O(DxD3), which is the same time

complexity as for standard software: Mfold [38], RNAFOLD [39]

and RNASTRUCTURE [40].

By using Corollary 1, we can predict the secondary structure of

Estimator 2 with c [ ½0,1� without using the DP algorithm in Eq.

(21).

Property 6 (Computation of Estimator 2 with 0vªƒ1)
The secondary structure of the c-centroid estimator with c [ ½0,1� can be

predicted by collecting the base-pairs whose probabilities are larger than

1=(cz1).

The software CENTROIDFOLD [12, 15] implements Estimator 2

with various probability distributions for the secondary structures,

such as the CONTRAFOLD and McCASKILL models.

Relations of Estimator 2 with other estimators are summarized

as follows:

1. A relation with the estimator used in SFOLD [41, 42]:

Estimator 2 with c~1 and the McCaskill model (i.e. the

centroid estimator with the McCaskill model) is equivalent to

the estimator used in the SFOLD program.

2. A relation with the estimator used in CONTRAFOLD:

For Problem 2, Do et al. [5] proposed an MEA-based estimator,

which is similar to the c-centroid estimator. (The MEA-based

estimator was also used in a recent paper [6].) The MEA-based

Generalized Centroid Estimators in Bioinformatics
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estimator is defined by the maximum expected gain estimator

(Definition 3) with the following gain function for h and

y [ S(x).

G(contra)(h,y)~
Xjxj
i~1

½c
X
j:j=i

I(h�ij~1)I(y�ij~1)z

P
j:j=i

I(h�ij~0)I(y�ij~0)�
ð22Þ

where h� and y� are symmetric extensions of (upper triangular

matrices) h and y, respectively (i.e. h�ij~hij for ivj and h�ij~hji

for jvi; the definition of y� is similar.). It should be noted that,

under the general estimation problem of Problem 3, the gain

function of Eq. (22) cannot be introduced, and the gain

function is specialized for the problem of RNA secondary

structure prediction.

The relation between the gain function of the c-centroid

estimator (denoted by G(centroid)(h,y) and defined in Definition

7) and the one of the MEA-based estimator is

G(contra)(h,y)~G(centroid)(h,y)zA(h,y)zC(h) ð23Þ

where the additional term A(h,y) is positive for false predictions

of base-pairs (i.e., FP and FN ) and C(h) does not depend on

the prediction y (see [12] for the proof). This means the MEA-

based estimator by Do et al. possess a bias against the widely-

used accuracy measures for Problem 2 (SEN, PPV and MCC

of base-pairs) compared with the c-centroid estimator. Thus,

the c-centroid estimator is theoretically superior to the MEA-

based estimator by Do et al. with respect to those accuracy

measures. In computational experiments, the authors con-

firmed that the c-centroid estimator is always better than the

MEA-based estimator when we used the same probability

distribution of secondary structures. See [12] for details of the

computational experiments.

Estimation of phylogenetic trees (Problem 4). The c-

centroid estimator for Problem 4 can be introduced as follows:

Estimator 3 (c-centroid estimator for Problem 4) For

Problem 4, we obtain the c-centroid estimator (Definition 7) where the

predictive space Y is equal to T (S) and the probability distribution on Y is

taken by p(t)(hDS).
The following property is easily obtained by Theorem 2 and

[17].

Property 7 (Relation of 1-centroid estimator and
topological distance) The c-centroid estimator with c~1 (i.e.

centroid estimator) for Problem 4 minimizes expected topological distances.

For X [ I (0) (I (0) is a set of partitions of S and is formally

defined in the previous section), we call the marginalized

probability pX ~
P

h [ T (S) I(hX ~1)p(t)(hDS) partitioning probability.

However, it is difficult to compute fpXgX [ I (0) as efficiently as in

the prediction of secondary structures of RNA sequences, where it

seems possible to compute the base-pairing probability matrix in

polynomial time by using dynamic programming). Instead, a

sampling algorithm can be used for estimating fpXgX [ I (0)

approximately [16] for this problem. Once fpXgX [ I (0) is

estimated, Theorem 3 leads to the following:

Property 8 (Computaion of Estimator 3) The phylogenetic

tree of Estimator 3 is found by maximizing the sum of the partitioning

probabilities pX (of the partitions given by the predicted tree) that are larger

than 1=(cz1).

In contrast to Estimator 1 (the c-centroid estimator for

secondary structure prediction of RNA sequence) and Estimator

2 (the c-centroid estimator for pairwise alignment), it appears that

there is no efficient method (such as dynamic programming

algorithms) to computed Estimator 3 with cw1. Estimator 1 with

c [ ½0,1�, however, can be computed by using the following

property, which is directly proven by Corollary 1 and the

definition of the space T (S).

Property 9 (Estimator 3 with 0vªƒ1) The c-centroid

estimator with c [ ½0,1� for Problem 4 contains its consensus estimator.

Alignment between two alignments of biological

sequences. In this section we consider the problem of the

alignment between two multiple alignments of biological sequences

(Figure 4), which is often important in the multiple alignment of RNA

sequences [19]. This problem is formulated as follows.

Problem 10 (Alignment between two alignments of
biological sequences) The data is represented as D~fA,A’g where

A and A’ are alignments of biological sequences and the predictive space Y is

equal to A(A,A’), that is, the space of the alignments of A and A0.
In the following, l(A) and n(A) denote the length of the

alignment and the number of sequences in the alignment A,

respectively. If both A and A0 contain a single biological sequence

(with no gap), Problem 10 is equivalent to conventional pairwise

alignment of biological sequences (Problem 1). As in common

secondary structure prediction, the representative estimator plays

an important role in this application.

Estimator 4 (Representative estimator for Problem
10) For Problem 10, we obtain the representative estimator (Definition 10).

The gain function G’(hk,y) is the gain function of the c-centroid estimator.

The parameter space H is represented as a product space H~
Px [ A,x’ [ A’A(x,x’) where A(x,x’) is defined in the previous section.

The probability distribution on the parameter space H is given by p(hDD)~
Px [ A,x’ [ A’p

(a)(hxx’Dx,x’) for h~(hxx’)x [ A,x’ [ A’ [ H where

p(a)(hDx,x’) is given in the previous section (when x or x’ contains some

gaps, p(a)(hDx,x’) is defined by the sequences with the gaps removed).

Corollary 2 proves the following properties of Estimator 5.

Property 10 (A Relation of Estimator 4 with accuracy
measures) Estimator 4 is consistent with the accuracy process for Problem

10 that is shown in Figure 5. We compare every pairwise alignment of x [ A
and x’ [ A’ with the reference alignment. These comparisons are made using

TP, TN, FP and FN with respect to the aligned-bases (e.g., using SEN, PPV

and F-score).

Property 11 (Computation of Estimator 4) Estimator 4 can

be given by maximizing the sum of probabilities pik that are larger than

Figure 4. Alignment between two multiple alignments A1 and A2 (Problem 10).
doi:10.1371/journal.pone.0016450.g004
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1=(cz1) where

pik~
1

n(A)n(A’)

X
x [ A

X
x’ [ A’

X
h [ H

I(hik~1)p(a)(hDx,x’): ð24Þ

Therefore, the pairwise alignment of Estimator 4 can be computed by the

Needleman-Wunsch-type DP algorithm of Eq. (19) in which we replace pij

with Eq. (24).

Property 12 (Computation of Estimator 4 with 0ƒªƒ1)
The Estimator 4 with c [ ½0,1� contains the consensus estimator. Moreover,

the consensus estimator is identical to the estimator y~

fy�ikg1ƒiƒl(A),1ƒkƒl(A’):

y�ik~

1 if pikw
1

cz1

0 if pikƒ
1

cz1

8>><
>>: for i~1,2, . . . ,l(A),k~1,2, . . . ,l(A’)

where pik is defined in Eq. (24).

The probability matrix fpikg1ƒiƒl(A),1ƒkƒl(A)’ is often called an

averaged aligned-base (matching) probability matrix of A and A0. In

the iterative refinement of the ProbCons [19] algorithm, the

existing multiple alignments are randomly partitioned into two

groups and those two multiple alignments are re-aligned. This

procedure is equivalent to Problem 10.

The estimator used in ProbCons is identical to Estimator 4 in

the limit c??. Therefore, the estimator used in ProbCons is a

special case of Estimator 4 and it only takes into account the SEN

or SPS (sum-of-pairs score) of a predicted alignment.

Common secondary structure prediction from a multiple

alignment of RNA sequences. Common secondary structure

prediction from a given multiple alignment of RNA sequences

plays important role in RNA research including non-coding RNA

(ncRNA) [43] and viral RNAs [44], because it is useful for

phylogenetic analysis of RNAs [45] and gene finding [43, 46–48].

In contrast to conventional secondary structure prediction of RNA

sequences (Problem 2), the input of common secondary structure

prediction is a multiple alignment of RNA sequences and the

output is a secondary structure whose length is equal to the length

of the input alignment (see Figure 6).

Problem 11 (Common secondary structure prediction)
The data is represented as D~fAg where A is a multiple alignment of RNA

sequences and the predictive space Y is identical to S(A) (the space of

secondary structures whose length is equal to the alignment).

The representative estimator (Definition 10) directly gives an

estimator for Problem 11.

Estimator 5 (The representative estimator for Prob-
lem 11) For Problem 11, we obtain the representative estimator (Definition

10) as follows. The gain function G’(hk,y) is the gain function of the c-centroid

estimator. The parameter space is equal to H~Px [ A S(x) where S(x) is the

space of secondary structures. The probability distribution on H is given by

p(hDD)~Px [ A px(hxDA) where px(hxDA) is the probability distribution of

the secondary structures of x [ A after observing the alignment A.

For example, px(hxDA) can be given by extending the p(s)(hDx),
although we have also proposed more appropriate probability

distribution (see [49] for the details).

Corollary 2 proves the following properties of Estimator 5.

Figure 5. An evaluation process for Problem 10. The comparison between every pairwise alignment and the reference alignment is conducted
using TP, TN, FP and FN with respect to the aligned-bases.
doi:10.1371/journal.pone.0016450.g005

Figure 6. Common secondary structure prediction (Problem 11).
doi:10.1371/journal.pone.0016450.g006
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Property 13 (A relation of Estimator 5 with accuracy
measures) Estimator 5 is consistent with an evaluation process for common

secondary structure prediction: First, we map the predicted common secondary

structure into secondary structures in the multiple alignment, and then the

mapped structures are compared with the reference secondary structures based on

TP, TN, FP and FN of the base-pairs using, for example, SEN, PPV and

MCC (Figure 7).

Much research into common secondary structure prediction

employs the evaluation process in Figure 7 (e.g., [50]).

Property 14 (Computation of Estimator 5) The common

secondary structure of Estimator 5 is given by maximizing the sum of the

averaged base-pairing probabilities pij where

pij~
1

DAD

X
x [ A

px(hx
ij~1DA): ð25Þ

Therefore, the common secondary structure of the estimator can be computed

using the dynamic programming algorithm in Eq. (10) if we replace pij with

pij .

Also, we can predict the secondary structure of Estimator 5

without conducting Nussinov-style DP:

Property 15 (Computation of Estimator 5 with 0ƒªƒ1)
The secondary structure of Estimator 5 with c [ ½0,1� can be predicted by

collecting the base-pairs whose averaged base-paring probabilities are larger

than 1=(cz1).

It should be noted that the tools of common secondary structure

prediction, RNAALIFOLD [50], PETFOLD [8] and MCCASKILL-MEA

[7] are also considered as a representative estimators (Definition

10). In [49], the authors systematically discuss those points. See

[49] for details.

Pairwise alignment using homologous sequences. As in

the previous application to RNA secondary structure prediction

using homologous sequences, if we obtain a set of homologous

sequences H for the target sequences x and x’ (see Figure 8), we

would have more accurate estimator for the pairwise alignment of

x and x’ than Estimator 1. The problem is formulated as follows.

Problem 12 (Pairwise alignment using homologous
sequences) The data is represented as D~fx,x’,Hg where x and x’ are

two biological sequences that we would like to align, and H is a set of

homologous sequences for x and x’. The predictive space Y is given by

Y~A(x,x’) which is the space of the pairwise alignments of two sequences x

and x’.
The difference between Problem 1 and this problem is that we can

use other biological sequences (that seem to be homologous to x and x’)
besides the two sequences x and x’ which are being aligned.

We can introduce the probability distribution (denoted by

p(a)(hDx,x’,h)) on the space of multiple alignments of three

sequences x, x’ and h (denoted by A(x,x’,h) and whose definition

is similar to that of A(x,x’)) by a model such as the triplet HMM

(which is similar to the pair HMM). Then, we obtain a probability

distribution on the space of pairwise alignments of x and x’ (i.e.,

A(x,x’)) by marginalizing p(a)(hDx,x’,h) into the space A(x,x’):

p(hDx,x’)~
X

h’ [ W{1(h)

p(a)(h’Dx,x’,h) ð26Þ

where W is the projection from A(x,x’,h) into A(x,x’). Moreover,

by averaging these probability distributions over h [ H, we obtain

the following probability distribution on A(x,x’):

p(hDx,x’)~
1

DH D

X
h [ H

X
h’ [ W{1(h)

p(a)(h’Dx,x’,h) ð27Þ

where DH D is the number of sequences in H .

The c-centroid estimator with the distribution in Eq. (27)

directly gives an estimator for Problem 12. However, to compute

the aligned-base-pairs (matching) probabilities pik with respect to

this distribution demands a lot of computational time, so we

employ the approximated c-type estimator (Definition 12) of this c-

centroid estimator as follows.

Estimator 6 (Approximated ª-type estimator for
Problem 12) We obtain the approximated c-type estimator (Definition

12) for Problem 12 with the following settings. The parameter space is given

by H~H’|H’\ where

H’~A(x,x’)(~Y ) and H’\~ P
h [ H
½A(x,h)|A(x’,h)�

and the probability distribution on the parameter space H’ is defined by

Figure 7. An evaluation process for common secondary structure prediction (Problem 11). The comparison between each secondary
structure and the reference secondary structure is done using TP, TN, FP and FN with respect to the base-pairs.
doi:10.1371/journal.pone.0016450.g007
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p(hDD)~p(a)(hxx’Dx,x’) P
h [ H

p(a)(hxhDx,h)p(a)(hx’hDx’,h)
� �

ð28Þ

for h~(hxx’,fhxh,hx’hgh [ H ) [ H~H’|H’\. The pointwise gain

function (see Definition 4) in Eq. (11) is defined by

dik(h)~
1

1zDH D
I(hxx’

ik ~1)z
X
h [ H

XDhD

v~1

I(hxh
iv ~1)I(hx’h

kv ~1)

( )
ð29Þ

where DhD is the length of the sequence h.

Property 16 (Computation of Estimator 6) The alignment of

Estimator 6 is equal to the alignment that maximizes the sum of pik larger

than 1=(cz1) where

pik~
1

jHjz1

p(hxx’
ik ~1jx,x’)z

P
h [ H

Pjhj
v~1

p(a) hxh
iv ~1jx,h

� �
p(a) hx’h

kv ~1jx’,h
� �

8><
>:

9>=
>;:ð30Þ

Therefore, the recursive equation of the dynamic program to calculate the

alignment of Estimator 6 is given by replacing pik in Eq. (19) with Eq. (30).

Moreover, by using Theorem 1, we have the following

proposition, which enables us to compute the proposed estimator

for c [ ½0,1� without using (Needleman-Wunsch-type) dynamic

programming.

Property 17 (Computation of Estimator 6 for 0ƒªƒ1)
The pairwise alignment of Estimator 6 with c [ ½0,1� can be predicted by

collecting the aligned-bases whose probability pik in (30) is larger than

1=(cz1).

It should be noted that fpikg1ƒiƒDxD,1ƒkƒDx’D is identical to the

probability consistency transformation (PCT) of x and x’ [19]. In

ProbCons [19], the pairwise alignment is predicted by the

Estimator 6 with sufficiently large c. Therefore, the estimator for

Problem 12 used in the ProbCons algorithm is a special case of

Estimator 6.

RNA secondary structure prediction using homologous

sequences. If we obtain a set of homologous RNA sequences

for the target RNA sequence, we might have a more accurate

estimator [23] for secondary structure prediction than the c-

centroid estimator (Estimator 2). This problem is formulated as

follows and was considered in [23] for the first time (See Figure 9).

Problem 13 (RNA secondary structure prediction
using homologous sequences) The data D is represented as

D~fx,Hg where x is the target RNA sequence for which we would like to

make secondary structure predictions and H is the set of its homologous

sequences. The predictive space Y is identical to S(x), the space of the

secondary structures of an RNA sequence x.

The difference between this problem and Problem 2 is that we

are able to employ homologous sequence information for

predicting the secondary structure of the target RNA sequence.

In this problem, it is natural that we assume the target sequence x
and each homologous sequence h [ H share common secondary

structures. The common secondary structure is naturally modeled

by a structural alignment (that considers not only the alignment

between bases but also the alignment between base-pairs), and the

probability distribution (denoted by p(sa)(hDx,x’)) on the space of

the structural alignments of two RNA sequences x and x’ (denoted

by SA(x,x’)) is given by the Sankoff model [51]. By marginalizing

the distribution p(sa) into the space of secondary structures S(x) of

the target sequence x, we obtain more reliable distribution p(hDx)
on S(x):

p(hDx)~
X

h’ [ W{1(h)

p(sa)(h’Dx,h) ð31Þ

where W is the projection from SA(x,h) into S(x). Moreover, by

averaging these probability distributions on S(x), we obtain the

following probability distribution of secondary structures of the

target sequence.

p(hDx)~
1

DH D

X
h [ H

X
h’ [ W{1(h)

p(sa)(h’Dx,h) ð32Þ

where DH D is the number of sequences in H. The c-centroid

estimator with the probability distribution in Eq. (32) gives a

reasonable estimator for Problem 13, because Eq. (32) considers

consensus secondary structures between x and h [ H . However,

the calculation of the c-estimator requires huge computational cost

because it requires O(nL6) for computing the base-paring

probability matrix fpikg where pik~
P

h [ S(x) I(hij~1)p(hDx) with

the distribution of Eq. (32). Therefore, we employ the approxi-

mated c-type estimator (Definition 12) of the c-centroid estimator,

which is equivalent to the estimator proposed in [23].

Figure 8. Pairwise alignment using homologous sequences (Problem 12).
doi:10.1371/journal.pone.0016450.g008

Figure 9. RNA secondary structure prediction using homologous sequences (Problem 13).
doi:10.1371/journal.pone.0016450.g009
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Estimator 7 (Approximated c-type estimator for
Problem 13) We obtain the approximated c-type estimator (Definition

12) for Problem 13 with the following settings. The parameter space is given

by H~H’|H’\ where

H’~S(x)(~Y ) and H’\~ P
h [ H
½A(x,h)|S(h)�,

and the probability distribution on H is defined by

p(hDD)~p(s)(hxDx) P
h [ H

p(a)(hxhDx,h)p(s)(hhDh)
� �

for h~(hx,fhxh,hhgh [ H ) [ H~H’|H’\. Moreover, Eq. (11) in the

pointwise gain function is defined by

dij(h)~aI(hx
ij~1){

1{a

DH D

X
h [ H

X
kvl

I(hxh
ik ~1)I(hxh

jl ~1)I(hh
kl~1)

for a [ ½0,1�.
It should be noted that Estimator 13 is equivalent to the

estimator proposed in [23]. The secondary structure of the

estimator can be computed by the following method.

Property 18 (Computation of Estimator 7) The secondary

structure of Estimator 7 is computed by maximizing the sum of pij larger than

1=(cz1) where

pij~ap
(s,x)
ij z

1{a

DH D

X
h [ H

X
kvl

p
(a,x,h)
ik,jl p

(s,h)
kl : ð33Þ

Here, p
(s,x)
ij ~p(s)(hx

ij~1Dx) and p
(a,x,h)
ik,jl ~p(a)(hxh

ik ~1,hxh
jl ~1Dx,h).

Therefore, the secondary structure of Estimator 7 can be computed by the

Nussinov-type DP of Eq. (10) in which we replace pij by Eq. (33).

The computational cost with respect to time for computing the

secondary structure of Estimator 7 is O(nL4) where n is the

number of RNA sequences and L is the length of RNA sequences.

In [23], we employed a further approximation of the estimator,

and reduced the computational cost to O(nL3). We implemented

this estimator in software called CENTROIDHOMFOLD. See [23] for

details of the theory and results of computational experiments.

Although the authors did not mention it in their paper [23], the

following property holds.

Property 19 (Computation of Estimator 7 with 0ƒªƒ1)
Estimator 7 with c [ ½0,1� can be predicted by collecting the aligned-bases

where the (pseudo-)base-paring probability of Eq. (33) is larger than

1=(cz1).
Pairwise alignment of structured RNAs. In this section,

we focus on the pairwise alignment of structured RNAs. This

problem is formulated as Problem 1, so the output of the problem

is a usual alignment (contained in A(x,x’)). In contrast to the usual

alignment problem, we can consider not only nucleotide sequences

but also secondary structures in each sequence for the problem.

Note that this does not mean the structural alignment [51] of RNA

sequences, because the structural alignment produces both

alignment and the common secondary structure simultaneously.

The probability distributions p(a)(hDx,x’) on A(x,x’) described

in the previous section are not able to handle secondary structures

of each RNA sequence. In order to obtain a probability

distribution on A(x,x’) that considers secondary structure, we

employ the marginalization of the Sankoff model [51] that gives a

probability distribution (denoted by p(sa)(hDx,x’)) on the space of

possible structural alignments between two RNA sequences

(denoted by SA(x,x’)). In other words, we obtain a probability

distribution on the space A(x,x’) by marginalizing the probability

distribution of structural alignments of two RNA sequences (given

by the Sankoff model) into the space A(x,x’) as follows.

p(hDx,x’)~
X

h’ [ W{1(h)

p(sa)(h’Dx,x’) ð34Þ

where W is the projection from SA(x,x’) into A(x,x’), h [ A(x,x’)
and h’ [ SA(x,x’). The difference between this marginalized

probability distribution and the distributions such as Miyazawa

model is that the former considers secondary structures of each

sequence (more precisely, the former considers the common

secondary structure).

Then, the c-centroid estimator with this distribution Eq. (34)

will give a reasonable estimator for the pairwise alignment of two

RNA sequences. However, the computation of this estimator

demands huge computational cost because it uses the Sankoff

model (cf. it requires O(L6) time for computing the matching

probability matrix of structural alignments). Therefore, we

employed the approximated c-type estimator (Definition 12) of

the c-centroid estimator with the marginalized distribution as

follows.

Estimator 8 (Approximated c-type estimator for
Problem 1 with two RNA sequences) In Problem 1 where x

and x’ are RNA sequences, we obtain the approximated c-type estimator

(Estimator 2) with the following settings. The parameter space is given by

H~H’|H’\ where

H’~A(x,x’)(~Y ), H’\~S(x)|S(x’)

and the probability distribution on the parameter space H is defined by

p(hDx,x’)~p(a)(h(a,x,x’)Dx,x’)p(s)(h(s,x)Dx)p(s)(h(s,x’)Dx’)

for h~(h(a,x,x’),h(s,x),h(s,x’)) [ H. The pointwise gain function of Eq. (11)

is defined by

duv(h)~w1h(a,x,x’)
uv zw2 Ruv(h)zLuv(h’)

� �
zw3g(x)

u g(x’)
v

where

Ruv(h) : ~
X

j:uvj,l:vvl

h(s,x)
uj h(s,x’)

vl h(a,x,x’)
jl ,

Luv(h) : ~
X

i:ivu,k:kvv

h
(s,x)
iu h

(s,x’)
kv h

(a,x,x’)
ik ,

g(x)
u : ~ P

j:uvj
(1{h(s,x)

uj ) P
j:jvu

(1{h(s,x)
ju ),

and w1, w2 and w3 are positive weights that satisfy w1zw2zw3~1.

This approximated c-type estimator is equivalent to the

estimator proposed in [52] and the alignment of the estimator

can be computed by the following property.

Property 20 (Computation of Estimator 8) The alignment of

Estimator 8 can be computed by maximizing the sum of probabilities puv that

are larger than 1=(cz1) where

Generalized Centroid Estimators in Bioinformatics

PLoS ONE | www.plosone.org 17 February 2011 | Volume 6 | Issue 2 | e16450



puv~w1p(a,x,x’)
uv zw2(

X
j:uvj,l:vvl

p
(s,x)
uj p

(s,x’)
vl p

(a,x,x’)
jl z

X
i:ivu,k:kvv

p
(s,x)
iu p

(s,x’)
kv p

(a,x,x’)
ik )zw3q(s,x)

u q(s,x’)
v :

ð35Þ

Here, we define

p
(s,x)
ij ~

X
h [ S(x)

hijp
(s)(hDx),

q(s,x)
u ~1{

X
i:ivu

p
(s,x)
iu {

X
j:uvj

p
(s,x)
uj and

p(a,x,x’)
uv ~

X
h [ A(x,x’)

huvp(a)(hDx,x’):

Therefore, the pairwise alignment of Estimator 8 can be computed by a

Needleman-Wunsch-type dynamic program of Eq. (19) in which we replace

pij with Eq. (35).

Note that puv in Eq. (35) is considered as a pseudo-aligned base

probability where xu aligns with xv.

By checking Eq. (14), we obtain the following property:

Property 21 (Computation of Estimator 8 with 0ƒªƒ1)
The pairwise alignment of Estimator 8 can be predicted by collecting aligned-

bases where the probability in Eq. (35) is larger than 1=(cz1).

Proofs
In this section, we give the proofs of the theorems, propositions

and corollary.

Proof of Theorem 1. We will prove a more general case of

Theorem 1 where the parameter space H is different from the

predictive space Y and a probability distribution on H is assumed

(cf. Assumption 2).

Theorem 4 In Problem 3 with Assumption 1 and a pointwise gain

function, suppose that a predictive space Y can be written as

Y~
\K
k~1

Ck, ð36Þ

where Ck is defined as

Ck~fy [ f0,1gnD
X
i [ Ik

yiƒ1g for k~1,2, . . . ,K

for an index-set Ik5f1,2, . . . ,ng. If the pointwise gain function in Eq. (1)

(we here think h is in a parameter space H which might be different from Y )

satisfies the condition

Fi(h,1){Fi(h,0)zFj(h,1){Fj(h,0)ƒ0 ð37Þ

for every h [ H and every i,j [ Ik (1ƒkƒK), then the consensus estimator

is in the predictive space Y , and hence the MEG estimator contains the

consensus estimator.

(proof) It is sufficient to show that the consensus estimator ŷy(c) is

contained in the predictive space Y because �GG(ŷy)ƒ�GG(ŷy(c)) for all ŷy in the

MEG estimators, where

G(y) : ~EhDD½G(h,y)�~
ð

G(h,y)p(hDD)dh:

If we assume that ŷy(c) is not contained in the predictive space, Y that is,

ŷy(c)=[Y , then there exists a k0 such that ŷy(c)=[Ck0
. Because ŷy(c) is a binary

vector, there exist indexes i,j [ Ik0
such that i=j, ŷy

(c)
i ~1 and ŷy

(c)
j ~1. By

the definition of ŷy(c), we obtain

E Fi(h,1)½ �wE Fi(h,0)½ � and E Fj(h,1)
� �

wE Fj(h,0)
� �

:

Therefore, we obtain

0vE Fi(h,1){Fi(h,0)zFj(h,1){Fj(h,0)
� �

~ [ t Fi(h,1){Fi(h,0)zFj(h,1){Fj(h,0)
� �

p(hDD)dh

ƒ0:

In order to prove the last inequality, we use Eq. (??). This leads to a

contradiction and the theorem is proved.

Remark 3 It should be noted that the above theorem holds for an

arbitrary parameter space including continuous-valued spaces.

Proof of Theorem 2. (proof) Because I(yi~1)zI(yi~0)~1
for arbitrary i, we obtain, using the definitions given in equations

(15),(16),(17) and (18),

TPzFN~
X

i

I(hi~1) and TNzFP~
X

i

I(hi~0):

Therefore, we have

a1TPza2TN{a3FP{a4FN

~(a1za4)TPz(a2za3)TN{a3

X
i

I(hi~0){a4

X
i

I(hi~1)

~(a2za3)
a1za4

a2za3
TPzTN


 �
{a3

X
i

I(hi~0){a4

X
i

I(hi~1)

and this leads to the proof of the theorem.

Proof of Theorem 3. (proof) The expectation of the gain function

of the c-centroid estimator is computed as

EhDD½G(h,y)�~
X
h [ H

Xn

i~1

cI(hi~1)I(yi~1)zI(hi~0)I(yi~0)½ �p(hDD)

~
Xn

i~1

c:pi
:I(yi~1)z(1{pi)(1{I(yi~1))½ �

~
Xn

i~1

(cz1)pi{1½ �I(yi~1)z
X

i

(1{pi)

where pi~p(hi~1DD)~
P

h [ H I(hi~1)p(hDD) is the marginalized

probability. Therefore, we should always predict yi~0 whenever

piv1=(cz1), because the assumption of Theorem 3 ensures that the

prediction yi~0 never violate the condition of the predictive space Y . Theorem

3 follows by using those facts.

Proof of Corollary 1. (proof) For every h [ H, k~1,2, . . . ,K ,

i,j [ Jk, c [ ½0,1�, we have
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Fi(h,1){Fi(h,0)zFj(h,1){Fj(h,0)

~cI(hi~1){I(hi~0)zcI(hj~1){I(hj~0)

ƒ2 I(hi~1)zI(hj~1)
� �

{2

ƒ0

and the condition of Eq. (3) in Theorem 1 is satisfied (in order to prove the last

inequality, we use I(hi~1)zI(hj~1)ƒ1 because i,j [ Jk). Therefore, by

Theorem 1, the c-centroid estimator contains its consensus estimator.

The last half of the corollary is easily proved using the equation

X
h [ H

Fi(h,yi)p(hjD)~
X
h [ H

I(hi~yi~0)zcI(hi~yi~1)ð Þp(hjD)

~
cpi for yi~1

1{pi for yi~0

(

where pi~p(hi~1DD)~
P

h [ H I(hi~1)p(hDD).

Proof of Proposition 1. (proof) 5 The representative estimator in

Definition 10 can be written as

ŷy~ arg max
y[Y

ð
G(h,y)p(hjD)dh

~ arg max
y[Y

ð
½
XK

k~1

G0(hk,y)�½ P
K

k~1
p(k)(hkjD)�dh

~ arg max
y[Y

ð
G0(h0,y)½1

K

XK

k~1

p(k)(h0jD)�dh0

Then, we finish the proof of Proposition 1.

Derivation of Eq. (14). The equation is easily derived from

the equality Fi(h’,1){Fi(h’,0)~(cz1)di(h’){1.
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