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Abstract 

Background:  Intensity normalization is an important preprocessing step in brain 
magnetic resonance image (MRI) analysis. During MR image acquisition, different scan-
ners or parameters would be used for scanning different subjects or the same subject 
at a different time, which may result in large intensity variations. This intensity variation 
will greatly undermine the performance of subsequent MRI processing and population 
analysis, such as image registration, segmentation, and tissue volume measurement.

Methods:  In this work, we proposed a new histogram normalization method to 
reduce the intensity variation between MRIs obtained from different acquisitions. In 
our experiment, we scanned each subject twice on two different scanners using dif-
ferent imaging parameters. With noise estimation, the image with lower noise level 
was determined and treated as the high-quality reference image. Then the histogram 
of the low-quality image was normalized to the histogram of the high-quality image. 
The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, 
for the high-quality reference image, the intensities of the image are first rescaled to a 
range between the low intensity region (LIR) value and the high intensity region (HIR) 
value; and (2) histogram normalization (HN),where the histogram of low-quality image 
as input image is stretched to match the histogram of the reference image, so that the 
intensity range in the normalized image will also lie between LIR and HIR.

Results:  We performed three sets of experiments to evaluate the proposed method, 
i.e., image registration, segmentation, and tissue volume measurement, and compared 
this with the existing intensity normalization method. It is then possible to validate that 
our histogram normalization framework can achieve better results in all the experi-
ments. It is also demonstrated that the brain template with normalization preprocess-
ing is of higher quality than the template with no normalization processing.

Conclusions:  We have proposed a histogram-based MRI intensity normalization 
method. The method can normalize scans which were acquired on different MRI 
units. We have validated that the method can greatly improve the image analysis 
performance. Furthermore, it is demonstrated that with the help of our normalization 
method, we can create a higher quality Chinese brain template.
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Open Access

© 2015 Sun et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

Sun et al. BioMed Eng OnLine  (2015) 14:73 
DOI 10.1186/s12938-015-0064-y

*Correspondence:   
lhp9019@163.com;  
dfwang@cuhk.edu.hk 
1 Department of Imaging 
and Interventional Radiology, 
The Chinese University 
of Hong Kong, Shatin, New 
Territories, Hong Kong, China
8 Department of Radiology, 
The Second Hospital of Jilin 
University, Changchun, Jilin, 
China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-015-0064-y&domain=pdf


Page 2 of 17Sun et al. BioMed Eng OnLine  (2015) 14:73 

Background
Magnetic resonance imaging (MRI), as a non-invasive imaging method, has been widely 
used to study and analyze human brains. Although lacking of a normalized intensity 
scale of MRI has no direct effect on clinical medical diagnosis by doctors, the situation 
is complicated by some image post-processing technique, such as automatic segmenta-
tion, registration and quantification method, which are highly dependent on the inten-
sity information to achieve favorable results. In particular, for the large-scale multi-site 
neuroimaging studies involving a significant number of subjects scanned with different 
scanner types and scanning parameters. The differences in subject positioning between 
sites or a baseline and a later scan, or protocol can be found, making the interpretation 
difficult without intensity normalization. Normalization of the observed image intensi-
ties is of crucial importance to explore the disease progression in many clinical stud-
ies. However, images from different scanners or with different acquisition parameters 
may have large intensity variations, which greatly affects the results of image analysis. 
Therefore, an intensity normalization of MRI scans, which aims at correcting for scan-
ner-dependent variations, is essential for accurate MRI analysis. The previous studies 
concerning work on MRI intensity normalization are briefly reviewed as follows.

A histogram matching method was proposed for correcting the variations in scanner 
sensitivity due to differences in scanner performance [1]. It was shown that this method 
can reduce the variations in white matter (WM) intensities from 7.5 to 2.5%. Further-
more, the utility of even order derivative analysis in the MRI histogram was demon-
strated in [2]. It was shown that good WM peak discrimination can be achieved even 
when there is a large overlap between gray matter (GM) and WM peaks, as is the case 
with the T2-weighted brain images. Furthermore, the ability of the normalization pro-
cedure to correct the global intensity variations over time was demonstrated by the high 
degree of reproducibility in segmentation results. In another study [3], an image post 
processing method was proposed for integrating multiple serial MRI scans into a vol-
ume to facilitate quantitative evaluation of the temporal intensity profiles. A fatal error 
reduction was observed when applying tissue specific inter-scan intensity normalization. 
Nyul et al. proposed a method consisting of a training stage to find the parameters of the 
standard scale and a transformation stage to map the histograms of candidate volumes 
onto the standard histogram scale [4]. The effectiveness of the above method proposed 
in [5], was later evaluated in [6] for rendering. It was demonstrated that the lesion seg-
mentation result is more accurate after applying the normalization method. The above 
intensity normalization algorithms are mainly designed to align MRI intensities to a 
standard grayscale. In addition, some histogram matching algorithms were designed to 
match the histogram of the input image with the histogram of the reference image by 
minimizing some information-centric criteria, such as through a joint histogram [7]. But 
this method suffers from unreliable processing results [8]. Because, in order for the exist-
ing histogram matching based on a joint histogram to achieve a more reliable implemen-
tation, it required a better prior knowledge based of the neighborhoods used to split up 
the image into K sub-images, which are corrected separately [9]. However, this method 
relies on a non-rigid registration to match the histogram, making it considerably slower 
than approaches which normalize an image without using additional preprocessing 
steps. As it is desired that intensity normalization as an image preprocessing method 
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should be efficient and easy to implement, we propose a simple global histogram nor-
malization method, which has a low computation complexity and no parameter tuning.

In this paper, we propose to implement intensity normalization to achieve homoge-
neous intensities or similar image quality for two brain MR images acquired from two 
different field strength scanners with different acquisition parameters. Firstly, a noise 
estimation model was employed to assess the image quality. Secondly, the high-quality 
image served a as reference and was first preprocessed with intensity scaling. Finally, 
histogram normalization was implemented on the low-quality image to match the refer-
ence histogram of the preprocessed high-quality image. During MR image acquisition, 
different machines or parameters would be used for scanning different subjects or the 
same subject at a different time, which may result in large intensity variations across 
scans. Our normalization method can be applied in many situations. For example, in 
population analysis, our method is essential for normalizing intensity level in different 
subjects and making consistent analysis results. In addition, to analyze one subject’s 
MRIs scanned at different time, our method can be helpful for eliminating the effect 
of imaging environment and parameters change. In our experiments, the performance 
of our method was qualitatively and quantitatively evaluated with three image analysis 
experiments, i.e., image registration, image segmentation and tissue volume measure-
ment. We have validated that the intensity normalization method can help improve low-
quality images and thus increase the accuracy of the image analysis result. During MR 
image acquisition, different machines or parameters would be used for scanning differ-
ent subjects or the same subject at a different time, which may result in large intensity 
variations across scans. Our normalization method may be applied in many cases. For 
the MR images of different scanning subjects, the most high-quality MR image from the 
same dataset or a standard high-quality brain template image served as the reference 
through image quality estimation. For MR images of the same subject at a different time, 
the high-quality MR image from the same subject served as the reference through image 
quality estimation to perform intensity normalization upon with respect to the same 
subject. In our method, we always guarantee the high-quality image to be provided as 
the reference image in order to maintain the overall high quality of normalized images. 
To popularize our method, we also employed this normalization technique as a preproc-
essing step to construct Chinese brain template for a group of subjects aging from 20 to 
30 years, and studied the effectiveness of intensity normalization on the quality of Chi-
nese brain template in large-scale image dataset.

Methods
MRI data acquisition and preprocessing

The study was approved by the Ethics Committee of the Chinese University of Hong 
Kong at the Prince of Wales Hospital. All the selected subjects signed consent forms. In 
this study, the brain MRI images used for experimental evaluation consists of 22 images, 
two for each patient, which were acquired from the Department of Imaging and Inter-
ventional Radiology, Prince of Wales Hospital in Hong Kong, China during July 2011. 
Eleven adult subjects (4 males, and 7 females), with ages ranging from 20 to 70 years old 
were scanned twice with a Siemens Sonata (Siemens Medical System, Iselin, NJ) 1.5T 
MRI scanner and a Philips Achieva (Philips Medical Systems, Best, the Netherlands) 
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3.0T MRI scanner, with an interval of 8–12 min. The sagittal MR images used for analy-
sis were obtained using a T1-weighted fast field echo (FFE) pulse sequence (repetition 
time = 25 ms, echo time = 2.36 ms, flip angle = 30) when using the 1.5T scanner, and 
a T1-weighted inversion recovery multiplanar reformatting (IR-MPR) pulse sequence 
(repetition time =  1,990  ms, echo time =  3.93  ms, inversion time =  1,100  ms) when 
using the 3.0T scanner. The reconstructed images of the 3T unit had a slice thickness of 
1.8 mm and a field of view of 230 mm with a pixel resolution of 1.239 pixels per mm and 
a 256 × 256 matrix. And the images of the 1.5T unit had a slice thickness of 1 mm and a 
field of view of 230 mm with a pixel resolution of 4.956 pixels per mm and a 256 × 216 
matrix. A built-in radiofrequency (RF) body coil within the 1.5T MRI scanner and dual 
RF surface coils with a  parallel reconstruction  scheme within 3.0T MRI scanner were 
used for the radio signal transmission and signal detection, respectively.

The intensities and quality of the images with different parameters were quite different. 
As the intensity percentage of the skull dramatically varies for different settings; brain 
extraction was performed to obtain a robust normalization result. The Brain Extraction 
Tool (BET) of the FSL (FMRIB’s Software Library) software is a fast robust automated 
tool for skull stripping [10]. This tool was utilized to remove non-brain areas. For com-
plete brain stripping, we have to manually modify the results produced by this tool, as 
an automated extraction may not eliminate the skull well enough; which can lead to later 
errors in registration and segmentation.

Image quality assessment

As the images were acquired from different scanners with various acquisition param-
eters (e.g. repetition time, echo time, or flip angle), the quality of the scanned images 
was very different. The objective of our study was to normalize the histogram of a low-
quality MRI to the histogram of a high-quality MRI in order to improve the image qual-
ity of the low-quality MRI. Therefore, it is crucial to assess the quality of the images first. 
Numerous approaches have been proposed for MRI quality assessment [11]. As our 
intensity normalization method aims to normalize histograms, we will use a histogram 
to assess the image quality. We employed the noise estimation method proposed by Aja-
Fernández et al. [12, 13]. It uses the histogram of MRI based on the background intensity 
only and does not need any prior knowledge. The Aja-Fernández’s estimator assumes a 
Rayleigh probability density function (PDF) in the background of the image [12, 13]. The 
estimation was done without segmentation, by taking the maximum value of some local 
distribution. It defines the noise estimation index ⌢σ n as,

where mode{M(x)} is a mode of the distribution of image M(x), and ⌢σ n is a noise esti-
mation index. With the calculated index, the MRI quality can be directly assessed. A 
smaller value of the estimation index indicates a higher quality of the image.

Histogram‑based normalization

A normalization algorithm adjusts the distributions of each follow up scan to match the 
chosen baseline scan in order to improve image similarity and facilitate MR image com-
parability between MRI scans [3]. As mentioned previously, the Nyul’s algorithm [5] of 

(1)
⌢
σ n = mode{M(x)}
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intensity normalization relies on landmarks to achieve normalization. However, reliable 
landmarks are usually difficult to consistently locate [14]. Therefore, we propose the fol-
lowing histogram normalization algorithm without requiring any prior knowledge or 
manual intervention.

For the same subject, the proportions of intensity levels for the same tissue type for 
brain MRIs from scanners with different field strengths and various acquisition param-
eters were similar. Thus, a high-quality image serves as a reference image, and the 
low-quality one will be serve as the input image. The tails of the histogram often cause 
problems. Usually the high intensity tail corresponds to artifacts and outlier intensities, 
which causes considerable scanner variations. To avoid this problem, we first preprocess 
the reference image, removing the background and outliers, which results in the inten-
sity of interest (IOI) as the standard scale.

Our overall approach includes two steps as follows. Denote the minimum and the 
maximum intensities on the standard scale (corresponding to the standard histogram) 
as Smin and Smax.

1.	 Intensity scaling (IS). For the reference image, the histogram is composed of homo-
geneous low intensity regions of interest (low intensity region-LIR) and high inten-
sity regions of interest (high intensity region-HIR).The histogram starts at LIR and 
extends up to HIR brightness levels. The image intensities are mapped to the values 
between HIR and LIR. Here, HIR is defined as the value at the maximum decile, and 
LIR is defined as the value at the minimum decile. These definitions can help remove 
background noise and outliers as described above. It is implemented as follows: 

 where f (x, y, z) is a gray value of original reference at (x, y, z), and f ′(x, y, z) is the 
corresponding transformed grayscale value.

2.	 Histogram normalization (HN). The reference image histogram is stretched, and 
shifted in order to cover all the grayscale levels in the input image as follows, 

If the target histogram of the input image g(x, y, z) starts at Smin and extends up to Smax 
grayscale levels in IOI, then we can scale up the image between the lower boundary m′

1 
and the upper boundary m′

2 so that the voxels in the new normalized image g ′(x, y, z), 
will lie between a minimum level (LIR) and a maximum level (HIR). The following varia-
bles m1 and m2 are the lower boundary and upper boundary of the reference image prior 
to scaling up, respectively.

This is done by doing two separate linear mappings. The first is from [S1i, µi] to [LIR,  
µs] and the second is from [µi, S2i] to [µs, HIR]. Figure 1 shows the plot of the mapping 
function. The lower and the upper ends of the standard scale are subsequently extended 
to m′

1 and m′
2, respectively, by mapping [m1, S1i] to [m′

1, LIR] and [S2i, m2] to [HIR, m′
2], as 

illustrated in Fig. 1. We call this mapping from the intensities [m′
1, m

′
2] to [m1, m2] of the 

(2)f ′(x, y, z) =
f (x, y, z)− LIR

HIR− LIR

(3)g ′(x, y, z) =
HIR− LIR

Smax − Smin

(

g(x, y, z)− Smin

)

+ LIR
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standard scale the normalization of the input image. We denote the normalization func-
tion as N (x, y, z). The expression for N (x, y, z) (from Fig. 1) is:

where ⌈•⌉ denotes the ‘‘ceiling’’ operator, µi and µs are the mean values for the input 
image histogram and reference image histogram, respectively. S1i and S2i are the voxel 
values from the input image. In this work, instead of using the suggested 10 percentile 
intensity landmarks of Ref. [4], we have used three important intensity values [minimum 
(e.g. LIR and S1i), maximum (e.g. HIR and S2i) and mean (e.g., µi and µs)], which will be 
achieved easily without depending on unreliable landmarks in the histogram for normal-
izing the MRI images. Therefore, the proposed normalization method is not essentially 
the same as the existing normalization method.

After normalizing the input image (low-quality image) to the reference image (high-
quality image), the performance of histogram normalization is estimated with noise 
estimation.

Evaluation methodology and experiments
In these experiments, we have tried to incorporate as wide a range as possible to reflect 
variations in scanners, such as pulse sequence, magnetic field strength, and slice thick-
ness in the MRIs utilized for this purpose. The evaluation of the normalization algorithm 
was performed to examine the accuracy improvement of MRI analysis after histogram-
based normalization. The following three aspects are considered for evaluation.

1.	 Whether normalization helps in improving the accuracy of non-rigid registration 
compared to other normalization methods.

(4)N (x, y, z) =















�

µs + (g(x, y, z)− µi)
LIR− µs

S1i − µi

�

, m′
1 ≤ g(x, y, z) ≤ µi

�

µs + (g(x, y, z)− µi)
HIR− µs

S2i − µi

�

, µi ≤ g(x, y, z) ≤ m′
2

Fig. 1  The intensity normalization function for the histogram-based normalization phase. The first mapping 
is from [S1i, µi] to [LIR, µs] and the second is from [µi, S2i] to [µs, HIR]. The lower and the upper ends of the 
standard scale are subsequently extended to m′

1
 and m′

2
, respectively, by mapping [m1, S1i] to [m′

1
, LIR] and [S2i, 

 m2] to [HIR, m′
2
].
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2.	 Whether automatic brain tissue [white matter (WM), gray matter (GM) and cerebro-
spinal fluid (CSF)] segmentation result is improved by using normalization.

3.	 Whether normalization helps in making volumes of different tissue in a normalized 
MR image more similar with volumes in high-quality MR images for the same sub-
ject after normalization.

Firstly, we performed non-rigid registration experiments to ascertain whether the nor-
malization helps in increasing the non-rigid registration accuracy after normalization. 
We employed FSL FNIRT tool to perform non-rigid registration [15]. In our experi-
ments, the nonlinear version of the MNI152 brain template is used as a reference image 
in registration. The original low-quality images, normalized low-quality images and 
high-quality images served as moving images and registered with the reference image. 
We compared our method with the histogram matching method based on the joint his-
tograms algorithm [7]. The evaluation of both visual inspection and quantitative com-
parison were performed using a mean square error (MSE),

where 
⌢

Y i is the voxel intensity of the registered image, and Yi is the corresponding voxel 
intensity of the reference image.

Secondly, a Markov random field segmentation algorithm [16] was applied to our MRI 
scans to segment three main tissues namely: WM, GM and CSF. We performed affine 
registration first to make the dimensions of all the images uniform. The results of tissue 
segmentation of the high-quality image were used as the gold standard for segmentation 
result comparison. The segmentation result was measured by a volume overlap using the 
Dice similarity coefficient (DSC) [17].

where X and Y represent binary label images for two compared segmentation images. 
DSC ranges from 0 to 1, with a higher DSC indicating a better overlap.

Finally, we utilized the three main tissue volumes measurement to evaluate our nor-
malization method. To achieve this goal, we used the FreeSurfer tool (http://surfer.nmr.
mgh.harvard.edu/) to count the volumes of WM, GM and CSF for each subject. And 
we compared the volume difference of all the three main tissues with tissue volumes of 
high-quality images for the same subject before and after normalization.

We validate our histogram normalization algorithm based on real brain MRI data. The 
existing MRI data consists of two sets of 22 T1-weighted MR brain images (obtained 
using 1.5T Siemens scanner with FFE sequence and 3T Philips scanner with IR-MPR 
sequence, respectively) from 11 subjects, that is to say, each subject had two images with 
different field strengths from each of the Philips and Siemens MRI scanners acquired.

Meanwhile, one important application of our intensity normalization method is to 
serve as a critical preprocessing step for Chinese brain template construction on young 
adults. In many template construction works [18–21], before brain template or atlas 

(5)MSE =
1

n

n
∑

i=1

(
⌢

Y i − Yi)
2

(6)DSC(X ,Y ) =
2|X ∩ Y |

|X | + |Y |

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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construction, preprocessing procedures of MR images are essential to improve the 
image quality. With intensity normalization, the boundaries between some brain tissues, 
such as WM, GM, and CSF, can be much clearer, helping increase the accuracy of ensu-
ing image registration for template construction. Hereby, our proposed normalization 
technique on whole dataset was used as a preprocessing for Chinese brain template con-
struction. We used MNI52_1 mm template, an average template of 152 T1 MRI scans of 
the same individual, as the reference brain scan for intensity normalization.

The test data were collected from 100 normal Chinese adult volunteers acquired using 
three different scanners, i.e. GE, SIEMEMS and PHILIPS. The age of the subjects ranges 
from 20 to 30  years (mean of 24.49  years). The dataset consists of 47 female and 53 
male subjects. None of the subjects had any history of neurological, psychiatric, or sig-
nificant medical illness. A set of T1-weighted brain images was acquired in the sagittal 
plane with a GE 3T Discovery MR750 scanner with an 8HRBRAIN coil. A 3D BRAVO 
sequence was applied with following parameters: 130 slices, TR/TE = 8.208/3.22 ms, flip 
angle = 12º, FOV = 256 × 256 mm2, matrix size = 256 × 256, slice thickness = 1 mm. 
Another set of T1-weighted brain images was acquired in the sagittal plane with a SIE-
MENS Verio 3T scanner with a body coil. A 3D tfi3d1 sequence was applied with fol-
lowing parameters: 176 slices, TR/TE = 1,900/2.5 ms, flip angle = 9º, FOV=218 × 250 
mm2, matrix size = 384 × 336, slice thickness = 1 mm. The rest set of T1-weighted brain 
images was acquired in the sagittal plane with a Phillips Achieva 1.5 T MRI scanner with 
a head coil. A 3D FFE sequence was applied with following parameters: 301 slices, TR/
TE = 25/4.6 ms, flip angle = 15º, FOV=256 × 256 mm2, matrix size = 256 × 256 slice 
thickness = 1 mm.

We used the procedures for constructing the brain template proposed in [18]. One 
in-house existing template image served as the reference image. All the images were first 
affinely registered to the reference image. An initial group mean image was generated 
and served as intermediate template image. Then nonrigid symmetric image normaliza-
tion (SyN) algorithm in ANTS software (http://www.picsl.upenn.edu/ANTS/) is applied 
to perform a groupwise registration to bring the population of images into the common 
space. Cross-correlation (CC) is used as our similarity metric. Our brain template of the 
100 Chinese young adults was generated by iteratively performing the above registration 
for three iterations.

Results
Firstly, the efficiency of our intensity normalization is favorable in the aspect of runt-
ime. On the runtime for normalizing a typical T1 structural brain MRI, our intensity 
normalization utilized piecewise linear transformation. So computational complexity of 
our intensity normalization is relatively lower, and the runtime (≈1 s) is shorter than the 
existing intensity normalization (runtime ≈40 s). The runtime measurements were per-
formed on an Intel Xeon(R) CPU E5606 with 2.13 GHz and 16 gigabyte RAM.

At high noise levels, histogram matching may be dependent on the number of bins 
[14]. But in the experiments, the noise of images is eliminated to a great degree dur-
ing the image acquisition. The number of bins may not negatively affect the results of 
intensity normalization and the post-processing steps. Then, we evaluated our results 
using three methods including registration, segmentation and three main tissues’ (e.g. 

http://www.picsl.upenn.edu/ANTS/
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WM, GM, and CSF) volumes measurement and compared these with the existing inten-
sity normalization achieved by the histogram matching method. The performance of this 
normalization method was evaluated through the performance of automatic brain seg-
mentation and also utilized as a preprocessing step for brain template construction.

Registration

We present one example of results for a female subject scanned with the 1.5T and 3.0T 
machines, respectively. From Fig. 2 shows the non-rigid registration results of the low-
quality image before and after normalization, as well as the high-quality image. The ref-
erence image is the T1-weighted MNI152_2mm_brain template. The MSEs between all 
the registered images and the reference images are shown in Fig. 3 and Table 1. From 
Fig. 3 and Table 1, we can observe that the MSE values with our normalized image are 
smallest among the four sets of MSE values, which validates that our histogram normali-
zation is efficient in improving registration accuracy.

Segmentation

We report Dice similarity coefficients (DSC) in Table 2 between segmentations of the 
three brain main tissues, WM, GM, and CSF. The values are averaged over eleven sub-
jects, each with two scans. Histogram normalization produces significantly higher DSC 
for GM and WM compared to histogram matching based on the minimization of some 
information-centric criteria, while the DSC indexes are comparable for the CSF segmen-
tation. Use of the histogram matching method sometimes may even decrease the perfor-
mance compared with the original image, as its performance is highly dependent on the 
number of histogram bins.

Volumes estimation

We first compute three main tissue (WM, GM, and CSF) volumes for the un-normal-
ized MRIs using the FreeSurfer software. For the same subjects, volumes of the same 
tissue (e.g. WM, GM, and CSF) for different images from the two scanners were very 
similar. Intensity boundaries between various tissues were blurry; after normalization 
the boundaries become relatively clear. We compare the volumes of WM, GM, and CSF, 
before and after normalization between the low-quality images and the high-quality 
images from the same subject, meanwhile, an additional comparison with the histogram 
matching method was performed. As shown in Table 3, it can be shown that the average 
volumes of WM, GM and CSF for the low-quality image with histogram normalization 
are closer to the high-quality image than the histogram matching method.

As described in [6], intensity normalization results in more homogenous intensity 
values for voxels of the same tissue type. The qualitative effects can be seen more clearly 
at the image level in the visual results of registration shown in Fig. 2. After normali-
zation and analysis, the quality of the normalized image using histogram normaliza-
tion is close to the quality of the reference image, which is better than the normalized 
image using the histogram matching based on a joint histogram, and gains a favorable 
gray level for the normalized image (as shown in Fig. 4). Our method does not seek to 
match histograms. However, it is useful to compare them after normalization. Figure 5 
shows that the histogram of one normalized image is closer to the reference histogram 
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Fig. 2  Visual results for the reference image, input image and two normalized images in the same slice for 
one subject registered with the brain template image MNI152-2mm_brain. From top to bottom: reference 
image, input image, and images normalized with Hist. Matching and Hist. Normalization overlaid with 
template image. From left to right: coronal slice, sagittal slice, axial slice. The arrow points to the differences of 
visual results of registration between images and brain template image.
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Fig. 3  Mean square error (MSE) between all images and the template image (MNI152_2mm_brain) are 
shown for different subjects.

Table 1  The mean square error (MSE) between all images and the template image

Data layout: mean ± std.

Image type MSE

Reference image 8.4887 ± 0.0393

Input image 9.0086 ± 0.3112

Normalized image with hist. matching 8.7366 ± 0.0516

Normalized image with hist. normalization 8.4892 ± 0.0385

Table 2  Average dice coefficients of  hard segmentations were obtained from  22 scans, 
before and after normalization, comparing our method with that of histogram matching 
[7]

Data layout: mean ± std.

* Statistically significantly larger than the other two (p value 0.05).

WM GM CSF Mean

DSC (input image) 0.8092 ± 0.0190 0.6700 ± 0.0496 0.5225 ± 0.0351 0.6751

DSC (normalized image with hist. matching) 0.8149 ± 0.0196 0.6768 ± 0.0506 0.5309 ± 0.0358 0.6832

DSC (normalized image with hist. normalization)0.8261* ± 0.0178 0.6884* ± 0.0494 0.5482* ± 0.0362 0.6986

Table 3  Average tissues volumes of  WM, GM and  CSF (without sulcal CSF) obtained 
from  22 scans in  the eleven subjects, before  and after  normalization, comparing our 
method with histogram matching (unit: mm3)

Data layout: mean ± std.

* Statistically significantly the volumes with HN method are identical to the volumes of the reference image (p value <0.05).

WM GM CSF (without sulcal CSF)

Volume (reference image) 468,400* ± 54,664 538,990* ± 49,667 1,260* ± 193

Volume (input image) 409,480 ± 54,011 572,560 ± 47,994 1,058 ± 187

Volume (normalized image with hist. match) 443,790 ± 56,273 547,810 ± 53,457 1,148 ± 189

Volume (normalized image with hist. normali-
zation)

451,083* ± 53,326 540,940* ± 48,757 1,225* ± 199
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than the input image. We also reported on the MRI quality using an estimation index in 
Table 4 among the quality parameters of the input image, the reference image, and the 
normalized image in 11 subjects. After normalization and quality analysis, the quality 
of the normalized image using the histogram normalization is close to the quality of the 
reference image, which is better than the normalized image using the histogram match-
ing method.

Fig. 4  This figure shows the images from top to bottom: reference Image, input image, normalized image 
using histogram matching, and normalized image using histogram normalization. The quality of normalized 
image using histogram normalization is close to the quality of reference image, better than the normalized 
image using histogram matching based on a joint histogram, and gains a favorable gray level of the normal-
ized image.
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Chinese brain template construction

We constructed brain templates for Chinese young adults both with and without our 
normalization method. As shown in Fig.  6, Fig.  6a is the template without intensity 
normalization in the preprocessing procedure, and Fig. 6b is the average template after 
applying intensity normalization. As pointed out in the red frame, the template after 
intensity normalization is much clearer in some boundaries than template without 
intensity normalization.

Discussion
Our results demonstrated that intensity normalization plays a very important role in 
improving the results of image analysis including registration, segmentation, and effi-
cient tissues’ volumes statistics.

Fig. 5  This figure shows a fitting plot of the histograms for the reference image, input image, and normalized 
image with histogram normalization.

Table 4  Average estimation index among  the quality of  the input image, the reference 
image, and the normalized image on 11 subjects

Image type ⌢

σ n

Reference image 0.0026

Input image 18.0061

Normalized image with hist. matching 4.6796

Normalized image with hist. normalization 0.1675
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As shown in Fig. 2, intensity normalization through histogram normalization results 
in better registration results. The quantitative effects can be seen more clearly in Fig. 3 
and Table 1 where the histogram normalization results in a decreased MSE between the 
low-quality image and the high-quality image.

In the segmentations of GM, CSF and WM, histogram normalization also results 
in more consistent results as indicated in the Table  2. Histogram normalization can 
help accurately segment different types of tissues, and contribute to many clinical 
applications.

Meanwhile, the tissue volume difference between the low-quality data and the high-
quality data seen in Table  3 is smaller after histogram normalization of the low-qual-
ity data. One subject should have similar volumes of each tissue from the two scanners 
within a short time according to the clinical analysis. Histogram normalization can con-
tribute to exactly assessing the tissues’ volumes from medical imaging, and decrease 
the differences of volumes in one subject to the maximum extent. This result of tissue 
volumes statistics further indicates that the histogram normalization can apply to nor-
malize the different functional regions of fMRI, and assist with multi-site alignment of 
results in medical imaging to help clinical diagnosis and analysis.

We compare the results from three basic medical imaging processing techniques, 
registration, segmentation, and three brain main tissues volumes measurement before 
and after normalization, with our histogram normalization and the existing histogram 
matching method. The results again confirm the added advantage offered by the numeri-
cal approach in both absolute (increased MSE and DSC values) as well as the volumes of 
WM, GM and CSF.

Fig. 6  The average template of 100 Chinese adults (age ranged from 20 to 30 years) brain MR images from 
different scanners. a The average template without intensity normalization in the preprocessing procedure; b 
the average template after applying our histogram-based intensity normalization.
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However, a limitation of our intensity normalization technique is that intensity nor-
malization of the MR images is performed after the whole head, fat, skull bone, and 
background are removed. This fact implies that the intensity normalization cannot be 
applied in some cases when adipose or osseous tissues may be important. Our histo-
gram-based intensity normalization is a global normalization method. For the intensity 
information of local or specified tissue, it may be demonstrate that better intensity nor-
malization in regard to local or specified tissue information. In future work, our study 
will solve the limit problem to do better intensity normalization of local or specified 
brain tissue. Apart from these considerations about the limits, our intensity normali-
zation as a global intensity normalization scheme could be also applied in large-scale 
image sets acquired with different modalities, e.g. T2-weighted or proton density MR 
images in the future work.

Conclusion
Tissue intensity in brain MRIs can vary remarkably due to the differences in acquisi-
tion protocols, scanner differences, heterogeneity of sources, and possibly due to inten-
sity inhomogeneity corrections applied to obtain uniform images. As a result, intensity 
normalization plays a very important role in facilitating comparison between tissue 
intensities for various tissue types across different brain MRI volumes. Various inten-
sity normalization procedures have been proposed to address this issue. In this work, we 
demonstrated the effectiveness of the histogram normalization approach across multi-
scanner MRI data in the presence of various magnetic field strengths. We examined the 
effect of intensity normalization on the tissue intensity behavior in T1 MRIs. Improve-
ments in image preprocessing techniques may have therefore a great impact in areas 
such as image analysis and computer-aided diagnosis. In the current case study of 11 
patients, it was shown that our histogram normalization method can help achieve better 
results in image analysis compared with existing intensity normalization methods.

Our histogram normalization algorithm for brain MRI can normalize scans having the 
same weighting but acquired on different scanners or with different acquisition param-
eters. We validated our algorithm on real MRI data. Compared with the traditional his-
togram matching method using the joint histograms, our method showed better quality 
and homogeneous intensities for MR brain images after normalization. The ability of 
the normalization procedure to correct for global intensity variance was demonstrated 
through three evaluation methods. During MR image acquisition, different machines or 
parameters would be used for scanning different subjects or the same subject at a dif-
ferent time, which may result in large intensity variation across scans. On MR images of 
scanning different subjects, the highest-quality MR image served as the reference and 
was used as the standard for image quality estimation. On MR images of the same sub-
ject at a different time, the high-quality MR image from the same subject served as the 
reference through image quality estimation in order to perform intensity normalization 
on the same subject. In our method, we always guarantee the high-quality image to serve 
as the reference image to keep the quality of normalized images high. The histogram 
normalization method can be applied in different MRI sequences and imaging parts. In 
the future work, more MRI data, including different MRI sequences, such as T2 weight 
MRI, fMRI, will be acquired for further validation. Moreover, the method also be used 
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for normalizing a large population of multi-center data and constructing the template 
image. Our intensity normalization was applied in the construction of a brain template 
of Chinese young adults (e.g. 20–30 years old adults). These results showed that intensity 
normalization could achieve a better image analysis performance without spatial regis-
tration. In the procedure of constructing a template of population, intensity normaliza-
tion is a crucial step and has a positive impact on the final template result.
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