
rsbl.royalsocietypublishing.org
Research
Cite this article: Sheath DJ, Dick JTA, Dickey

JWE, Guo Z, Andreou D, Britton JR. 2018

Winning the arms race: host – parasite shared

evolutionary history reduces infection risks in

fish final hosts. Biol. Lett. 14: 20180363.

http://dx.doi.org/10.1098/rsbl.2018.0363
Received: 17 May 2018

Accepted: 27 June 2018
Subject Areas:
ecology, evolution

Keywords:
trophic transmission, parasite manipulation,

behaviour, comparative functional response
Author for correspondence:
J. Robert Britton

e-mail: rbritton@bournemouth.ac.uk
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4161110.

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Community ecology

Winning the arms race: host – parasite
shared evolutionary history reduces
infection risks in fish final hosts

Danny J. Sheath1,2, Jaimie T. A. Dick3, James W. E. Dickey3, Zhiqiang Guo1,4,
Demetra Andreou1 and J. Robert Britton1

1Department of Life and Environmental Sciences, Faculty of Science and Technology,
Bournemouth University, Poole, UK
2Institute of Global Health, University of Geneva, Geneva, Switzerland
3Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast,
Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
4State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology,
Hainan University, Haikou 570228, People’s Republic of China

JRB, 0000-0003-1853-3086

Parasite manipulation of intermediate hosts evolves to increase parasite trophic

transmission to final hosts, yet counter selection should act on the final host

to reduce infection risk and costs. However, determining who wins this arms

race and to what extent is challenging. Here, for the first time, comparative

functional response analysis quantified final host consumption patterns

with respect to intermediate host parasite status. Experiments used two evolu-

tionarily experienced fish hosts and two naive hosts, and their amphipod

intermediate hosts of the acanthocephalan parasite Pomphorhynchus tereticollis.
The two experienced fish consumed significantly fewer infected than non-

infected prey, with lower attack rates and higher handling times towards the

former. Conversely, the two naive fish consumed similar numbers of infected

and non-infected prey at most densities, with similar attack rates and handling

times towards both. Thus, evolutionarily experienced final hosts can reduce

their infection risks and costs via reduced intermediate host consumption,

with this not apparent in naive hosts.
1. Introduction
Final hosts and their parasites are involved in an evolutionary arms race, whereby

trophically transmitted parasites manipulate their intermediate hosts to increase

transmission rates, but with final hosts presumably experiencing selection to

minimize the risks of infection and thus subsequent fitness costs [1,2]. There is

an energetic cost to this selection that needs balancing against other energy

demands (e.g. life-history trade-offs) [3–5]. As selection is likely to favour hosts

reducing their costs of infection [4], final host populations could evolve beha-

viours that reduce their ingestion of prey infected with tropically transmitted

parasites [4,5]. Moreover, the development of these adaptive behaviours might

be influenced by the host’s previous experience of the parasite, with experienced

hosts likely to elicit stronger anti-parasite responses than naive hosts due to the

presence/absence of shared eco-evolutionary histories [6].

Assessing whether final hosts or their parasites are ‘winning’ this arms race

has proved difficult, perhaps due to limits on experimental techniques. Corre-

spondingly, we propose that comparative functional responses (CFRs), which

compare prey consumption rate as functions of prey density [7–9], can assess
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the outcome of this arms race. Here, the trophically trans-

mitted acanthocephalan parasite Pomphorhynchus tereticollis
was the model parasite. It has an amphipod intermediate

host and fish final host [10–12]. To test the outcome of selec-

tion in final hosts according to their evolutionary history with

the parasite, infected and non-infected amphipods were

exposed to two parasite-experienced hosts, native chub

Squalius cephalus and European barbel Barbus barbus, and

two naive, parasite-inexperienced hosts, non-native gold-

fish, Carassius auratus and carp Cyprinus carpio.
Biol.Lett.14:20180363
2. Material and methods
Amphipods used in the experimental feeding trials were from the

River Avon, Southern England (latitude: 50.8865, longitude:

21.7883). In this river, S. cephalus and B. barbus are final hosts of

P. tereticollis [13], Ca. auratus is not present and only small numbers

of non-recruiting, large-bodied Cy. carpio are present via escapees

from adjacent lakes. Infected amphipods were identified visually

by the presence of an orange spot [10], with parasitized individ-

uals all at the infectious cystacanth stage, as validated by

dissection of 30 visually detected individuals (100% correct).

The experimental fish were sourced from an aquaculture site in

Southern England where P. tereticollis was absent from rearing

ponds. Amphipods collected by kick-sampling in May 2018 from

the stream upstream of the aquaculture site revealed 0% parasite

prevalence (N ¼ 200). Concomitantly, samples collected from the

River Avon site had a prevalence of 11% (N ¼ 200), typical for

the time of year, but low compared to later in summer when

much higher prevalences are typically recorded [13]. The exper-

imental fish had, therefore, not been exposed to the parasite

during husbandry. However, the broodstock of S. cephalus and

B. barbus were from the River Kennet, a tributary of the River

Thames, southeast England, where the fishes and parasite are

native and coexist. Correspondingly, S. cephalus and B. barbus
were used as the parasite-experienced final hosts. Conversely, the

broodstock of Ca. auratus and Cy. carpio had no known previous

experience of the parasite and thus were used as the naive hosts.

Both species can, nevertheless, develop Pomphorhynchus parasite

infections [14,15]. All fish were 60–80 mm length and prior to use

were individually tagged (7 mm passive integrated transponder

tag), and acclimated for 20 days (188C; 16 L : 8 D cycle).

For CFR experiments, individual fish were exposed to either

infected or non-infected amphipods as prey in 10 l tanks at 188C
following a 24 h starvation period. Prey densities were 4, 8, 16, 32

and 64 amphipods [16]. Prey exposure was for 1 h, with three

replicates per prey density [8]. Values of the CFR parameters

attack rate (a) and handling time (h) were calculated using maxi-

mum-likelihood estimation in the random predator equation [17],

completed in the R package Frair [16]. The equation assumes a

type II functional response and the non-replacement of prey,

where Ne¼ N0 (1 – exp(a(Neh2T ))), where Ne is the number of

prey eaten, N0 the initial density of prey, a the attack rate, h the

handling time and T the total time. Analyses also provided the

significance of differences in a and h between the prey types

[16]. To visualize uncertainty, 2000 non-parametric bootstraps

enabled empirical 95% confidence intervals to be fitted around

the functional responses. These were used to provide CFR plots

between the infected/non-infected amphipods per fish host

[16]. Following experiments, the fish were euthanized and their

infection status and parasite loading determined.
3. Results
The CFR curves of the two experienced fish final hosts revealed

significantly lower consumption rates of infected versus non-
infected amphipods (figure 1a,b). This was driven by lower

attack rates and higher handling times towards infected

amphipod prey (table 1).

On the other hand, for the two naive, fish final hosts, attack

rates and handling times between infected and non-infected

amphipods were similar (table 1). The Ca. auratus CFR curves

indicated differences between prey types were minimal at

low prey densities (e.g. mean consumption rate at 32 items

(+95% confidence limits): 24.7+3.0/23.0+4.2 n.h21) and

only at the highest prey densities did consumption rates of

infected amphipods decrease versus non-infected (figure 1c).

In Cy. carpio, their CFR curves overlapped completely for

infected and non-infected prey (figure 1d).

All fish that consumed infected amphipods developed

infections. In experienced hosts, parasite loadings were one

to five adults in S. cephalus and one adult in B. barbus. In

naive hosts, parasite loadings were eight to 27 adults in Ca.
auratus and eight to 15 adults in Cy. carpio. Higher parasite

loadings occurred in fish that consumed more infected

amphipods. In some Ca. auratus, parasites had perforated

the intestine and were embedded in muscle tissue.
4. Discussion
The evolutionary arms race between trophically transmitted

parasites and their final hosts involves the interaction of the

parasites manipulating the behaviours of their intermediate

hosts versus potential final hosts minimizing their infection

risk and fitness costs [1–5]. The CFRs revealed the outcome

of this arms race was strongly dependent on whether there

was a shared evolutionary history in the parasite–final

host system, with contrasting outcomes for experienced and

naive hosts.

For naive hosts, the CFR curves revealed similar con-

sumption rates of infected and non-infected prey. This was

consistent with other studies suggesting infected amphipods

are preferred to uninfected by fish hosts due to parasite

manipulation [1]. The consumption by naive hosts of relatively

high numbers of infected amphipods resulted in consistently

high parasite loadings. The associated host pathology, includ-

ing intestinal perforation, suggested high energetic and fitness

costs. This apparent low avoidance of infection [5,6] was inter-

preted as largely due to their lack of previous experience of the

parasite. Conversely, for experienced fish hosts, CFR curves

revealed significantly reduced consumption rates of infected

versus non-infected amphipods. Although fish that consumed

infected prey developed infections, parasite loadings were rela-

tively low. These results strongly suggest the experienced hosts

used a range of anti-parasite responses that reduced their risks

of developing high parasite loadings by minimizing their

exposure to infected prey [3–5]. The results suggested the

mechanism of experienced fishes avoiding consumption of

infected prey was their lower ‘attack’ or ‘encounter’ rates

towards the parasite-manipulated prey. Further, the high

handling times of infected prey suggest some mechanism of

prey assessment and selection, and this warrants detailed

quantification of the behaviour and sensory modes involved,

and in relation to parasite manipulation [1,2].

Although the significant differences in CFRs between the

two fish host groups were interpreted as being due to their

differing parasite experience, a potential confound was trait

differences relating to habitat preferences of experienced
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Figure 1. Type II functional response curves for experienced final hosts ((a) S. cephalus, (b) B. barbus) and naive hosts ((c) Ca. auratus, (d ) Cy. carpio) fed infected
(dashed line) and non-infected (solid line) amphipods. Lines indicate the type II functional response, shading represents 95% equi-tailed confidence intervals (CI)
for each combination of fish and prey [15]. Consumption rates in numbers of amphipods consumed per hour. Note differences in y-axis values. (Online version
in colour.)

Table 1. Functional response parameters of infected versus non-infected amphipods per final host and the significance of their differences.

experienced hosts naive hosts

Squalius cephalus Barbus barbus Carassius auratus Cyprinus carpio

a 1.06/4.08 0.64/1.73 3.52/3.79 3.65/3.62

p-value ,0.01 0.07 0.71 0.98

h 1.15/0.03 0.32/0.06 0.03/0.04 0.05/0.06

p-value ,0.01 ,0.01 0.04 0.45
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(lotic) and naive (lentic) hosts. However, amphipods are

naturally present in both habitats, and are active in the

benthos and water column, thus naturally feature in the

diets of all hosts [18]. Thus, any trait-mediated differences

in fish foraging behaviours were considered as not influen-

cing the ability of the fishes to consume amphipod prey

and were not confounding the experiment.

Behavioural responses to the infective stages of parasites by

potential hosts have generally resulted in reduced infection

levels in host populations. Increased activity in Rana spp. tad-

poles occurred in the presence of a number of parasite species

that successfully reduced infection risk [19]. In exposure

experiments on Pacific chorus frogs Pseudacris regilla, hosts

with inhibited anti-parasite behaviours had higher parasite

prevalences, with inhibited individuals having higher para-

site loadings [20]. These studies suggested host behaviours

were more effective at reducing infection risk than immune-
mediated responses. Indeed, avoidance of Diplostomum spatha-
ceum by rainbow trout Oncorhynchus mykiss was stronger

through avoidance of infection sources than from physiological

resistance gained from previous exposure [21]. These studies

suggest the behaviour of our experienced hosts was a selection

mechanism to reduce infection risk and costs by minimizing

their consumption of infected amphipods. Although this suc-

cessfully reduced their parasite loadings compared with

naive hosts, the parasite was still transmitted to experienced

hosts, enabling life cycle completion. Thus, even in experienced

hosts, infection risk and costs are only reduced, not eliminated.

The extent of the balancing of the evolutionary arms race

between host and parasite has thus been revealed by our

approach and this should prove fruitful in future studies.

Ethics. Experiments were completed under UK Home Office project
licence PPL30/3094.
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