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Objective: The objective of this study is to develop a radiomics nomogram for the
presurgical distinction of benign and malignant round-like solid tumors.

Methods: This retrospective trial enrolled patients with round-like tumors who had
received preoperative digital mammography (DM) no sooner than 20 days prior to
surgery. Breast tumors were segmented manually on DM images in order to extract
radiomic features. Four machine learning classification models were constructed, and
their corresponding areas under the receiver operating characteristic (ROC) curves (AUCs)
for differential tumor diagnosis were calculated. The optimal classifier was then selected
for the validation set. After this, predictive machine learning models that employed
radiomic features and/or patient features were applied for tumor assessment. The
models’ AUC, accuracy, negative (NPV) and positive (PPV) predictive values, sensitivity,
and specificity were then derived.

Results: In total 129 cases with benign and malignant tumors confirmed by pathological
analysis were enrolled in the study, including 91 and 38 in the training and test sets,
respectively. The DM images yielded 1,370 features per patient. For the machine learning
models, the Least Absolute Shrinkage and Selection Operator for Gradient Boosting
Classifier turned out to be the optimal classifier (AUC=0.87, 95% CI 0.76-0.99), and ROC
curves for the radiomics nomogram and the DM-only model were statistically different
(P<0.001). The radiomics nomogram achieved an AUC of 0.90 (95% CI 0.80-1.00) in the
test cohort and was statistically higher than the DM-based model (AUC=0.67, 95% CI
0.51-0.84). The radiomics nomogram was highly efficient in detecting malignancy, with
accuracy, sensitivity, specificity, PPV, and NPV in the validation set of 0.868, 0.950, 0.778,
0.826, and 0.933, respectively.

Conclusions: This radiomics nomogram that combines radiomics signatures and clinical
characteristics represents a noninvasive, cost-efficient presurgical prediction technique.
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BACKGROUND

Breast cancer (BC) represents the most common malignant
disease in females globally (1–3). However, BC mortality has
declined remarkably since the 1970s (4) due in large part to
mammography screening and enhanced systemic therapy (5, 6).
Digital mammography (DM) constitutes a widely accepted
means of breast tumor detection in clinic (6, 7) and has come
to play a critical role in the evaluation of breast tumors, taking
precedence over other techniques in detecting calcification in
breast tumors. Normally, breast cancers display an irregular
shape and a spiculated margin in DM images, with or without
microcalcification. However, some malignant tumors appear as
round-like masses, including mucinous carcinoma, intraductal
papillary carcinoma, medullary carcinoma, infiltrating ductal
carcinoma, intramammary metastases, metaplastic carcinoma,
lymphoma, and phyllodes tumors (8, 9). The margins of these
tumors can be circumscribed, microlobulated, and indistinct.
Clinicians therefore face a challenge in distinguishing the above
tumors from benign lesions by DM alone, especially for dense
breast tissues. In addition, the prognosis and clinical treatment of
these tumors are necessarily different. Preoperative assessment of
round-like tumors can thus help to optimize treatment.

The signals of round-like masses without suspicious malignant
or benignmacrocalcification inDMare comparable, although their
internal structures and densities show substantial differences (9).
Previous findings (10) recommend that the classification according
to the Breast Imaging Reporting and Data System (BI-RADS) of
breast masses found on DM images should be determined in
combination with ultrasound (US) or magnetic resonance
imaging (MRI), except for completely calcified or fatty masses.
Routine imaging techniques such as mammography and US show
overt limitations in the differential diagnosis of round-like masses.
Although the multimodal technique of breast dynamic contrast-
enhanced MRI (DCE-MRI) is highly accurate in distinguishing
benign frommalignant tumors (11) aswell as indifferentiatingwell-
circumscribed breast malignant lesions from benign ones (8), it
requires contrastmedia injection and is very expensive. In addition,
traditional multimodal diagnosis greatly relies on the radiologist’s
experience. Though DM is the most applied technique in assessing
breast tumors, no quantitative parameters have yet been derived
fromDM images (12). Therefore, the identification of ameasurable
DM marker may greatly increase the diagnostic value of this
technique for breast tumors. Radiomics could be used to convert
digital images into high-dimensional data by extracting a variety of
Abbreviations: DM, Digital mammography; BI-RADS, Breast Imaging Reporting
and Data System; US, ultrasound; MRI, magnetic resonance imaging; DCE-MRI,
dynamic contrast-enhanced MRI; PACS, Picture Archiving and Communication
System; CC, cranial caudal; MLO, mediolateral oblique; DICOM, Digital Imaging
and Communications in Medicine; ROI, Region of interest; ICC, intraclass
correlation coefficient; CI, confidence interval; mRMR, maximum correlation
minimum redundancy; LASSO, least absolute shrinkage and selection operator;
SVM, support vector machine; k-NN, k-Nearest Neighbor; ROC, receiver
operating characteristic; AUC, area under the receiver operating characteristic
curve; DCA, Decision curve analysis; PPV, positive predictive value; NPV,
negative predictive value.
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quantitative indices and could thus help to quantitatively evaluate
tumor heterogeneity and improve clinical decisionmaking (13, 14).

To this end, this work aims to develop a radiomics nomogram
for distinguishing benign from malignant round-like masses
without spiculated margins and suspicious malignant
calcification or benign macrocalcification, in order to help
optimize treatment plans.
METHODS

Data Cohort
Our institutional review board approved this retrospective study,
with no requirement for informed consent. Individuals who
received DM screening with benign (excluding fibroadenoma)
or malignant tumors confirmed by pathological analysis were
continually enrolled between January, 2017 and December, 2019.
Due to a high prevalence of fibroadenoma, patients who received
DM screening with fibroadenoma confirmed by pathological
analysis were continually enrolled between January and
December, 2019. Patient data were obtained from the Picture
Archiving and Communication System (PACS) of the Affiliated
Minhang Hospital of Fudan University, Shanghai, China.

The inclusion criteria were: (1) the presence of an oval or round
tumor; (2) aDMexamcarriedoutwithin 20preoperative days, with
image quality meeting post-processing requirements; (3)
nonmalignant or cancerous breast tumor confirmed by
histopathology. The exclusion criteria were: (1) receiving
treatments, (chemotherapy, surgery, radiotherapy and/or anti-
HER2 therapy) before DM screening; (2) the tumor being
incompletely displayed in the cranial caudal (CC) or mediolateral
oblique (MLO) views; (3) the tumor being architecturally distorted
(except for scarring caused by a previous injury or surgery); (4) the
tumor showing calcification of BI-RADS 2/4b/4c/5; (5) the tumor
having spiculated margins; and (6) the tumor not being displayed
due to extremely dense breasts. Ultimately, 129 masses (51
nonmalignant and 78 cancerous) were included, and their
histopathologic diagnoses are presented in Table 1. The 129
study cases, age 54.6 ± 13.7 years (range, 23–86 years) old, were
randomly assigned to the training (n = 91) and test (n = 38) sets.

DM and Image Processing
A GE Senographe Essential DM system (GE Healthcare,
Milwaukee, WI) was utilized for data acquisition. In every case,
optimal MLO and CC view images were converted into Digital
Imaging and Communications in Medicine (DICOM) files. ITK-
SNAP software (http://www.itk-snap.org) was utilized for breast
tumor segmentation, and regions of interest (ROIs) were
manually segmented on MLO and CC views independently by
two radiologists (WY and LW) with 10 and 14 years of
experience in DM image evaluation, respectively. In cases of
obscured tumor margins, both radiology experts reached a
consensus by performing an additional image analysis.

Feature Extraction and Selection
Radiomic features were obtained with AK v3.2.2 software (GE
healthcare). In total 1,370 features were obtained, including
April 2022 | Volume 12 | Article 677803
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histogram, shape, gray-level co-occurrence matrix (GLCM),
gray-level run-length matrix (GLRLM) and gray-level size zone
matrix (GLSZM) features. For interobserver agreement
evaluation, CC views were randomly chosen in 30 cases, and
another radiologist delineated ROIs independently. After this,
intraclass correlation coefficients (ICCs) of these features were
calculated. Based on the ICC’s 95% confidence interval (CI) (15),
values >0.90, from 0.75 to 0.9, from 0.5 to 0.75, and <0.5 were
considered to reflect excellent, good, moderate, and poor
reliability, respectively. Only features with ICC ≥0.75 were
included in subsequent analysis.

The patients were randomized into the training and test sets
(ratio of 7:3, respectively). Initially, the maximum correlation
minimum redundancy (mRMR) algorithm was used for
eliminating redundant and irrelevant parameters in the
training set, of which 30 features that showed high correlations
with labels were retained. Next, least absolute shrinkage and
selection operator (LASSO) analysis with 10-fold cross-
validation was performed to further select features via l
optimization. The coefficients of select features then underwent
compression to zero at the optimal l value, and only parameters
that showed a nonzero coefficient were further retained.

Patient, DM, and US Features
The following clinical information was obtained from the
patients’ medical records: age, sex, family history of breast
cancer, life habits (drinking/smoking), and childbearing
information. Next, DM data were analyzed by two radiologists,
as stated above, who recorded the following parameters:
(1 ) tumor s ize (max imum diameter) ; (2 ) marg in
(circumscribed, obscured, microlobulated, or indistinct); (3)
density (low, equal, or high); and (4) location (depth)
(anterior, middle, or posterior). Additionally, US data were
recorded as described in the US report. The imaging features
of US were: (1) echo pattern (anechoic, hypoechoic, isoechoic,
complex cystic, and solid, heterogeneous, or hyperechoic); (2)
edge (clear, partially clear, or unclear); (3) shape (regular,
Frontiers in Oncology | www.frontiersin.org 3
partially regular, or irregular); and (4) blood flow (presence
or none).
Radiomics Signature, Clinical Model, and
Radiomics Nomogram
Four machine learning models, support vector machine (SVM), k-
Nearest Neighbor (k-NN), C-Tree, and logistic regression, were
constructedbasedon thepreviouslyobtainedoptimal feature subset
described above. All classifiers underwent training with 10-fold
cross-validation with 10 repeats in the training cohort. Their
predictive performances were then assessed with cross-validation
data and validated in the validation cohort, and the optimal
classifier in the validation set was selected. Next, radiomics scores
(rad-scores) for various patients were determined. The radiomics
signature was evaluated for predictive accuracy by the area under
the receiver operatingcharacteristic (ROC)curve (AUC) inboth the
training and test cohorts.

Clinical data, including age, MG, and US characteristics
(continuous data) were analyzed by independent samples t-test or
the Wilcoxon test (for example, age and tumor size (DM)), and the
Chi square test or Fisher’s exact test were carried out for analyzing
categorical variables such as tumor size (DM),margin (DM), density
(DM), location (depth) (DM), echo pattern (US), edge (US), shape
(US), and blood flow (US). Univariate logistic analysis was applied to
select risk factors for cancerous tumors (P<0.05), and this was
followed by backward stepwise multivariate logistic regression and
likelihood ratio tests in order to build a clinical prediction model. In
order to satisfy the collinearity condition, features with both the
largest calculated VIF and VIF >10 were eliminated. The model’s
performance was then determined by ROC curve evaluation.

After this, a radiomics nomogram was built as described
above for the clinical model, including the obtained radiomics
signature, and its performance was also examined by ROC
analysis. Finally, the Hosmer-Lemeshow test was performed to
assess consistency between actual and predicted values. The
radiomic framework is shown in Figure 1.
TABLE 1 | Features of 129 breast tumors confirmed by histology.

Histopathologic type No. of masses Proportion (%) No. of masses with
calcifications

BI-RADS category of accompanying calcifications

Benign 51 39.5 0
Fibroadenoma 44 34.1 0
Intraductal papilloma 2 1.6 0
Benign phyllodes tumor 4 3.1 0
Tubular gland lymphoma 1 0.7 0

Malignant 78 60.5 5
Invasive ductal carcinoma 53 41.1 4 4a (3)

3 (1)
Intraductal papillary carcinoma 8 6.2 0
Ductal carcinoma in situ 1 0.8 0
Neuroendocrine carcinoma 1 0.8 0
Malignant phyllodes tumor 3 2.3 0
Mucinous carcinoma 11 8.5 1 4a
Sarcomatoid carcinoma 1 0.8 0
No., number; BI-RADS, Breast Imaging Reporting and Data System.
April 2022 | Volume 12 | Article 677803
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Radiomics Nomogram Validation
and Evaluation
The radiomics nomogram was examined in the training (n = 91)
and test (n = 38) cohorts, respectively, with regard to
differentiation, calibration and clinical values, and the AUC
was determined in order to evaluate the nomogram’s
performance in distinguishing malignant and benign tumors.
The Hosmer–Lemeshow test and the calibration curve were
utilized as well to determine the goodness-of-fit. Additionally,
internal validation was carried out in the test cohort. A rad-score
was derived in the test cohort based on the algorithm built in the
training cohort, and decision curve analysis (DCA) was
performed to estimate the nomogram’s robustness in a
clinical setting.
Statistical Analysis
The software packages R v. 3.5.1 (https://www.Rproject.org) and
SPSS were utilized for all statistical analysis.
RESULTS

Patient and DM/US Features
All patients in this study were female. Regarding some clinical
factors, of the 129 patients, three patients (malignant, 2;
benign, 1) had a family history of breast cancer; two patients
(malignant, 1; benign, 1) had a smoking habit; four patients
(malignant, 2; benign, 2) had a drinking habit; and two patients
with benign tumors had never given birth. Table 2 summarizes
patient and DM/US features. Age, margin (DM), density
(DM), location depth (DM), edge (US), shape (US), and
blood flow (US) differed significantly between malignant and
benign tumors.

In our univariate logistic regression analysis, factors including
age, margin (DM), density (DM), location depth (DM), edge
(US), shape (US), and blood flow (US) showed significant
associations with malignant masses (all P<0.05; Table 3), and
multivariate logistic regression analysis suggested that age,
location depth (DM), shape (US), and rad_score were
Frontiers in Oncology | www.frontiersin.org 4
independent predictors of malignant masses (Table 4). These
clinical variables were then employed to construct a clinical
model that had an AUC value of 0.78 (0.61-0.95) in the testing
cohort, which was higher than that of DM 0.67 (0.51-0.84).
Radiomics for Predictive Modeling
In the training set, 13 top-performing features (histogram, shape,
and texture features), including 5 and 8 from the CC and MLO
views, respectively, were finally selected by the LASSO logistic
regression model (Figures 2A, B). Figure 2C shows the selected
radiomics features, and the MLO view had more features than
the CC view (8 and 5, respectively). Four classification machine
learning models were constructed using the above selected 13
top-performing features, and the performances of the four
classification machine learning models are shown in Figure 3.
The logistic regression model had high AUC values of 0.91 for
the training set (Figure 3A) and 0.87 for the test set (Figure 3B),
but the LASSO-based machine learning model showed the best
detection performance. The boxplot in Figure 4 shows the
accuracies, AUCs, NPV, PPV, and sensitivities and specificities
of the four models after a 100-time cross-validation.

Figure 2D shows the rad-score of each patient determined by
logistic regression. Individualswith cancerous tumors generallyhad
higher rad-scores compared to the benign group, and rad-scores
were statistically different between individuals with benign and
malignant masses in the training and test cohorts (both P<0.001).
The generated radiomics signature had good predictive accuracy,
with AUCs of 0.91 (95%CI 0.86–0.98) and 0.87 (95%CI 0.76–0.99)
in the training and test sets, respectively (Figure 2E).
Nomogram
According to multivariate logistic regression, location (depth),
shape (US), age, and the radiomics signature all independently
predicted malignancy in round-like tumors and were therefore
included in a radiomics nomogram (Figure 5A). Figures 5B, C
depict the nomogram’s calibration curves. In both the training
and test cohorts, the curves reflected good calibration, and the
Hosmer-Lemeshow test showed non-significance (P=0.375),
(Figures 5B, C).
FIGURE 1 | Flow chart of radiomic analysis of round-like masses on DM images.
April 2022 | Volume 12 | Article 677803
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Figures 6A, B both present four ROC curves that compare
digital mammography, the clinical model, the radiomics
signature, and the radiomics nomogram for efficiency in
differentiating round-like masses. The DeLong’s test showed
that the ROC curves of the radiomics nomogram and digital
mammography were statistically different (P<0.001), and the
radiomics nomogram had an AUC of 0.90 (95% CI 0.80-1.00)
in the test set, suggesting a significantly higher performance
versus the prediction model constructed only with digital
mammography features, which had an AUC of 0.67 (95% CI
0.51-0.84) in the test cohort.

The radiomics nomogram had high efficacy in detecting
malignancy, with accuracy, sensitivity, specificity, PPV, and
NPV of 0.890, 0.941, 0.825, 0.873,and 0.917, respectively, in
the training cohort, and 0.868, 0.950, 0.778, 0.826, and 0.933 in
Frontiers in Oncology | www.frontiersin.org 5
the test cohort, respectively (Table 5). Machine learning-based
mammography radiomics had an AUC of 0.87 (95% CI 0.76-
0.99), indicating a better performance than the clinical model
(AUC=0.78, 95% CI 0.61-0.95 in the test cohort) (Figure 6B). In
the test set, the radiomics signature had higher specificity and
PPV compared to the radiomics nomogram, and the radiomics
nomogram had improved predictive ability (accuracy, sensitivity,
and NPV) compared to the radiomics signature in distinguishing
benign and malignant round-like tumors (Table 5).
DISCUSSION

This study developed a radiomics signature for predicting
malignancy in round-like masses that had good accuracy in
TABLE 2 | Patient and DM/US characteristics.

Characteristic Pathological type P value

Benign Malignant

Margin (DM) circumscribed 17 18 0.021*
obscured 31 41
microlobulated 0 0
indistinct 3 19

Density (DM) low-density 1 1 0.000*
equal-density 41 34
high- density 9 43

Location/Depth (DM) anterior 7 15 0.050*
middle 35 38
posterior 9 25

Echo pattern (US) anechoic 0 1 0.104
hypoechoic 49 64
isoechoic 1 1
complex cystic and solid 1 3
heterogeneous 0 9
hyperechoic 0 0

Edge (US) clear 7 3 0.002*
partially clear 43 58
unclear 1 17

Shape (US) regular 6 3 <0.001*
partially regular 44 41
irregular 1 34

Blood flow (US) none 22 13 0.001*
presence 29 65

Age # 45 (41~52) 60.5 (50.5~70) <0.001*
Size # 1.9 (1.6~2.8) 2.3 (1.6~3.225) 0.158
April 2022 | Volume 12 | Article
*means P<0.05; # means nonnormal distribution obtained after SK normality test; DM, digital mammography; US, ultrasound.
TABLE 3 | Positive results of univariate analysis for the differential diagnosis of round-like breast tumors.

Variable 2.5%CI 97.5%CI OR value P value

Age 1.031 1.110 1.068 0.001*
Margin (DM) 1.236 3.347 1.951 0.008*
Density (DM) 2.010 13.221 4.917 0.001*
Location_Depth (DM) 1.022 4.422 2.064 0.050
Edge (US) 2.335 51.850 8.197 0.005*
Shape (US) 4.334 95.747 15.082 0.000*
Blood_flow (US) 1.228 9.486 3.321 0.020*
*means P<0.05; DM, digital mammography; US, ultrasound; CI, confidence interval; OR, odds ratio.
677803
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identifying the type of lesions (AUC=0.87 in the entire population).
Further, a novel radiomics nomogram, built by utilizing
multivariate logistic regression data, showed good calibration and
was able to distinguish benign from malignant tumors in both the
training and test data sets. The AUC of this signature was 0.90,
suggesting a higher predictive value of the nomogram compared to
mammography alone (AUC=0.67) as well as to the clinical model
(AUC=0.78) that was established on the basis of age, DM, and US.
In clinic DM and US characteristics are relied upon routinely for
Frontiers in Oncology | www.frontiersin.org 6
differential diagnosis. However, their values are dependent upon the
radiologist’s experience. In addition, radiomics features are purely
objective and quantitative.

This study compared four commonly used classification
machine learning methods (SVM, C-Tree, k-NN, and logistic
analysis) and found that LASSO had the best performance. As
shown above, LASSO had higher AUC compared with the
remaining classification machine learning methods. Indeed,
LASSO can perform both feature selection and normalization
A

B

D E

C

FIGURE 2 | Selection of radiomics features and evaluation of the prediction performance of the radiomics signature. (A) Selection of the hyperparameter (l) in the
least absolute shrinkage and selection operator (LASSO) model via ten-fold cross-validation based on minimum error; vertical black dotted line, optimal value of l
(best fit). (B) Coefficients and log(l) values; features with nonzero coefficients are shown. (C) The 13 features showing nonzero coefficients are displayed. The
features utilized for constructing the radiomics signature are shown on the y-axis with the corresponding coefficients in LASSO Cox analysis on the x-axis. (D) Rad-
scores of benign and malignant masses in the training and test groups. Yellow and blue represent the actual classification: the greater the separation of yellow and
blue, the better the rad-score’s predictive accuracy. (E) Receiver operating characteristic (ROC) curves of the radiomics signature in the training and test set.
TABLE 4 | Positive results of multivariate logistic regression analysis for the differential diagnosis of round-like breast tumors.

Variable 2.50%CI 97.50%CI OR P value

Location_Depth (DM) 1.197 16.582 3.978 0.036*
Shape (US) 1.900 57.442 7.969 0.013*
Age 1.024 1.134 1.072 0.006*
Rad_score 2.821 33.017 8.060 <0.001*
Intercept <0.001 <0.001 <0.001 <0.001*
April 2022 | Volume 12 | Article
*means P<0.05; DM, digital mammography; US, ultrasound; CI, confidence interval; OR, odds ratio.
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for improving prediction accuracy (16) and is able to combine
selected radiomic parameters for generating a radiomic signature
(17, 18).

Additionally, the radiomics model had a higher ratio of
features based on the MLO view compared with the CC view
in this study, consistent with one previous study (19), suggesting
that the MLO view might be more informative than its CC
counterpart. Of course, combining both views provides more
data as compared to each individual view (19). The radiomics
features selected for modeling in this study included first-order,
shape, and texture (including GLCM, GLSZM, and GLRLM)
features. Texture features accounted for the largest proportion
(7/13), and their correlation coefficients were relatively larger
than other features as well. This also indicates that radiomics can
reveal deep internal features.

Large Area Low Gray Level Emphasis (LALGLE) assesses the
joint distribution of larger size zones showing lower gray-level
Frontiers in Oncology | www.frontiersin.org 7
values in a tumor image. In this study, both the original
extraction technique and wavelet analysis were able to extract
features from the oblique MLO and CC views. The feature weight
was large, and two of three features had the highest magnitude of
correlation coefficients (-0.556 and -0.48) in the feature set.
Therefore, these features were negatively correlated with
malignant status, which may be explained by the fact that most
malignant masses have relatively dense cells and elevated density.

Size Zone Nonuniformity Normalized (SZNN) assesses size
zone volume variability on a whole image, with reduced values
suggesting elevated homogeneity among zone size volumes. The
correlation coefficient here (0.334) was relatively large in the
feature set, and positively correlated with malignant status,
indicating high heterogeneity of malignant lesions. Furthermore,
autocorrelation reflects the magnitude of texture fineness and
coarseness, and in this study, this latter feature was positively
correlated with malignant status, with a correlation coefficient of
FIGURE 4 | Performance comparison of the four classification machine learning models in distinguishing benign from malignant masses.
A B

FIGURE 3 | Receiver operating characteristic (ROC) curves for the four classification machine learning models in the training set (A) and test set (B).
April 2022 | Volume 12 | Article 677803
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A B

FIGURE 6 | Receiver operating characteristic (ROC) curves for digital mammography, the clinical model, the radiomics signature and the radiomics nomogram in the
training set (A) and test set (B).
A

B C

FIGURE 5 | Radiomics nomogram for predicting malignant status of round-like tumors (A). Calibration curves of the radiomics nomogram in the training set (B) and test set (C).
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 6778038
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0.133. The texture of malignant masses is generally coarser than
that of benign counterparts. Compared with most irregular
malignant masses, round-like masses show relatively more
uniform growth rates and finer texture, which may explain the
lower correlation coefficient.

Five first-order features were also selected in this study, and
most of them had low correlation coefficients. Only MLO_wavelet-
HHL_firstorder_Mean had a high correlation coefficient (0.329),
indicating that the feature was positively correlated with malignant
status, which can be explained by the elevated density of malignant
tumor cells. Comparing the tumor and contralateral breast gland
density by univariate analysis of clinical characteristics, significant
differences were found between benign and malignant masses
as well.

Multiple studies have shown that radiomics can provide valuable
information for clinical diagnostic and prognostic assessments (20–
26), and previous researchers have already evaluated DM-derived
radiomics for categorizing microcalcification (27), tumors (28), and
breast cancer bymolecular properties (19, 29). This study focusedon
the masses that are most difficult to assign to the malignant and
benign groups by DM. Consistent with the literature (12), jointly
applying DM and radiomics was able to increase overall diagnostic
performance remarkably. Such a combination can be used to
examine tumor heterogeneity more comprehensively and
quantitatively when compared to morphological visual
assessment alone.

However, this study is not without its limitations. First,
diseased and normal tissues show no overt boundaries in DM,
and ROIs were not automatically generated. Therefore,
irregularities resulting from manual selection were inevitable.
Second, since the sample sizes of cases with specific
histopathological subtypes of breast cancer were small, their
differential diagnoses by radiomics could not be performed.
Further research is therefore needed to address this issue.
Finally, our results require multicenter verification with large
trials in order to generate more evidence for clinical application.
CONCLUSIONS

This study revealed that DM-based radiomics has good
performance in distinguishing benign from malignant round-
like masses, and the first-of-its-kind radiomics nomogram was
developed and validated for such discrimination, achieving good
Frontiers in Oncology | www.frontiersin.org 9
accuracy. Indeed, DM-derived radiomics has an important
clinical value in providing quantitative data to help clinicians
read and interpret mammograms.
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TABLE 5 | Performances of the predictive models in distinguishing benign from malignant tumors.

Model Accuracy Sensitivity Specificity PPV NPV

Training DM 0.670 (0.564-0.765) 0.879 0.552 0.527 0.889
Clinics 0.791 (0.693-0.869) 0.909 0.681 0.727 0.888
Radiomics 0.835 (0.743-0.905) 0.782 0.917 0.935 0.733
Combined 0.890 (0.807-0.946) 0.941 0.825 0.873 0.917

Test DM 0.684 (0.513-0.825) 0. 923 0.56 0.522 0.933
Clinics 0.711 (0.541-0.846) 1 0.577 0.522 1
Radiomics 0.789 (0.627-0.904) 0.696 0.933 0.941 0.667
Combined 0.868 (0.719-0.956) 0.95 0.778 0.826 0.933
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DM, digital mammography; PPV, positive predictive value; NPV, negative predictive value.
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