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Abstract: Hepatocellular carcinoma (HCC) is a tumor that exhibits glucometabolic repro-

gramming, with a high incidence and poor prognosis. Usually, HCC is not discovered until

an advanced stage. Sorafenib is almost the only drug that is effective at treating advanced

HCC, and promising metabolism-related therapeutic targets of HCC are urgently needed. The

“Warburg effect” illustrates that tumor cells tend to choose aerobic glycolysis over oxidative

phosphorylation (OXPHOS), which is closely related to the features of the tumor micro-

environment (TME). The HCC microenvironment consists of hypoxia, acidosis and immune

suppression, and contributes to tumor glycolysis. In turn, the glycolysis of the tumor

aggravates hypoxia, acidosis and immune suppression, and leads to tumor proliferation,

angiogenesis, epithelial–mesenchymal transition (EMT), invasion and metastasis. In 2017,

a mechanism underlying the effects of gluconeogenesis on inhibiting glycolysis and block-

ading HCC progression was proposed. Treating HCC by increasing gluconeogenesis has

attracted increasing attention from scientists, but few articles have summarized it. In this

review, we discuss the mechanisms associated with the TME, glycolysis and gluconeogen-

esis and the current treatments for HCC. We believe that a treatment combination of

sorafenib with TME improvement and/or anti-Warburg therapies will set the trend of

advanced HCC therapy in the future.

Keywords: hepatocellular carcinoma, tumor microenvironment, glycolysis,

gluconeogenesis, Warburg effect

Introduction
Liver cancer is the second leading cause of cancer mortality worldwide and the 7th

most frequently diagnosed cancer worldwide, with approximately 782,000 deaths

and 841,000 new cases diagnosed annually.1 Hepatocellular carcinoma (HCC) is the

major type of primary liver cancer (PLC) and accounts for 75–85% of cases.2 The

main risk factors for HCC are hepatitis B virus (HBV), hepatitis C virus (HCV),

cirrhosis, aflatoxin-contaminated foodstuffs, alcohol abuse, obesity, and type 2

diabetes.1,3–5 Decades ago, Otto Warburg observed that cancer cells rely on glyco-

lysis for the generation of energy even in a normoxic environment, which was

known as the “Warburg effect” or “aerobic glycolysis”.6,7 Aerobic glycolysis not

only provides energy but also provides intermediates (nucleotides, amino acids,

lipids and NADPH) for biosynthesis,8,9 which explains why aerobic glycolysis

occurs prior to oxidative phosphorylation (OXPHOS) in proliferation cells such

as tumor cells. The distinct proliferation characteristics and glucometabolic
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reprogramming of tumor create a unique TME different

from the overall human environment. The HCC microen-

vironment consists of various cell types, growth factors,

proteolytic enzymes, extracellular matrix (ECM) proteins

and cytokines, which are widely known to contribute to

hypoxia, acidosis and immune suppression.10 The “suita-

ble” environment provided by the tumor microenviron-

ment (TME) contributes to tumor proliferation,

angiogenesis, invasion and metastasis. Aerobic glycolysis

and TME can interact with each other and create a vicious

spiral.

However, as the major metabolic organ in the body,

liver plays an important role in glucose homeostasis by

regulating synthesis and decomposition of glycogen.

During fasting, approximately 80% of endogenous glucose

is produced by liver through gluconeogenesis.11,12

Gluconeogenesis is actually a reverse pathway of glyco-

lysis and can inhibit glycolysis through downstream glu-

coneogenesis enzymes, such as phosphoenolpyruvate

carboxykinase1 (PCK1) and fructose-1,6-bisphosphatase

1 (FBP1).13,14 In addition, gluconeogenesis uses lactate

as one of the substrates to consume harmful byproducts

of glycolysis. This glucose-metabolizing feature offers

a unique opportunity to treat HCC. Nevertheless, the

decrease of PCK1 and FBP1 expression in HCC compared

to normal liver tissue lead to the suppression of gluconeo-

genesis and elevation of glycolysis.15,16 As an emerging

hallmark of tumors, studies regarding glucose metabolism

reprogramming used to focus on glycolysis. However, the

correlation between gluconeogenesis and tumors is rarely

reported but may provide insight for the treatment of HCC.

In this review, we summarized the interaction between

glucometabolic reprogramming and the HCC microenvir-

onment. Furthermore, we discussed HCC treatment target-

ing the improvement of the TME, suppression of

glycolysis and elevation of gluconeogenesis aiming to

find promising metabolism-related therapeutic targets

of HCC.

Hypoxic Microenvironment
Hypoxia is a typical microenvironment feature in nearly

all solid tumors, and it contributes to their rapid and

uncontrolled proliferation.17 Hypoxia-inducible factors

(HIFs) are key transcription factors produced by tumor

cells under hypoxia to cope with the hypoxic microenvir-

onment. Furthermore, HIFs contribute to invasive growth,

survival, metastasis, treatment resistance and poor prog-

nosis of HCC.18 The HIF family includes three subtypes:

HIF-1, HIF-2, and HIF-3. Among them, HIF-1 and HIF-2

are considered to be the most important factors for cells to

respond to hypoxia. HIF-1 and HIF-2 consist of an oxy-

gen-sensitive subunit HIF-α and a constitutively expressed

HIF-β subunit.19,20 Both HIF-1α and HIF-2α are reported

correlating with tumors. Studies have shown that HIF-1α
regulates vascular endothelial growth factor (VEGF) dur-

ing the acute phase of hypoxia, while VEGF is mainly

regulated by HIF-2α during long-term hypoxia.21 HIF-2α
is overexpressed in primary and metastatic tumors22 and is

positively correlated with tumor angiogenesis.23 However,

studies on HIF-2α and liver cancer are rare, and HIF-1α is

the primary factor in liver cancer hypoxia. In the presence

of oxygen, HIF-1α is hydroxylated by prolyl hydroxylases

(PHDs), leading to its rapid proteasomal degradation.

Under hypoxic conditions, PHDs are no longer active to

hydroxylate HIF-1α. HIF-1α will be stabilized and trans-

located to the nucleus.24

Accumulation of HIF-1α can influence tumor survival

and proliferation by regulating tumor glycometabolism in

the following four ways. First, HIF-1α can increase the

uptake of glucose by upregulating the expression of glu-

cose transporters (GLUT) such as GLUT1. Second, HIF-

1α promotes the expression of glycolytic enzymes and

accelerates the conversion of glucose to pyruvate. Third,

HIF-1a can phosphorylate pyruvate dehydrogenase (PDH)

by inducing the expression of pyruvate dehydrogenase

kinase (PDK) and inactivate the PDH to prevent the con-

version of pyruvate to acetyl CoA. Fourth, HIF-1a upre-

gulates the expression of lactate dehydrogenase

A (LDHA) to stimulate the production of lactic acid.25

In addition to the effect the of the glycometabolism of

HCC, HIF-1α can also influence HCC survival by regulat-

ing the oxidative stress level.26 Oxidative stress can med-

iate mitochondrial apoptosis and the immune response in

liver cancer.27 Reactive oxygen species (ROS), byproducts

of oxygen metabolism, are the main causes of oxidative

stress, and their concentration changes play dual functions

in the regulation of HCC process.28,29 Low levels of ROS

may induce DNA mutation by oxidative DNA damage,

which eventually increases the likelihood of HCC

development.30,31 Overexpression of ROS can inhibit

HCC by inducing apoptosis of hepatoma cells and inhibit-

ing metastasis through ROS/Akt/NF-kB pathway, and sup-

pressing liver cancer stem cell via ROS/β-Catenin
/FOXO3a Signaling.32–34 In a hypoxic environment, the

low oxygen content and the lack of oxygen as electron

recipient lead to the imbalance of electron flow through
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the mitochondrial electron chain, which contributes to the

accumulation of ROS and causes irreversible cellular

damages in tumors.35,36 However, HIF-1α can promote

HCC progression by preventing ROS accumulation

through the following pathways. First, HIF-1α prevents

pyruvate from entering TCA cycle by inactivating PDH

through PDKs and the conversion of pyruvate to lactate by

upregulating LDHA expression.21,37,38 HIF-1α therapy

ensures that circulating tricarboxylic acid cycle (TCA)

substrates cannot enter mitochondrial oxidation.36,39

Second, HIF-1α can reduces ROS accumulation by inhi-

biting ROS production sites in the electron transport chain

(ETC), such as complexes 1 and 4.40,41 Third, HIF-1α
decreases the number of mitochondrial cristae and the

mitochondrial mass through HEY1/PINK1 pathway, and

degrading mitochondria by inducing BNIP3 to restrict

ROS production and promote ROS elimination.42

Glutamine is a key source of carbon, secondary only to

glucose.43 Decomposition of glutamine will replenish the

TCA cycle and provide abundant carbon and nitrogen for

hepatocyte growth and proliferation.44,45 Some of the car-

bon can be used to produce NADPH to achieve redox

equilibrium.46 At the same time, glutamic acid produced

by glutamine decomposition will directly synthesize the

antioxidant glutathione and neutralize ROS.47 Through

various pathways, the tumor cells will eventually maintain

ROS at an appropriate level that is conducive to their own

growth and proliferation. At present, most chemotherapy

drugs and radiotherapy kill tumor cells by inducing ROS

production.48 Hence, interfering with or reversing of

hypoxia and its effects or identifying a suitable way to

increase ROS level in tumor cells can reduce the drug

resistance of tumors and improve the therapeutic

effect.32,49,50 In turn, tumor cell aerobic glycolysis can

influence HIF-1α by upregulating glutamine. The TCA

cycle is the hinge of metabolism of glucose, fat and

amino acid. Glutamine is the most abundant nonessential

amino acid in blood serum. The “Warburg effect” of

tumors leads to the conversion of pyruvate into lactic

acid and the lack of carbon source for TCA cycle.

Glutamine is not only a nitrogen source for amino acids

and nucleotide synthesis but also the main carbon source

for TCA cycle and macromolecule biosynthesis.51 Many

tumor cells require much more glutamine than normal

cells. Tumor cells take up a large amount of glutamine

and then convert it into other metabolic intermediates,

meeting the energy requirements for rapid proliferation.52

Glutamine can regulate the stability of HIF-1a in response

to hypoxia and support the survival of HCC cells by

upregulating proline and hydroxyproline levels.53 The

increase in the level of glutamine further exacerbates

tumor hypoxia. Thus, targeting glutamine could be a new

strategy in oncotherapy.

Acid-Base Microenvironment
Acid-base characteristic of the TME is widely recognized

as the acidification of extracellular pH (pHe), which is so-

called tumor acidosis (Figure 1). Tumor cells have

a lower pHe of ~6.7–7.1 and a higher intracellular pH

(pHi) ≥7.4 rather than a higher pHe of ~7.4 and a lower

pHi of ~7.2 in normal cells.54 Recently scientists have

proposed using high-resolution pH mapping to monitor

pHe in HCC, which could be a biomarker for metabolic

changes and monitoring tumor aggressiveness and thera-

peutic outcome.55–57 Tumor acidosis is the consequence

of lactate and H+ ions accumulation, which are produced

by glycolysis and oxidative metabolism. Most tumor

cells, also called as glycolytic tumor cells, prefer glyco-

lysis rather than OXPHOS, leading to increases in lactate

and H+ production. However, some tumor cells still use

oxidative metabolism and are called oxidative tumor

cells.58 The accumulation of lactate in HCC microenvir-

onment is mainly due to the increases of intracellular

lactate production and extracellular transport. The inter-

conversion of pyruvate and lactate plays a critical role in

intracellular lactate production, which is primarily cata-

lyzed by the lactate dehydrogenase (LDH) family.59 LDH

enzymes with high M-subunits (encoded by LDHA) pro-

mote the conversion from pyruvate to lactate.59 In con-

trast to LDHA, LDH enzymes with high H-subunits are

encoded by lactate dehydrogenase B (LDHB) and pro-

mote the conversion from lactate to pyruvate.59 Moreover,

pyruvate dehydrogenase kinase (PDK) can prevent pyru-

vate from entering mitochondria for OXPHOS.60

Upregulation of LDHA and PDK synergistically pro-

motes the production of lactate in HCC.60,61

Monocarboxylate transporter (MCT) expression on

tumor cell membranes is associated with lactate passive

transport and prevents glycolytic tumor cells from intra-

cellular lactate accumulation.59,62 MCT1 and MCT4 are

major proteins expressed in tumors. MCT1 is a high-

affinity lactate transporter that participates in exogenous

lactate uptake by endothelial cells and oxidative tumor

cells.62 MCT4 is a low-affinity lactate transporter that

promotes lactate release from glycolytic tumor cells.63

Although lactate could be incepted as a fuel, lactate
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accumulation in the TME still exists due to a large

amount of lactate release. As a production of oxidative

metabolism, CO2 can be hydrated to H2CO3 and then

dissociates to HCO3
− + H+.64 Furthermore, the production

of H+ can also be associated with the metabolism of

amino acids and the hydrolysis of ATP. In addition to

lactate/H+ symporter MCTs, H+ can also be actively trans-

ported by H+-ATPases and Na+/H+ exchangers (NHEs).65

However, carbonic anhydrases (CAs) colocalize with Na+

/HCO3
− cotransporters (NBCs)66 transporting Na+ and

HCO3
− into tumor cells and maintaining a mildly alkaline

level of pHi and a dynamic balance of Na+.65 V-ATPase,

CAIX and CAXII are selectively overexpressed in

HCC.67

TME acidosis could influence HIFs reprogramming

by increased O2 consumption. An upregulation of HIF-

1α under acidosis has been reported in glioma and

HEK293 cell.68,69 Additionally, HIF-2α has been

reported to play a critical role in regulating metabolic

adaptation to acidosis in liver cancer and glioma.68,69

Mild extracellular acidosis could restructure mitochon-

dria and promote mitochondria fusion. Excess H+ and

lactate decrease immunological cell function by inhibit-

ing glycolysis and IFN-γ production. Moreover, TME

acidosis has been reported to contribute to angiogenesis,

invasion and metastasis.65

Immune Microenvironment
Tumor immune microenvironment of liver cancer is

mainly associated with T cells, NK cells and tumor-

associated macrophages (TAMs). In HCC, dysfunction of

the above immune cells leads to reductions in inflamma-

tion and the immune response, which contributes to tumor

progression.70 Metabolism reprogramming in these cells is

closely associated with their functional change in

the TME.

T cells play a critical role in antitumor immunity.

Different subsets of T cells incline to different types of

metabolism pathways. Naïve T cells have two types of

subsets: CD4+ T cells and CD8+ T cells. Both of them

express a resting mode for OXPHOS, which is accompa-

nied by low lactate levels and low nutrient uptake.71,72

After activation, both CD4+ and CD8+ naïve T cells differ-

entiate into long-lived memory T cells (TM cells) and

short-lived effector T cells (TE cells).73–75 CD4+ T cells

can differentiate into two affected subsets: helper T cells

(Th cells) and regulatory T cells (Treg cells).75–77 CD8+

T cells can also differentiate into cytotoxic T cells (CTL)

GLUT
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Figure 1 Overview of tumor acid-base microenvironment. OXPHOS of the oxidative cells is a compensatory mechanism of tumor acidosis, but the acidosis cannot be

reversed.

Abbreviations: GLUT, glucose transporters; TCA, tricarboxylic acid cycle; LDH-A, lactate dehydrogenase A; MCT4, monocarboxylate transporter4; MCT1, mono-

carboxylate transporter1; V-ATPase, vacuolar ATPase; NHE1, sodium-hydrogen exchanger1; CAs, carbonic anhydrases; NBC, sodium bicarbonate cotransporters.
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and Treg cells upon activation.78 Metabolic reprogramming

occurs during the process of activation. Long-lived TM

cells and Treg cells tend to go through fatty acid oxidation

(FAO).79–83 FAO in TM cells can fuel OXPHOS and

enhance mitochondrial capacity, which could be a sign of

rapid response to infection or cancer recurrence.84 TE cell

expansion can be accomplished in just a few days for the

immune response and most TE cells die after antigen

clearance. However, short-lived TE cells require a fast

energy supply.85,86 Both elevated aerobic glycolysis and

OXPHOS have been observed in TE cells (except Treg
cells) activation.85 Many scientists pointed out that aerobic

glycolysis/OXPHOS levels are upregulated in these acti-

vated TE cells compared to resting T cells, which indicates

a “switch” from OXPHOS to aerobic glycolysis.82,85,87-90

Metabolism reprogramming is associated with T cells fate,

in which mitochondria play a critical role.91 The function

of mitochondria is correlated with the number and polar-

ization of mitochondria, the number and length of mito-

chondrial cristae, and mitochondrial dynamics.85 TE cells

with a dominant metabolic pathway of aerobic glycolysis

have punctate mitochondria, which accelerate cell

proliferation.79,92 TM cells with a dominant metabolic

pathway of OXPHOS maintain fused networks,79,92

which maximize OXPHOS activity. Control of Treg cells

suppress function by mitochondria is closely related to

mitochondrial complex III.81 Crosstalk among these cells

keeps the dynamic balance of immune response in vivo.

TE cells play a role as immune guards, and TM cells can be

supplements for TE cells to react rapidly after restimula-

tion. Tregs can inhibit overreaction of TE cells and are

essential for protection from autoimmunity and excessive

inflammation.93 However, the disruption of this balance

leads to the immune escape during tumorigenesis.

Tumorigenesis starts from mutations of tumor-related

genes and an uncontrolled cell cycle. In addition to uncon-

trolled proliferation, tumor progression and migration

require the suppression of self-programmed death and

evasion of immunosurveillance.94 Immune tolerance and

immune evasion play a critical role in poor HCC prognosis

and are always concomitant with energy, exhaustion and

senescence of T cells, especially TE cells.95 In the TME,

T cells’ metabolic pathways can be influenced by glucose

competition, extracellular lactate accumulation and inter-

action between tumor cells and T cells. As a result of

glucose competition, T cells cannot obtain enough glucose,

which inhibits T cell proliferation and function.87,95 The

glucose transporter GLUT1 of T cells is downregulated in

tumors, which is essential for glucose uptake and aerobic

glycolysis. Macintyre et al suggested that GLUT1 defi-

ciency prevented CD4+ T cells activation and effector

functions, and that TE cell expansion and IFN-γ production
decreased.96 Stromal cells (tumor cells and cancer-

associated fibroblasts) contribute to lactate levels, which

lead to cell invasiveness and metastasis.92 It has been

demonstrated that tumor cells can inhibit T cell prolifera-

tion by expressing indoleamine 2.3-dioxygenase and inhi-

bit T cell function by deriving lactate and blocking lactate

export in T cells.97,98 As a byproduct of the “Warburg

effect”, lactate production and acidification can lead to

immune evasion by diminishing the IFN-γ production of

T cells through the NF-kB pathway.99 In contrast, Treg cell

proportions can be found increased in the HCC

microenvironment.100 It has been reported that tumor-

infiltrating Treg cells express higher levels of GLUT1 and

glycolysis-related genes than TE cells on the cell surface,

which leads to a higher uptake of glucose and an increased

level of aerobic glycolysis.101 Treg cells play a synergistic

action with tumor cells for glucose competition, which

induces T cell senescence and exhaustion by starving

effector T cells.102 In the TME, immune tolerance and

evasion are only displayed in local tumor rather than the

whole body, which is tightly associated with the interac-

tion between tumors and T cells by “immune

checkpoints”.103

Immune checkpoints can be negative regulators of the

immune response by inhibiting effector lymphocytes

(Figure 2). When TE cells are activated, generation of

IFN-γ could enhance the antigen presentation and promote

T cell maturity. Nevertheless, scientists found that this

process could upregulate expression of immune check-

points, such as programmed death-1 (PD-1). This upregu-

lation could provide negative feedback for the immune

response in the normal microenvironment, preventing

damage from a hyperimmune response and maintaining

peripheral tolerance. However, tumors can take advantage

of this mechanism of immune evasion. PD-1 and cytolytic

T lymphocyte-associated antigen-4 (CTLA-4), the most

focused checkpoints for T cells, are correlated with glu-

cose metabolism.104 PD-1, programmed death-1, is also

known as CD279, PDCD1, SLEB2, hPD-1, hPD-l, hSLE1

[NCBI Gene ID: 5133]. A high level of PD-1 expression

can be a characteristic of exhausted T cells.105 After being

activated by its ligands, such as programmed death-ligand

(PD-L1) (CD274, B7-H, B7H1, hPD-L1, PDCD1L1,

PDCD1LG1 [NCBI Gene ID: 29,126]), PD-1 can send
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inhibitory signals to T cells. Expression of myocyte-

specific enhancer factor 2D (MEF2D) by HCC cells can

upregulate their PD-L1 expression and enhance their com-

bination with PD-1.106 PD-1 can inhibit aerobic glycolysis

in T cells in 3 ways: i, PD-1 inhibits expression of GLUT1

leading to reductions in glucose uptake and transmission;

ii, PD-1 inhibits a rate-limiting enzyme of aerobic glyco-

lysis, hexokinase2 (HK2); and iii, PD-1 reduces mitochon-

drial number and induces mitochondrial dysfunction by

reducing the number and length of mitochondrial

cristae.85,89 In addition, PD-1 induces FAO by upregulat-

ing the rate-limiting enzyme of FAO, carnitine palmitoyl-

transferase (CPT1A).89 Metabolic reprogramming from

aerobic glycolysis to FAO makes the dynamics lean

toward long-lived TM cells.89 PD-L1 expression in tumor

cells is associated with vascular formation in HCC

patients.107 PD-1/PD-L1 can be a target for the treatment

of HCC. Blocking PD-1 can reinvigorate exhausted CD8+

T cells and program them into durable memory CD8+

T cells.108 However, this reinvigoration CD8+ T cells can

be re-exhausted in a high antigen concentration

environment.108 Conversely, CTLA-4 inhibits aerobic gly-

colysis rather than enhancing FAO.89 Blockade of PD-1

and CTLA-4 can reverse the inhibition of aerobic glyco-

lysis and effector function in T cells.85,89,92,95,109 Different

from off-targets of the classical immune checkpoint

blockers, Treg cells are sensitive to anti-CTLA-4 antibodies

and can induce antibody-dependent cell-mediated

cytotoxicity.110,111 T cell immunoglobulin and ITM

domain (TIGIT) is also involved in the regulation of

CD8+ T cell metabolism by downregulating GLUT1 and

HK1/HK2.112

Similar to T cells, activated NK cells preferentially go

through aerobic glycolysis by maintaining proliferation

and effector function and memory NK cells more likely

to use FAO to fuel OXPHOS. NK cells can be divided into

two different phenotypic and functional subsets depending

on the expression levels of CD56 receptor: CD56dim cells

and CD56bright cells.113 CD56dim cells are generally

deemed to be cytotoxic cells with less GLUT1 expression,

whereas the CD56bright cells are considered to be IFN-γ

producers with higher GLUT1 expression.113 Either IL-2

or IL-12/15 cytokine combinations can activate NK cells

and increase OXPHOS levels for energy supply.114 Sine

´ad E. Keating and his colleagues found an interesting

phenomenon in which CD56bright cells showed higher

GLUT1 expression and levels of aerobic glycolysis than

CD56dim cells, leading to a higher level of activation.

Downregulation of aerobic glycolysis in CD56bright cells

restricts IFN-γ production.113 Lactate accumulation and

acidification can impair activation and IFN-γ production

of NK cells by diminishing nuclear factor of activated

HLA-E
PD-L1

PD-L1
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CD115

TIGIT

CD96

NKG2A

PD-1

Kuppfer
cell

Tumor cell

NK cell

T cell

Treg cell
CD80

CD86

CTLA-4
NKG2A

PD-1
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Figure 2 Interaction between tumor cells and immune cells by immune checkpoints. T cells and NK cells express various immune checkpoints, which can bind to ligands on

tumor cells, Treg cells and Kupffer cells and be inhibited (CD96 binds to CD111 and CD115; TIGHT binds to CD115 and CD112; NKG2A binds to HLA-E; PD-1 binds to

PD-L1; and CTLA-4 binds to CD80 and CD86).

Abbreviations: PD-1, programmed death-1; CTLA-4, cytolytic T lymphocyte-associated antigen-4; NKG2A, natural killer cell group 2A; TIGIT, T-cell immunoglobulin and

ITIM domain; HLA-E, human leukocyte antigen-E.
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T cells (NFAT).99 Moreover, liver-resident natural killer

(LrNK) in the TME displayed a downregulation of

NKG2D and impaired cytotoxicity and cytokine produc-

tion, which could be recovered by IL-15.115 Zhou et al

found that LrNK contributes to the tolerogenic microen-

vironment of the liver by inhibiting TE cells. LrNK inhibits

TE cells proliferation and production of INF-γ and TNF-α
through a PD-1-PD-L1 axis.116

Immune checkpoints: natural killer cell group 2A

(NKG2A)/CD94, TIGIT and CD96 were found to lead to

NK cells exhaustion and to predict poor prognosis in

HCC.117–119 Scientists found that CD49a+ NK cells, which

expressed higher levels of immune checkpoints molecules

PD-1, TIGIT and CD96, were correlated with a poor prog-

nosis in HCC patients.120 However, few studies have

assessed the correlation between immune checkpoints and

metabolic reprogramming in NK cells. NK cell education is

the process of NK-cell subsets to obtain functional

competence.121 Caroline Pfeifer found that educated NK

cells presented with distinct self-inhibitory receptors and

went through distinct glycolytic profile and functions.121

Educated NK cells presented with NKG2A (NKG2A-

educated NK cells) showed no obvious upregulation in

GLUT1 expression, glycolysis or functionality compared

with educated NK cells presented with killer cell immuno-

globulin (KIR) (KIR-educated cells).121 Furthermore, com-

pared with KIR-educated NK cells NKG2A educated NK

cells could better survive glycolysis blockade, allowing

NKG2A-educated NK cells to adapt to the hypoxic and low-

glucose environment of the tumor.121 Upregulation of the

NKG2A ligand on tumor cells further promotes immune

evasion from NK cells in the TME.121 In addition, other

experiments have proven that anti-NKG2A mAb could

block immune evasion by unleashing not only NK cells but

also T cells.122

TAM infiltration takes part in tumor invasion and

metastasis.123 Macrophages exhibit two diverse phenotypes:

M1-classic activation and M2-alternative activation. The M1

type is characterized by pro-inflammatory (IL-1, TNF-α)
cytokines and IFN-γ production and can phagocytize tumor

cells and induce tumor cell apoptosis. The M2 type is char-

acterized by the production of anti-inflammatory cytokines

(IL-6, IL-10, TGF-β) and can induce angiogenesis and tumor

cell generation. TAMs were attracted and activated by tumor

secretory factors (VEGF, PDGF, TGF-β, CCL2, and

M-CSF).10 TAMs mostly exist in the form of M2 in the

TME, which could be closely associated with the byproduct

of glycolysis in HCC. Lactate secreted by hepatoma cells

induces VEGF and arginase1 (Arg1) via HIF-1a to promote

M2-like polarization of TAMs.124 As liver-specific macro-

phages, Kupffer cells survive anoxia by glycolysis and pro-

duce PD-L1 ligand to suppress TE cells.125 The dominant

TAMs in orthotopic HCC exhibit Kupffer cell (KC) proper-

ties and are known as KC-like TAMs (kclTAM).126 TAMs

could be “helpers” and target tumorigenesis and

development.

Signaling Pathways Involved in HCC

Glucometabolic Reprogramming
Tumor cells prefer to choose glycolysis over OXPHOS in

hypoxic or even normoxic environment, relying on HIF-1α

and c-MYC synergies.127 c-MYC also plays as important

a role in glycolysis in HCC as HIF-1α. The importance of

collaboration between c-MYC and HIF-1α was demon-

strated to activate the Warburg effect by inhibiting IDH1-

AS1 in multiple tumors under normal oxygen.127 c-MYC

was reported to participate overexpression of MTR4 in

HCC, which drives the expression of glycolytic genes

such as GLUT1 and PKM2.128 PFK2 in turn was found

to up-regulate c-MYC expression in glioma.129 A positive

feedback loop between MYC and PFK2 was demonstrated

to sustain tumor cell aerobic glycolysis in a Drosophila

tumor model.130 c-MYC could be a promising target for

HCC treatment, especially in advanced stages.131,132

Moreover, some cytokines and signal pathways can also

directly or indirectly affect the glycolysis of tumor cells by

increasing the stability and transcription activity of HIF-

1α. The major regulatory mechanisms of HIF-1α involved

in HCC glucometabolic reprogramming are described in

detail below and shown in Figure 3.

Phosphatidylinositol-3-kinase (PI3K)/AKT signaling

promotes the proliferation of hepatoma cell and EMT in

HCC, which contributes to HCC growth, migration and

invasion.3,133,134 They transmit cell surface receptor sig-

nals and affect a variety of tissue-dependent cellular func-

tions. The PI3K/AKT/mTOR signaling pathway not only

directly mediates aerobic glycolysis but also regulates

HIF-1α.135 Impairing insulin signaling by inhibiting

PI3K/AKT pathway could promote gluconeogenesis in

the liver.136 Molecules can treat HCC by inhibiting

PI3K/AKT activation, such as MiR-612.137

The Wnt/β-catenin pathway has been reported to occur

in both early and late stages of HCC138,139 and suppress

mitochondrial respiration and promotes glycolysis.140

HIF-1α can stimulate Wnt/β-catenin signaling via the
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coactivator BCL9 in HCC.141 Wnt signaling further drives

HCC proliferation through MYC, frizzled (FZD),

Glypican-3 (GPC3), EGFR and CTNNBIP1.138,142-144

Moreover, activation of the Wnt/β-catenin pathway

increases the EMT-associated activity of HIF-1α and

enhances the proliferation, EMT, invasion and metastasis

of HCC.145,146 Molecules that activate the Wnt/β-catenin

pathway can provide therapeutic targets and predictors for

molecular precision therapy of HCC, such as LINC00346

and Linc00210 (long noncoding RNAs), and PBOV1 and

PROX1 (oncogene).142,143,147,148 PROX1 was also found

to be a target for treating HCC sorafenib tolerance.147

Transforming growth factor-β1 (TGF-β1) is a common

cytokine that regulates a variety of cellular processes.149 In

advanced tumor, TGF-β1 acts as an oncogenic factor and

induces tumor proliferation, EMT invasion and

metastasis.149,150 TGF-β1 contributes to the metabolic repro-

gramming of tumor cells by upregulating the expression of

key enzymes of the glycolytic pathway via the Smad, p38

MAPK and PI3K/AKT signaling pathways.31 TGF-β1 pro-

motes tumor progression by reducing mitochondrial respira-

tion and enhancing glutamine anaplerosis and the pentose

phosphate pathway (PPP) cycle.151 TGF-β1 and its mediated

signaling pathway can still induce HIF- α to participate in the

process of metabolic reprogramming under normoxic

conditions.152

The EGFR/MEK/ERK/HIF-1α/VEGFA cycle regulates

glucose metabolism and promotes HCC proliferation,

angiogenesis and metastasis.153,154 VEGFs and their cog-

nate receptors (VEGFRs) are critical in the regulation of

vessel formation in angiogenesis.155 HIF-1α can induce

angiogenesis by binding to the VEGF gene promoter and

upregulating VEGF expression.156 In addition, TGF-β1

can induce VEGF expression via Smad and HIF-2α.152

The Notch signaling pathway plays a critical role in

crosstalk between glucometabolic reprogramming and
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HCC microenvironment. High expression of Notch1 indi-

cates a poor prognosis in HCC.157 Notch/Hes1 signaling

could induce glycolysis by inactivation of p53 and activa-

tion of the NF-kB pathway.126,158 As a target gene of NF-

kB, the transcriptional activity of HIF-1α was significantly

increased by activated Notch1.158 In turn, HIF-1α was

reported to upregulate the expression and function of

Notch in HCC.159,160 Notch can promote the proliferation

of hepatoma cells through the PI3K-Akt, mTOR and Ras

pathways.126 Moreover, Notch inhibits hepatoma cells

apoptosis by downregulation of ROS production via the

NICD1/Hey1/PINK1 pathway and inactivation of

p53.36,126 Notch promotes EMT, invasion and metastasis

in HCC through NICD/snail and Wnt3a pathway.157,161-163

However, there is a dispute that blocking Notch promotes

HCC progression and metastasis by accelerating prolifera-

tion of kclTAMs via Wnt signaling and IL-10 production

through c-MYC.164 More evidence is needed in the future.

Unlike the above pathways, AMP-activated protein

kinase (AMPK) is the main activation pathway of the anti-

Warburg effect in HCC. Activation of AMPK inhibits

glycolysis and promotes OXPHOS, which restricts the pro-

liferation of hepatoma cells.165–167 Activation of AMPK/

mTOR by glycochenodeoxycholate can also promote HCC

invasion and migration by activating autophagy.168

Moreover, upregulation of AMPK reduces the expression

of hepatocellular cancer stem cell markers in long-term sor-

afenib therapy, which provides a new target for overcoming

the chemotherapy resistance of HCC.169 AMPK treatment

options such as upregulation of HSF1, NOD2 and PEDF or

inhibition of 6PGD and GSK-3β could have potential in

HCC treatment.165–167,170,171 Among them HSF1 also parti-

cipates in the promotion of gluconeogenesis.172 Treatments

that both inhibit glycolysis and promote gluconeogenesis at

the same time are expected to be promising HCC treatment

solutions.

Discussion
Along with the improvement of tumor cognition, including

disorder of cell cycle, gene mutations and immune evasion,

the development of oncotherapy has gone through 3 stages:

chemotherapy, targeted therapy and immunotherapy. HCC

shows hidden clinical symptoms in the early stage of the

disease; thus, the diagnosis often occurs in the advanced

stage or metastasis, which is prone to recurrence. Sorafenib

is almost the only systemic treatment options for patients

with advanced HCC.173 However, sorafenib treatment of

advanced HCC is prone to drug resistance and cannot

achieve the desired therapeutic effect, which is closely

related to the TME.173 Recently, an increasing number of

scientists have focused on the effect of TME in tumorigen-

esis and development, which could be the fourth stage of

tumor cognition and therapy. The Warburg effect is the

foundation of tumorigenesis, proliferation, migration and

metastasis, and it contributes to a unique TME. In this

review, we focused on metabolism reprogramming in

three aspects of TME: hypoxia, acid-base status and

immune microenvironment. Lately, anti-Warburg therapies

which not only focus on the characteristics of the TME or

directly inhibit glycolysis but also inhibit glycolysis by

increasing gluconeogenesis, have become a popular area

of research.

Treatments for the Hypoxia

Microenvironment
Hypoxia is considered to be a major obstacle to tumor

treatment.174 At present, the main idea of hypoxia treat-

ment for HCC is to directly provide/generate oxygen at the

tumor site to increase the partial oxygen pressure or indir-

ectly reduce the level of HIF-1α and interfere with a HIF-

1α-related signaling pathway to decrease hypoxia

effects.17,18 Increasing local oxygen pressure and reversing

hypoxia can use nanotechnology to introduce O2 into the

tumor or generate oxygen at the tumor site by increasing

the decomposition of endogenous hydrogen peroxide and

light-triggered water splitting.18,175 However, most of

these approaches are in the early stage of development

and need more time to evaluate their availability in HCC

therapy. Many anticancer drugs aimed at HIF-1α have

been reported. Heat shock protein 70 (Hsp70), benzopyr-

anyl 1,2,3-triazole and BIX01294 reduce HIF-1α levels by

promoting ubiquitination and proteasome degradation of

HIF-1α.176–178 Drugs that inhibit the expression and accu-

mulation of HIF-1α transcriptional activity and protein

accumulation include cardenolides and ezn-2208.177,179

Moreover, some inhibitors act on HIF-1α-related signaling

pathways, such as glyceollins and apigenin, which inhibit

the PI3K/AKT pathway to downregulate HIF-1α.180,181

Semaxanib causes low HIF-1 DNA-binding activity by

inhibiting PI3K activity and AKT phosphorylation.182

HIF-1a inhibitors can not only improve the effect of the

hypoxia microenvironment on HCC progression but also

increase the sensitivity of hepatocytes to targeted therapy.

Simvastatin can inhibit HIF-1α/PPAR-γ/PKM2-mediated

glycolysis in hepatocytes and resensitize it to
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sorafenib.183 In addition to treatment, HIF-1-related genes

have also been used in the establishment of a novel inte-

grated scoring system, which could contribute to the pre-

cise treatment of HCC patients.184 Due to complicated

regulations and overlap mechanisms, the clinical trials of

HIF-1α inhibitors targeting tumor hypoxia have failed to

achieve significantly satisfactory results.

Treatments for the Acid-Base

Microenvironment
There are two distinct approaches in tumor acidosis:

I. modulating pH to restore chemosensitivity and correct

detective immune mechanisms and II. Utilizing an acidic

TME to enhance the effect of drugs. The pH can be

adjusted in 3 ways: reducing acid production, increasing

acid consumption and providing an outside pH buffer.

Elevating gluconeogenesis can both reduce acid produc-

tion and increase acid consumption by inhibiting glycoly-

sis and using lactate as a substrate.185,186 As a promising

treatment, the mechanisms and options for increasing glu-

coneogenesis to treat HCC will be explored in detail in

“Treatments for aerobic glycolysis”. Targeted therapy of

proton pump/transporters could also reduce acid produc-

tion. Omeprazole, a proton pump inhibitor (PPI), has been

used to analyze the role of V-ATPase in HCC and proved

to have a wide range of antitumor effects at the preclinical

and clinical levels.187 Since HCC showed partial drug

resistance to a CAXII inhibitor compound in an anoxic

TME, modifications of compound 25 need to be studied to

improve its antitumor effect.67 As mentioned above, out-

side provision of a pH buffer could be anti-acidifying

strategies in HCC. Oral or transarterial chemoembolization

(TACE) pH buffer can restrict local invasive growth and

metastasis by reducing intratumoral and peritumoral acido-

sis rather than altering the pH of healthy tissues or

blood.188–190 Patients with large HCC showed a marked

enhancement of the anticancer activity after TACE with

bicarbonate local infusion into tumor.190 Sodium bicarbo-

nate, with a pKa of 6.1, is sufficient to meet the above

requirements.188 However, published clinical trials have

indicated that pH buffer with a pKa of approximately 7

is a more ideal treatment.189 Alternatively, some drugs

have shown an enhanced effect in tumor acidic microen-

vironment. As protonable weak bases, PPIs can be selec-

tively aggregated and activated in acidic region.191 An

acidic TME can not only be the target of PPI but also

promote PPI activation. Drugs with the same

characteristics as PPIs can be considered for cancer com-

bination therapy. More fundamental studies and clinical

trials need to be performed.

Treatments for the Immune

Microenvironment
Two treatment strategies aiming at liver cancer immu-

notherapy include the enhancement of normal immune

mechanisms and the correction of detective immune

mechanisms.

For enhancement immunotherapy, cytokines (IL-2, IFNs),

cancer vaccines and cell therapy (CAR-T) have been approved

by the FDA. Although some of the above methods have

achieved a certain effect in liver cancer therapy,192 high-

frequency negative trials with high toxicity pushed scientists

to find other ways.193 Immune checkpoints inhibitors targeting

the TME but with lower toxicity have begun to emerge.

Immune checkpoint therapy could satisfy the following three

principles at the same time: normalizing tumor immunity,

targeting the TME and reset of immune response in TME.

Treatment with the CTLA-4 inhibitor, tremelimumab, led to

a transient complete viral response in 25% of HCC patients

with HCV infection (ClinicalTrials.gov Identifier:

NCT01008358).194 PD-1 and PD-L1 inhibitors showed

lower levels of immune-related adverse events (irAEs) than

CTLA-4 inhibitors, with an incidence of 27% versus 72% for

all grades and 6% versus 24% for grade 3 or higher in HCC.

The irAEs of PD-1 or PD-L1 inhibitors are not related to dose;

however, the effect is dose-dependent for CTLA-4

inhibitors.195,196 The PD-1 inhibitor MEDI4736 resulted in

lower hepatotoxicity than CTLA-4 antibody in HCC

patients.193 Although antitumor activity of PD-1 antibody is

promising, less than 20% of HCC patients respond to it.104

Clinical trials targeting at the effect of PD-1 blockade com-

bined with other treatments have been launched. A trial exam-

ining the combination of PD-1 blockade and incomplete

thermal ablation in patients with advanced HCC has just

been completed, the results of which will provide us with

a more in-depth understanding of the efficacy once they are

published (ClinicalTrials.gov Identifier: NCT03939975).

A clinical trial investigating CTLA-4 and PD-L1 combination

blockade after transarterial chemoembolization (DEB-TACE)

in intermediate-stage HCC patients is underway

(ClinicalTrials.gov Identifier: NCT03638141). Given the com-

plexity of liver cancer and the irAEs of immunotherapy alone,

more than 16 clinical trials are ongoing in an attempt to

explore the therapeutic effects and side effects of combined
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locoregional immunotherapy.197 Lately, it has been revealed

that exhaustion of CD8+ T cells is not the major cause for

tumor immune evasion, but rather, it is a lack of stem-like CD8

T cells, providing a fresh perspective to this field of research.

Stem-like CD8 T cells can differentiate into CTLs and main-

tain tumor immune response within the comfortable environ-

ment provided by antigen-presenting cells.198 This new

discovery may be able to explain why the immune checkpoint

treatment is only 20–30% efficient. However, tumor immune

evasion has a large and complicated network, which cannot be

explained by one single mechanism. The role of stem-like

CD8 T cells in tumor immune evasion requires further

exploration in the future.

Currently, scientists believe that NK cells are equally as

important as T cells and can be used in conjunction with

T cells for tumor immunotherapy.122 The antiviral activity of

hepatic T cells has been found to be controlled by LrNK via

the PD-1-PD-L1 axis.116 Moreover, anti-NKG2A mAb was

revealed play an important role in unleashing both T and NK

cells.122 The results of the above experiments suggest that

PD-1-PD-L1 and NKG2A blockade are important targets for

tumor treatment. However, no clinical trials investigating

NKG2A blockade in HCC patients have yet been conducted.

Treatments for Aerobic Glycolysis
Strategies targeting for the “anti-Warburg effect” have

been primarily considered for key transporter and enzymes

involved in glycolysis.199 However, increasing gluconeo-

genesis could suppress glycolysis at the same time, which

became the new target for the “anti-Warburg effect”.

The selective inhibitors of GLUTs include benzamides

and rapafucins, which can inhibit GLUTs and inhibit glucose

uptake to prevent or reduce the proliferation of tumor cells.

Benzamides can directly bind to GLUT1 and inhibit GLUT1

function without affecting GLUT1 protein levels.

Benzamides have no obvious toxicity to normal tissues.200

New GLUT inhibitors such as rapafucins are being

explored.201 As the healthy tissues also need glucose, it is

necessary to select tumor-specific GLUT inhibitors and make

appropriate assessments to reduce the toxicity to normal cells.

HK2 is the first rate-limiting enzyme for glucose

metabolism.202 Studies have shown that blockade of HK2

in human hepatoma cells can inhibit the occurrence of tumor

and increase cell death.203 2-DG is a well-known HK2 inhi-

bitor, that has been reported to inhibit hexokinase by compet-

ing with glucose.204,205 Lonidamin is a mitochondrial HK

inhibitor that suppresses the activity of HK1 and HK2.206

Others such as 3-bromopyruvic acid (3-BrPA), ketoconazole

and posaconazole can also affect tumor metabolism and

growth by blocking HK.207,208

Phosphofructokinase 1 (PFK1) is the second rate-limiting

enzyme of glycolysis, and tumor formation can be impaired

by the O-GlcNAcylation of PFK1 at serine 529.209 Metformin

can target the HIF-1α/PFKFB3/PFK1 pathway in hepatoma

cells and reduce hepatoma cell proliferation by inhibiting

glycolysis.210 Pyruvate kinase (PK) is the third rate-limiting

enzyme in glycolysis. It has multiple subtypes, among which

PKM2 is upregulated in a variety of cancers. Shikonin is an

inhibitor of PKM2 that can reduce the glycolytic rate of

tumors. However, its toxicity and poor solubility limit its

application.211 Recent studies have found that metformin

can also induce tumor cell death and increase sensitivity to

chemotherapy drugs by inhibiting PKM2 in osteosarcoma.212

LDHA is located at the bifurcation point of glycolysis

and oxidative phosphorylation. Inhibition of LDHA may

be a promising antitumor strategy. The piperidindione

derivatives miR-30a-5p, miR-41 and GNE-140 have been

indicated to inhibit LDHA in breast and pancreatic

cancer.213,214 However, glycolysis inhibitors cannot induce

cell death to achieve long-term tumor remission and its

safety needs further verification. At present, the effect of

glycolysis inhibitors alone is not very significant. In the

future, it will be necessary to further study the mechanism

or a combination of multiple methods for treatment to

achieve the purpose of controlling tumors.

The main substrates of hepatic gluconeogenesis are

lactate, pyruvate, glycerol and glycosylated amino acids

(such as glutamate). Hepatic glycosylation relies on the

initial gluconeogenesis enzymes phosphoenolpyruvate car-

boxykinase (PEPCK), downstream fructose-1, 6-bispho-

sphatase (FBP) and the final-step glucose-6-phosphatase

(G6PC).215 PEPCK has two isoforms: a cytosolic isoform,

PCK1, and a mitochondrial isoform, PCK2. Unlike the

well-known PCK1, it was recently demonstrated that

PCK2 contributed to gluconeogenesis with less efficiency

than PCK1.16 FBP also has two isoforms: liver isoform,

FBP1 and muscle isoform, FBP2.216 Studies of increasing

gluconeogenesis are mainly focused on PCK1 and FBP1.

PCK1 and PCK2 are downregulated in HCC and sug-

gest a poor prognosis.16 Bian found that Nur77 could

stabilize PCK1 by attenuating its sumoylation and ubiqui-

tination and then suppress HCC.14 PCK1 was also found

to inhibit hepatoma cell proliferation by downregulating

cell cycle progression through the AMPK pathway.217

FBP1 appears to be a tumor suppressor and poor prog-

nostic marker in HCC. Gene set enrichment analysis with 594
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cases of HCC demonstrated that lower FBP1 expression was

correlated with advanced tumor stage, poor overall survival

and higher tumor recurrence rates.13 Two double-negative

feedback loops have been indicated for FBP1 expression in

HCC. The first loop is FBP1 and enhancer of zeste homolog 2

(EZH2): EZH2 can inhibit FBP1 and FBP1 physically com-

peted for EZH2 binding in turn.15 The second loop is FBP1

and polycomb repressive complex 2 (PRC2). PCR2 can

downregulate FBP1, and conversely, FBP1 can interfere

with PCR2 functions.218 Histone deacetylases and FX11

inhibitor stabilize FBP1 in HCC to inhibit of tumor growth

and invasion.219,220 However, more clinical trials are needed.

Conclusion
Tumor aerobic glycolysis is closely associated with TME.

They promote each other to provide a suitable growth

environment for tumor. Combination treatment of sorafe-

nib with TME improvement and/or anti-Warburg therapies

represents the future of advanced HCC therapy. Treatment

options that elicit responses with “anti- Warburg effects”

are more promising for HCC therapy, such as those that

promote the elevation of gluconeogenesis. However, these

treatments still need clinical trials for verification.
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