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Chromosomes are susceptible to damage during their duplication and

segregation or when exposed to genotoxic stresses. Left uncorrected, these

lesions can result in genomic instability, leading to cells’ diminished fitness,

unbridled proliferation or death. To prevent such fates, checkpoint controls

transiently halt cell cycle progression to allow time for the implementation of

corrective measures. Prominent among these is the DNA damage checkpoint

which operates at G2/M transition to ensure that cells with damaged

chromosomes do not enter the mitotic phase. The execution and

maintenance of cell cycle arrest are essential aspects of G2/M checkpoint

and have been studied in detail. Equally critical is cells’ ability to switch-off the

checkpoint controls after a successful completion of corrective actions and to

recommence cell cycle progression. Interestingly, when corrective measures

fail, cells can mount an unusual cellular response, termed adaptation, where

they escape checkpoint arrest and resume cell cycle progression with damaged

chromosomes at the cost of genome instability or even death. Here, we discuss

the DNA damage checkpoint, the mitotic networks it inhibits to prevent

segregation of damaged chromosomes and the strategies cells employ to

quench the checkpoint controls to override the G2/M arrest.
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Introduction

G1, S, and G2 phases, collectively known as interphase, account for the major

portion of the division cycle. G2 phase, though much shorter than G1 and S phases,

is an important period in the life of a dividing cell. It not only marks the completion

of S phase, but it is also the gateway to mitosis when a cell “prepares’” for a dramatic

upheaval in its internal organization. Chromosome condensation, nuclear

membrane breakdown, Golgi fragmentation, mitotic spindle assembly,

partitioning of duplicated chromosomes and cellular fission collectively represent

intracellular organization in a dynamics flux. Soon, the “storm” passes and the

progenitor cell undergoes self-cleavage, giving birth to two daughter cells with

intracellular organization returning to its stable, interphase state. For the

“preparation for M phase,” various networks pertaining to mitosis are primed
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(set in a ready-to-go state) in G2 such that all mitotic events

are executed in a highly coordinated fashion. Cells that leave

G2 phase and enter mitosis prematurely, face uncoordinated

passage through M phase, resulting in genomic instability,

reduced fitness or death (mitotic catastrophe) (Mc Gee,

2015). The length of G2 varies substantially among

different organisms. Unlike vertebrate cells or fission

yeast, the G2 phase in the budding yeast Saccharomyces

cerevisiae is very brief or nonexistent. In Xenopus laevis,

early embryonic divisions (and in other animal embryos)

occur in rapid succession with an apparent omission of

G1 and G2 (Siefert et al., 2015). Since mitotic event

during these divisions are still executed in a coordinated

fashion despite an apparent absence of G2, it suggests that the

preparation for mitosis in these division formats begins

before the completion of S phase or that there is a nearly

complete overlap between the trailing part of S phase and G2.

G2 phase also serves as a “holding room” in the event cells incur

DNAdamage during S phase. Such damages result in the activation of

the “DNAdamage checkpoint control,”which halts the damaged cells

in G2 and prevents them from executingM phase until the damage is

fully repaired (Calonge and O’Connell, 2008; Ciccia and Elledge,

2010). In eukaryotes, two major modes of control are used to enact

this blockade: by inhibiting CDK1 activation (i.e., onset of M phase)

and/or by suppressing chromosome segregation. Once the DNA

damage is successfully repaired, cells must disengage the mitotic

machinery from the checkpoint control and proceed to mitosis

(recovery). Intriguingly, when cells fail to repair the DNA damage,

the checkpoint-mitosis disengagement can still occur after a pronged

period of arrest and cells enter M phase with damaged chromosomes

(adaptation). In this review, we discuss our current understanding of

the main mechanisms underlying the activation of DNA damage

checkpoint and its deactivation during recovery and adaptation. To

set the context, we first briefly describe the mitotic networks, DNA

damage checkpoint pathway and the nodes of “contact”

between them.

G2-TO-MITOSIS transition and
CDK1/CYCLIN B kinase complex

In vertebrate cells, G2/M DNA damage checkpoint halts cell

cycle progression predominantly by inhibiting the regulatory

network responsible for the entry into mitosis. The master

regulator of the G2-to-M transition is the serine/threonine kinase

complex CDK1/Cyclin B. The activity of CDK1 is governed

primarily by its timely association with cyclin B. While the levels

of CDK1 remain stable throughout the cell cycle, the Cyclin B levels

fluctuate, reaching their highest during early mitosis and lowest at

the end ofMphase (Castedo et al., 2002; Sanchez et al., 2003). Cyclin

B abundance is regulated at the transcriptional level as well as by

proteolysis (Fung and Poon, 2005) (Figure 1). In vertebrates,

transcription of Cyclin B is initiated in S phase and peaks in

G2 and it is under the control of transcription factors NF-Y,

FOXM1 and B-MYB (Lindqvist et al., 2009). Cyclin proteolysis

starts during metaphase and continues throughout G1 (Bastians

et al., 1999). The proteolytic degradation of Cyclin B is essential for

cells’ exit from M phase and is mediated by the E3 ubiquitin ligase

APC (anaphase promoting complex) (van Leuken et al., 2008). Since

many substrates of CDK1/Cyclin B are nuclear proteins, the

regulation of cellular localization of Cyclin B is also important

for its associationwith CDK1.During interphase, Cyclin B is actively

exported from the nucleus in the export-protein CRM1 dependent

manner (Yang et al., 1998). CDK1 and PLK1 have been shown to

phosphorylate Cyclin B at the CRM1 binding site, causing cyclin B’s

net influx into the nucleus (Gavet and Pines, 2010).

FIGURE 1
(A) Schematic representation of different modes of cellular regulation influencing mitotic activity of CDK1. The activation of CDK1 is directly
regulated by cyclin B binding, phosphorylation byWEE1/MYT1 kinases, dephosphorylation by Cdc25 phosphatases and the binding of CDK inhibitors.
CDK1’s activity is also indirectly affected by transcription regulation impinging on cyclin expression and the proteolytic degradation of cyclins and
CDK inhibitors.
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The association of CDK1 and cyclin B is stabilized by

phosphorylation of Thr161 (in human cells; Thr167 and Thr169

in Schizosaccharomyces pombe and S cerevisiae, respectively)

in the T-loop of CDK1 by CAK kinase (CDK activating

kinase) (Ducommun et al., 1991; Tassan et al., 1994; Dalal

et al., 2004) (Figure 1). The activity of stable CDK1/cyclin B is

negatively regulated by WEE1 kinase family (WEE1 and

MYT1) that phosphorylates CDK1 on Thr14 and Tyr15

residues in the ATP binding site (Schmidt et al., 2017;

Moiseeva et al., 2019) (Figure 1). WEE1 mediated

phosphorylation holds CDK1 in an inactive state during

G2 phase. At the onset of mitosis, the CDC25 family of

phosphatases (CDC25A, B, and C in mammalian cells)

reverses this inactivation by dephosphorylation of these

residues, thereby activating CDK1/cyclin complex. Though

CDC25A is predominantly nuclear, the CDC25B isoform

shuttle between nucleus and cytoplasm during G2,

(Lindqvist et al., 2005; Calonge and O’Connell, 2008;

Moiseeva et al., 2019). The cytoplasmic localization of

CDC25C during interphase is dependent on its binding to

14-3-3 protein which requires phosphorylation of CDC25C

on S216 and S287 (Dalal et al., 2004). The nuclear translocation

of CDC25C is facilitated by phosphorylation of the S191 and

S198 residues (Toyoshima-Morimoto et al., 2002: Bahassi el

et al., 2004). Active CDK1/cyclin B complex stabilizes

CDC25A, prevents nuclear export of CDC25B and activates

CDC25C (Kousholt et al., 2012). Together, the WEE1 kinase

family (WEE1 and MYT1) and CDC25 phosphatase family

constitute an ON/OFF switch for the CDK1/cyclin B activity

(Figure 1). Active Cdk1/cyclin B also phosphorylates

WEE1 and MYT1, causing their inactivation (Deibler and

Kirschner, 2010). Thus, CDK1/cyclin B-mediated inactivation

of WEE1/MYT1 and stabilization of CDC25 phosphatase

family sets up a positive feedback loop that helps to

amplify its own activity that peaks ~30 min before

prometaphase (Potapova et al., 2011). In mammalian cells,

polo-like kinase PLK1 also helps to promote entry into

mitosis. CDK1-mediated phosphorylation of WEE1 primes

it for further phosphorylation by PLK1, thus aiding its

inactivation (Ovejero et al., 2012; Parrilla et al., 2016).

PLK1 can also activate the transcription factor

FOXM1 involved in the expression of CDC25B

(Mukhopadhyay et al., 2017). The activity of CDK1 is also

regulated by cyclin-dependent kinase inhibitors (CKIs) under

certain cellular contexts (Bunz et al., 1998; Satyanarayana

et al., 2008).

While finer details of the G2-M transition may differ, the core

aspects of CDK1/Cyclin B regulation by phosphorylation are highly

conserved in lower eukaryotes such as yeasts S. pombe and S.

cerevisiae. The onset of mitosis in these yeasts is regulated by cdc2

(cdk1)-cdc13 and Cdk1-Clb complexes, respectively (Li et al., 2009;

Enserink and Kolodner, 2010). Interestingly, unlike S. pombe and

mammalian cells, dephosphorylation of Tyr15 (Tyr19 in S. cerevisiae) is

not a rate limiting step in S. cerevisiae in that the substitution of Tyr19

by alanine or inactivation of Swe1 (wee1 equivalent in S. cerevisiae)

does not lead to premature onset of mitosis (Amon et al., 1992;

Booher et al., 1993: Dalal et al., 2004). It is noteworthy that the critical

involvement of Cdk1, wee1, APC and other effectors in the regulation

of mitotic events was first discovered in these yeasts.

Sister chromatid cohesion and
chromosome segregation

The yeast S. cerevisiae has been instrumental in the dissection of

the DNA damage checkpoint pathway. However, unlike vertebrates,

the checkpoint pathway in this organism does not target the events

leading up to the onset of mitosis; instead, it inhibits the regulatory

network that catalyzes sister chromatid segregation. Following

chromosome duplication, the sister chromatids remain associated

with each other until they are segregated away during anaphase due to

the poleward pull exerted by the mitotic spindle. The cohesion

between sister chromatids is mediated by cohesin complex. First

reported in S. cerevisiae, it is composed of two SMC (Structural

Maintenance of Chromosomes) proteins Smc1/Smc3 (Smc1α and

Smc3 in human) and a kleisin subunit Scc1 (human Rad21), forming

a ring-like arrangement (Makrantoni and Marston, 2018)

(Figure 2A). The accessory proteins Scc3, Wpl1, and Pds5 (human

SA1/SA2, Wapl, Pds5a/Pds5b) interact with Scc1 and regulate the

association of the cohesin complex with the chromatin (Haering et al.,

2002; Makrantoni and Marston, 2018). Loading of cohesins occurs

prior to replication and is mediated by the Scc2-Scc4 loader.

Stabilization of the cohesion complex requires entrapment of both

sister chromatids and closing of the cohesin ring (Peters and

Nishiyama, 2012). Subsequently, the ring is closed by Eco1

(ESCO1 and ESCO2 in human)-dependent acetylation of

Smc3 head on Lys112 and Lys113, which prevents the DNA-

stimulated ATP hydrolysis and inhibits the opening of the ring

(Litwin et al., 2018). The sister chromatid cohesion in yeast is

maintained along the entire length of the chromosome until the

onset of anaphase (Marston, 2014). In mammalian cells, however,

chromosome arm cohesins are removed during prophase (“prophase

pathway”) in a CDK1-PLK1-dependent manner; only centromeric

cohesins (protected by Shugoshin SGO1 and protein phosphatase 2A)

persist until the onset of anaphase, giving metaphase chromosome

their characteristic X-shape (McGuinness et al., 2005; Haarhuis et al.,

2014) (Figure 2B).

At anaphase, sister chromatid cohesionmust be dissolved to allow

spindle to progressively partition the chromosomes to the opposite

poles. In S. cerevisiae, the dissolution of cohesion is accomplished by

abrupt opening of the cohesin ring by the protease Esp1 (separase or

ESPL1 in human) which cleaves the cohesin subunit Scc1, allowing

coordinated movement of chromosomes to the opposite poles (Luo

and Tong, 2021) (Figure 2C). However, Esp1 remains in an inactive

formdue its associationwith securin Pds1 (PTTG in human) until the

onset of anaphase (Mei et al., 2001; Han and Poon, 2013). Once all
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chromosomes are appropriately loaded onto the spindle, anaphase is

triggered by APCCdc20 mediated proteolytic degradation of securin

Pds1 and releasing of separase Esp1 from Pds1-mediated inhibition

(Shirayama et al., 1999;Mei et al., 2001) (Figure 2C). Esp1 then cleaves

the cohesin subunit Scc1 at the core motif (D/E)-xxR and opens the

cohesin ring, allowing spindle-powered poleward movement of sister

chromatids (Sullivan et al., 2004; Zhang and Pati, 2017). This

regulatory scheme that governs cohesion maintenance and its

dissolution is highly conserved between yeast and vertebrates.

G2/M transition under surveillance:
DNA damage checkpoint

Double strand breaks (DSBs) are among the most toxic DNA

lesions which, if left unrepaired, severely compromise cell survival.

Chromosomes are particularly susceptible to damage during

replication in S phase. Since segregation of damaged

chromosomes during mitosis can greatly exacerbate these

damages, it is imperative for cells to halt the cell cycle

progression and repair the damage prior to the onset of

chromosome segregation. DNA damage response (DDR) is a

concerted cellular action plan that integrates 1) the network that

detects and processes DNA damage 2) the DNA damage checkpoint

that halts cell cycle progression and 3) the system that repairs DSBs

via homologous recombination (HR) or non-homologous end-

joining (NHEJ) (Ciccia and Elledge, 2010; Giglia-Mari et al.,

2011; Vitor et al., 2020). Many aspects of the DDR are highly

conserved across eukaryotic cells and have been studied in detail in

both yeast and vertebrate cells (Stracker et al., 2009; Cussiol et al.,

2019).

DNA damage sensing, checkpoint
execution and G2 arrest in vertebrate cells

In vertebrate cells, the phosphatidylinositol 3-kinase related

protein kinases ATM and ATR, MRN complex, 9-1-1 complex

and CHK1/CHK2 are the key elements of the checkpoint

activation network. DSB are primarily “sensed/detected” by MRN

complex (MRX in yeast) composed ofMre11, Rad50 andNbs1 (yeast

Xrs2) proteins (Tisi et al., 2020; Qiu and Huang, 2021). It carries out

FIGURE 2
(A) The cohesion ring complex and its components in yeast Saccharomyces cerevisiae. (B) Prophase pathway in metazoan. In metazoans,
chromosome arms cohesins are removed during prophase, while centromeric cohesins are protected by SGO1 and PP2A from removal and persists
until the onset of anaphase. The removal of the arm-cohesins involves kinase activities of PLK1, Aurora B and CDK1 and the phosphorylation of
cohesion subunit SA1 and SA2. In addition, WAPL plays an important role in coordinating cohesion removal during prophase. (C) Sister
chromatid separation in S. cerevisiae. The cohesin complexes in S cerevisiae remain in place along the entire length of chromosomeuntil the onset of
anaphase. Dissolution of sister chromatid cohesion begins with the proteolytic degradation of securin Pds1 followed by separase mediated cleavage
of cohesion subunit Scc1.
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initial processing of DSB by generating a short 3′ single strand DNA

(ssDNA) overhang (Figure 3). Exo1, a 5′-3′exonuclease, is

subsequently recruited for an extensive end-resection to create a

long 3′-ssDNA, which is then “coated” by ss-DNA binding factor

RPA (Tomimatsu et al., 2017). TheRPA-coated ss-DNA is recognized

by ATR kinase (Yeast Mec1) via its binding partner ATRIP (Ddc2 in

yeast). ATR can also be activated by TOPBP1 (yeast Dpb11) recruited

at the ssDNA/dsDNA junction (Saldivar et al., 2017). Full activation of

ATR also requires recruitment of RAD9-RAD1-HUS1 loader

complex (9-1-1 complex: Rad17-Mec3-Ddc1 in yeast) (Delacroix

et al., 2007). Another PIKK family kinase ATM (Tel1 in yeast)

also contributes to the checkpoint control at G2/M. Transduction

of the signal fromATM/ATR to downstream effector kinases involves

BRCT-domain containing adaptor proteins 53BP1 and MDC1 and

brings these regulators into proximity (Huen and Chen, 2008; Kciuk

et al., 2022). CHK1 and CHK2 (yeast Chk1, Rad53) are the main

effector kinases activated by ATM/ATR (Figure 3). CHK1 is generally

thought to be activated by ATR via phosphorylation on S317 and S345

and CHK2 by ATM via phosphorylation on T68. However, given the

crosstalk between different axes, these phosphorylation-dependencies

may not be strict (Smith et al., 2010). All checkpoint kinases

phosphorylate and stabilize transcription factor p53, which is

involved in cells’ decision to undergo DNA damage-dependent cell

cycle arrest, senescence or apoptosis (Oren, 2003; Lavin and Gueven,

2006) (Figure 3).

Once the checkpoint is activated, it targets the mitotic regulators

to prevent entry into mitosis. Cdc25C, the phosphatase that plays a

critical role in the activation of CDK1, is phosphorylated by ATR,

ATM and CHK1 on S345 or S317 (Liu et al., 2020) (Figure 3). The

activation of DNA damage checkpoint also causes phosphorylation of

CDC25Con S287, creating a 14-3-3 binding site and preventing it from

activating CDK1 (Gardino and Yaffe, 2011). CHK1 and

CHK2 kinases phosphorylate CDC25C on Ser216, causing its

proteolytic degradation (Hirao et al., 2000; Gottifredi et al., 2001;

Liu et al., 2020). CHK1 also promotes degradation of CDC25A by

phosphorylation on Ser76 (Jin et al., 2008). In addition, checkpoint

activation promotes stabilization of CDK1-inhibiting kinaseWEE1 by

phosphorylation on Ser549 and Ser287 residues (Lee et al., 2001). Thus,

in mammalian cells, DNA damage checkpoint predominantly targets

the members of the CDK1-activation network to prevent entry into

mitosis. Inhibition of non-CDK1 kinases such as PLK1 and Aurora A

also appear to be important in augmenting DNA damage induced

G2 arrest (Smits et al., 2000; Peng, 2013; Joukov andDeNicolo, 2018).

DNA damage sensing, checkpoint
execution and mitotic arrest in S.
cerevisiae

Like in vertebrate cells, the DNA damage sensing and its initial

processing in S. cerevisiae is accomplished by the MRX complex

(Figure 4). MRX first attracts Tel/ATM to a unresected DSB.

Subsequent localization of Mec1 (human ATR) requires end-

resection (Lisby et al., 2004; Gobbini et al., 2016). More extensive

FIGURE 3
Activation of DNA damage checkpoint and cell cycle arrest in mammalian cells. The DSBs in mammalian cells are recognized by MRN complex
and processed with the help of CtIP, EXO1, BLM, and DNA2 proteins to generate 3′ ssDNA extension. This results in the recruitment and activation of
ATM/ATR kinase and subsequently, the activation of CHK/CHK2 kinases. The activated kinases then inhibit the effectors required for the onset of
mitosis, thus causing cells to arrest in G2. In addition, ATR/ATM/CHK1/CHK2 kinases stabilize p53 which help in the imposition of G2 arrest.
P53 also activates apoptotic pathway in certain cellular contexts. As in yeast, the activation of checkpoint effectors inmammalian cells also trigger the
DNA repair pathways.
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re-sectioning of the DSB occurs via two mechanisms: by Exo1 which

removes nucleotides individually from DSB end or by

Dna2 endonuclease and Sgs1/BLM helicase (Zhu et al., 2008).

Tel1 and Sae2, recruited to the DSB by MRX, initiate Exo1 and

Dna2 mediated end-resection (Gobbini et al., 2016; Villa et al., 2016).

Cdk1 also plays an important role during resection by

phosphorylation and activation of CtIP/Sae2 and Dna2 (Chen

et al., 2011; Yu et al., 2019). The localization of Mec1 to the

processed DSB (i.e. RPA-coated ss-DNA), is facilitated by Ddc2

(human ATRIP). The adaptor protein Rad9 (mammalian 53BP1)

is recruited to theDNA lesions by the scaffold proteinDpb11 (human

TOPBP1), which also binds to the 9-1-1 clamp loader via Mec1-

dependent phosphorylation of Ddc1 (Pfander and Diffley, 2011).

Activated Mec1 transmits the damage signal downstream by

phosphorylating and activating Rad9 (Figure 4). Mec1-dependent

phosphorylation of Rad9 is important for its oligomerization to

sustain the damage signal and priming of Rad9 as a scaffold for

Rad53/CHK2 localization and for subsequent phosphorylation events

(Lanz et al., 2019). Once Rad53 is recruited via the docking sites on

Rad9, the proximity of multiple Rad53 monomers promotes their

autophosphorylation and activation. Activated Rad53modulates DSB

processing by phosphorylating and inhibiting Exo1 (Morin et al.,

2008). Mec1 also contributes to the activation of Chk1/CHK1 kinase

(Figure 4).While Rad53 is an essential gene for both vegetative growth

and DDR in S cerevisiae, Chk1 is non-essential for vegetative growth.

Chk1 deficient cells exhibit partial defect in G2 arrest in response to

ionization radiation (Zachos et al., 2003). Dun1 kinase, a

Rad53 paralogue, also features in the dynamics of DNA damage

checkpoint (Figure 4). Though structurally similar to Rad53,

Dun1 contains a single FHA domain unlike Rad53 that harbors

two FHA domains. It interacts with Rad53 through FHA domain and

is activated by Rad53-mediated phosphorylation (Bashkirov et al.,

2003) (Figure 4). Dun1 is required for DNA damaged-induced

transcription of the target genes and the phosphorylation of DNA

repair protein Rad55 (Bashkirov et al., 2000; Smolka et al., 2007). It

activates the DNA damage-dependent transcriptional program for

dNTP synthesis by phosphorylation and degradation of Crt1 and

Sml1, both inhibitors of DNA synthesis (Zhao and Rothstein, 2002;

Sanvisens et al., 2014). Interestingly, Dun1 deficient cells fail to arrest

in response to DNA damage despite the presence of the checkpoint

activated Rad53, implying a critical role of Dun1 in DNA damage

induced G2/M arrest (Yam et al., 2020) (Figure 4). While the overall

scheme of DNA damage checkpoint execution is conserved between

yeast and vertebrates, there a few notable differences. For instance,

unlike vertebrate cells where tumor suppressor p53 plays an

important role in G2 arrest and its cellular outcomes, S. cerevisiae

lacks p53 homologue or its functional equivalent.

Since G2 phase is extremely brief in S. cerevisiae and Tyr19

phosphorylation of Cdk1 is necessary but not a rate limiting step

for entry into mitosis (Amon et al., 1992; Welburn et al., 2007),

the DNA damage checkpoint targets the network that regulate

sister chromatid separation. As described above, chromosome

segregation in yeast involves cohesion complex, securin Pds1,

separase Esp1, APCCdc20 and the spindle apparatus. Mec1-

activated Chk1 kinase (and possibly Rad53) phosphorylates

Pds1, rendering it resistant to APCCdc20 mediated proteolytic

FIGURE 4
Activation of DNA damage checkpoint and cell cycle arrest in yeast. The activation of DNA damage checkpoint in S. cerevisiae requires
detection of DSB by MRX complex and its processing by Sae2, Exo1, Sgs1, and Dna2 to generate 3′ ssDNA extension. Subsequently, the recruitment
and activation of Mec1/Tel1 leads to the activation of Chk1, RAD53 and Dun1, resulting in the phosphorylation of securin Pds1 and protection from
proteolytic degradation by E3 ubiquitin ligases APCCdc20 and Rsp5. The stabilized Pds1 inhibits the separase Esp1 and prevents sister chromatid
separation, leading to cell cycle arrest. In parallel, the checkpoint activation also triggers the DNA repair pathways.
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degradation (Cohen-Fix and Koshland, 1997; Wang et al., 2001;

Karumbati and Wilson, 2005). There is also some evidence that

Rad53 phosphorylates Cdc20, promoting its degradation and

thus contributing to mitotic arrest (Wang et al., 2001). This

results in the stabilization of Pds1-Esp1 complex, which prevents

Esp1-induced cleavage of the cohesin subunit Scc1 and

dissolution of chromosome cohesion (Uhlmann et al., 1999).

It has been shown that phospho-Pds1 is further protected from

E3 ubiquitin ligase Rsp5 by Dun1 (Liang et al., 2013; Yam et al.,

2020). These observations clarify Dun1’s role in checkpoint-

mediated mitotic arrest. In addition to inhibiting sister

chromatid separation, DNA damage checkpoint may also

inhibit additional pathways to prevent segregation of damaged

chromosomes. It has been proposed that checkpoint maintains

APC activator Cdh1 in an active state by inhibiting polo-like

kinase Cdc5 (PLK1 in human) to prevent untimely elongation of

the mitotic spindle (Zhang et al., 2009).

Switching-Off the checkpoint:
Recovery from G2/M arrest following
DNA repair

The checkpoint controls remain active during the repair process

and continue to prevent cells from progressing to mitosis. Once the

DNA repair is completed, the checkpoint controls must be switched

off to permit cells to resume cell cycle progression. Since DNA

damage checkpoint is activated mainly by protein phosphorylation

events, it is not surprising that phosphatases play an important role

in its reversal.

Recovery from G2/M arrest in vertebrate
cells

In mammalian cells, the redundancy within the CDC25 family

of phosphatases comes into play during recovery. As CDC25A and

Cdc25C are degraded during G2 arrest, the recovery from

checkpoint arrest becomes dependent on CDC25B (Bugler et al.,

2006; Chen et al., 2021). Another phosphatase WIP1 also increases

in abundance several hours after the induction of damage and

accumulates at DSBs (Burdova et al., 2019). WIP1 dephosphorylates

and deactivates several checkpoint effectors such as ATM,

CHK1 and CHK2 (Goloudina et al., 2016). PP1 and PP2A

phosphatases also play an important role in deactivation of the

checkpoint in that they dephosphorylate γH2A and inactivate

ATM-Chk2 axis (Chowdhury et al., 2005; Campos and

Clemente-Blanco, 2020). Mitotic regulators such as PLK1 and

Aurora A, and proteolytic degradation also play a significant part

in the recovery from checkpoint arrest. Suppression of PLK1 does

not affect mitotic entry during normal cell cycle but it significantly

delays recovery from checkpoint arrest (van Vugt et al., 2004). This

delay can be alleviated by depletion of WEE1 suggesting that

WEE1 may be the downstream target of PLK1 during

checkpoint recovery (van Vugt and Medema, 2005; Kim, 2022).

PLK1 also mediates degradation of Claspin leading to disabling of

CHK1 (Mailand et al., 2006; Mamely et al., 2006). CHK2 and

53BP1 are also phosphorylated by PLK1 which disrupts their

checkpoint function and helps checkpoint recovery (van Vugt

et al., 2010; Peng, 2013). Additionally, Aurora A and its cofactor

Bora aid cells’ recovery from checkpoint arrest. Since the

requirement for Aurora A can be overcome by the expression of

activated PLK1, it implies that Aurora A’s role in checkpoint

recovery is through the activation of PLK1 (Macurek et al.,

2008). Inactivation of p53 by PLK1 may also help cells in the

resumption of cell cycle progression (Chen et al., 2006). The

Greatwall kinase MASTL has been shown to play an important

role in regulating mitotic entry during recovery in human cells

(Wong et al., 2016). Similarly, in Xenopus egg extracts, Greatwall,

together with polo-like kinase Plx1, promotes recovery from

checkpoint arrest (Peng et al., 2011).

Recovery from G2/M arrest in S. cerevisiae

As in vertebrate cells, Ser/Thr phosphatases and proteolytic

degradation play an important role in the recovery from G2/M

arrest in S. cerevisiae (Figure 5A). Since Rad53 is a critical effector

in the DNA damage checkpoint, its dephosphorylation has been

studied in some detail. PP2A and PP2C classes of phosphatases

feature prominently in this context. PP2A Phosphatase Pph3

(and its cofactor Psy2) has been reported to dephosphorylate

activated Rad53 and γH2A (O’Neill et al., 2007; Chowdhury

et al., 2008; Sun et al., 2011). PP2C phosphatases Ptc2 and Ptc3

(homologues of mammalian WIP1) also dephosphorylate

Rad53 after HO endonuclease induced DSB (Guillemain et al.,

2007). Ptc2, through its phosphorylation by CK2 on Thr376,

dephosphorylates the activated Rad53. There is some evidence

that the target specificities of Ptc2 and Ptc3 may not completely

overlap (Heideker et al., 2007; Gardino and Yaffe, 2011). The

action of these phosphatases may remove some but not all

phospho-residues from multiply phosphorylated Rad53,

suggesting that other recovery specific processes play

important roles in full deactivation of the checkpoint. In

yeast, checkpoint attenuation begins during repair of the

resected DNA. The repair complex Slx4-Rtt107 loads onto the

damage sites, displacing the adaptor protein Rad9 (Cussiol et al.,

2015). A similar observation has been reported for Sae2 where it

competes with Rad9 for binding to the damage site (Yu et al.,

2018). This prevents Rad9 from amplifying the damage signal by

Rad9 via checkpoint kinases. It is speculated that Srs2 might also

be involved in removing checkpoint proteins from the damage

site during recovery (Dhingra et al., 2021) In addition, proteolytic

degradation of Ddc2, the interacting partner of Mec1, may

contribute to the dialing down of the checkpoint signaling

during recovery. Ddc2 undergoes Mec1-dependent and
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-independent phosphorylation upon DNA damage and its

abundance decreases as cells recover from checkpoint arrest

(Paciotti et al., 2000; Memisoglu et al., 2019). A recent report

has proposed a positive feedback loop between Ddc2 stability and

checkpoint signaling (Memisoglu et al., 2019). Thus, rapid

dampening of the checkpoint controls during recovery period

requires inputs from multiple effectors.

Adaptation to DNA damage
checkpoint induced arrest: An
intriguing cellular behavior

Suspension of cell cycle progression in G2 upon DNA damage

and recovery from the arrest following repair of the DNA lesions

ensures cells’ survival, fitness, and genomic stability. In the event cells

are unable to repair DNA damage, they first arrest in G2/M for a long

period but then turn-off the checkpoint controls and proceed to

mitosis with damaged chromosomes. Mitotic spindle mediated

segregation of damaged chromosomes harms the chromosomes

further, thus increasing genomic instability or even causing cell

death. This cellular behavior, termed adaptation, is intriguing since

cells (particularly unicellular organisms such as yeast) derive no

obvious advantage from what may appear to be a “self-destructive

action.” A teleological viewpoint is that adaptation allows cells to

escape G2 arrest to attempt DNA repair in the subsequent division

cycles i.e., “live to fight another day.”

A brief note on the discovery of adaptation

In 1993, Sandall and Zakian reported that elimination of

telomere from a chromosome in S. cerevisiae results in Rad9-

mediated arrest in G2/M (Sandell and Zakian, 1993).

Interestingly, many of these cells recovered from the

arrest without repairing the lesion and underwent a few

cell divisions, eventually losing this chromosome. A

critical study by Toczyski, Galgoczy and Hartwell

extended these observations and showed that cells that

have suffered a single DSB undergo checkpoint induced

arrest in G2/M; however, if the DSB cannot be repaired,

cells eventually overcome the checkpoint arrest and proceed

to mitosis while the damage is still present (Pellicioli et al.,

2001). Toczyski et al. (1997) termed this phenomenon

“adaptation” and defined three basic criteria for this

cellular behavior: 1) cells halt cell cycle progression

because of DNA damage 2) cells eventually override the

cell cycle arrest 3) cells still harbor the DNA damage at

the time they resume cell cycle progression. Subsequently, it

was reported that checkpoint signaling is turned off

FIGURE 5
Schematic representation of the processes involved in the inactivation of DNA damage checkpoint during recovery (A) and adaptation (B) in S.
cerevisiae. While there is a substantial overlap between the regulatory branches utilized to override the checkpoint-imposed arrest during recovery
and adaptation, there are two major distinctions: 1) the involvement of repair machinery in the dampening of checkpoint response during recovery
but not during adaptation 2) a prominent role of polo-like kinase Cdc5 in checkpoint inactivation during adaptation but not during recovery.
Although Cdc5 is firmly implicated in the execution of adaptive response, the molecular details of its exact role are unclear.
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eventually in Xenopus extracts with stalled DNA replication

(Yoo et al., 2004). Osteosarcoma cells exposed to ionization

radiation (IR) have also been shown to override checkpoint

arrest and enter M phase before the damage has been fully

repaired (Syljuasen et al., 2006). These studies suggest that

cells of multicellular organisms also exhibit “adaptive”

behavior when faced with extended checkpoint arrest.

The term “adaptation,” derived from “ad + aptus”

meaning “toward + fit,” is a key concept in the context of

evolution. It is a process which allows a population of

organisms to accumulate advantageous traits and become

better suited to its environment (van Vugt and Medema,

2004; Bartek and Lukas, 2007; Leculier and Roux, 2022).

With this general concept in view, the term “adaptation”

may seem ill-suited for checkpoint deactivation in response

to cells’ failure to repair the DNA lesions, as there is little

apparent benefit to be gained from this action. It can be argued

that switching off the prolonged checkpoint signaling is more

akin to desensitization observed in many signaling pathways

such as pheromone response in yeast or hormonal response in

mammalian cells, which involve feedback inhibition after a

significant delay (Jiang and Hao, 2021). Given the transient

nature of checkpoint-induced arrest under normal

circumstances, it is possible that a deactivation mechanism

is built into the checkpoint signaling module. Whether

recovery (in repair proficient cells) and adaptation (in

repair deficient cells) are mechanistically related events is

an important issue.

Dynamics of adaptation and its
mechanistic underpinnings in vertebrate
cells

In cancer therapy, apoptosis (after 4–6 h of treatment) following

DNA damage by anticancer agents has been considered the main

pathway for the eradication of tumor cells. However, this model has

been supported specifically by data from cancers of myeloid and

lymphoid origin. A substantial body of work had suggested that the

treatment sensitivity of many tumor cells to DNA damage-causing

anti-cancer therapies is due to their failure to repair the damage and

to sustain normal DNA damage response, especially when apoptosis

occurs 24–48 h after the treatment and usually after mitosis (Brown

andWilson, 2003). This indirectly hints to the failure of tumor cells

to maintain the checkpoint-induced arrest. Indeed, attenuation of

checkpoint signaling despite the presence of persistent damage is the

central element of the adaptive response. Cells can accomplish this in

multiple ways. In vertebrate cells, Claspin acts as an adaptor for the

recruitment and activation of CHK1. In Xenopus laevis, activated

ATR, while propagating the checkpoint signaling, also

phosphorylates Claspin at Thr906 (Lupardus and Cimprich, 2004;

Yoo et al., 2004). This creates a docking site for Plx1 (human PLK1)

and allows Plx1 to phosphorylate Claspin on Ser934. The modified

Claspin then dissociates from the damage-site and undergoes SCFβ-
TrCP-mediated degradation (Peschiaroli et al., 2006). These events

can result in the dampening of Chk1 activation and checkpoint

signal (Mailand et al., 2006). The relationship between CHK1 and

PLK1 has also been described in human cells (Tang et al., 2006;

Adam et al., 2018). In addition, PLK1 phosphorylates and promotes

the degradation of WEE1 which inhibits the CDK1/cyclin B

complex (van Vugt and Medema, 2005). In mammalian cells, the

level of PLK1 directly affects the cells’ ability to adapt. It has been

reported that PLK1 activity continue to rise in G2 arrested cells.

When this level reaches a threshold, the cells enter mitosis despite

the remaining damage (Liang et al., 2014; Verma et al., 2019). This

implies that in mammalian cells, adaptation, instead of being an

active surveillance mechanism, is a temporal event determined by

the level of PLK1 activity (Wakida et al., 2017).

Dynamics of adaptation and its
mechanistic underpinnings In S. Cerevisiae

Adaptation has been extensively studied in S. cerevisiae. Repair-

deficient yeast cells suffering a single HO endonuclease-induced

DSB arrest in G2/M and subsequently, undergo adaptation (Lee

et al., 2000; Dotiwala et al., 2013). However, cells with two DSBs

remain permanently arrested (Lee et al., 1998). There is evidence to

suggest that cells do not respond to the number of DSBs, but to the

extent of single stranded DNA produced by processing of the DSBs

(Lee et al., 2001). Upon detection of the irreparable DSB, the

checkpoint is activated, leading to phosphorylation of Rad53,

Chk1, Ddc2, and Cdc20 and cells arrest in G2/M for an

extended period (Waterman et al., 2020). Subsequently (~10 h

after the introduction of DSB), Rad53 is dephosphorylated,

Ddc2 diminishes in abundance and cells harboring the DSB

proceed to mitosis (Memisoglu et al., 2019). It is noteworthy that

having undergone adaptation once, yeast cells continue to divide

without reactivating the checkpoint in the subsequent rounds of

division cycles. As repeated divisions cause further accumulation of

chromosome aberrations, most of these cells eventually lose viability.

IR-exposed human osteosarcoma cells undergoing adaptation also

accumulate chromosome aberrations (Kalsbeek and Golsteyn,

2017), implying that checkpoint adaptation response in

mammalian cells increases the risk of accumulating genetically

abnormal cells that could potentially undergo malignant

transformation.

An early genetic screen in yeast to identify genes involved in

adaptation to HO-induced single DSB yielded yeast polo-like

kinase CDC5 and CKB2, a non-essential subunit of casein kinase

II (Toczyski et al., 1997). Subsequent studies identified additional

genes that play a role in checkpoint adaptation, namely,

phosphatase Ptc2 and Ptc3 (Leroy et al., 2003), telomeric Ku

complex subunits Yku70 and Yku80 (Lee et al., 1998), helicase

Srs2 and DNA-dependent ATPase Tid1 (Ferrari et al., 2013;

Bronstein et al., 2018). Ptc2 and Ptc3 dephosphorylate Rad53 to
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terminate checkpoint signaling (Figure 5B). Phosphorylated by

Casein kinase II on Thr376 located in a TXXD motif, Ptc2 can

bind to the FHA1 domain of Rad53 and facilitate

dephosphorylation of Rad53. Consistent with this, ptc2Δ ptc3Δ

double mutant exhibits normal cell cycle kinetics but fail to

undergo adaptation (Guillemain et al., 2007). In yku80 mutant,

Ku DNA binding complex is disrupted and resection is

accelerated; consequently, cells become permanently arrested

in G2/M (Clerici et al., 2008). Of all the genes influencing

adaptive response, Cdc5 kinase has garnered much attention.

DNA damaged cells harboring adaptation-defective cdc5-ad

allele remain permanently arrested in G2/M, even though

Cdc5-ad retains its kinase activity (Toczyski et al., 1997;

Rawal et al., 2016). Cdc5 overexpression, on the other hand,

accelerates adaptation and partially suppresses other adaptation

defective mutants (Donnianni et al., 2010; Vidanes et al., 2010).

In Cdc5 overexpressing cells, though the early steps of checkpoint

activation such as recruitment of Ddc1/Ddc2 and

Mec1 activation remain unaffected (Donnianni et al., 2010),

Rad53 hyperphosphorylation is conspicuously reduced

(Vidanes et al., 2010). The mechanism by which Cdc5 kinase

diminishes the hyperphosphorylation of Rad53 kinase is not

clear. Cdc5 can phosphorylate Rad53 and this modification

appears to be important for adaptation (Schleker et al., 2010).

It is possible that Cdc5-mediated phosphorylation of

Rad53 triggers its deactivation. However, it is uncertain if

Rad53 dephosphorylation is the main factor in promoting

adaptation since two other mutants cdc5-16 and cdc5T238A

remain arrested after Rad53 is dephosphorylated (Ratsima

et al., 2016; Rawal et al., 2016). In yeast, the Mec1-Ddc2

complex localizes to the damage-site, triggering the

recruitment and activation of Rad53. Turning off the

checkpoint during adaptation may also involve these upstream

dynamics. There is evidence to suggest that Mec1 is

phosphorylated on S1964 residue and that the activated Ddc2 is

degraded during adaptation (Memisoglu et al., 2019). These

events will limit Mec1 localization to the break site and

consequently, attenuate the checkpoint signaling cascade

(Bandhu et al., 2014).

Cells carrying uncapped telomeres also exhibit

checkpoint activation and adaptation. Single strand DNA

present at the telomeres is normally capped by CST (Cdc13-

Stn1-Ten1) and Ku (yKu70/yKu80) complexes

(Westmoreland et al., 2018), that prevent activation of

DNA damage signaling. The yeast ts mutant cdc13-1 is

defective in telomere capping, which results in an

extensive resection by Exo1 (Langston et al., 2020),

leading to the activation of DNA damage-checkpoint

signaling and G2/M arrest. Just as in the case of cells

harboring HO-induced single DSB, cdc13-1 cells undergo

adaptation involving Cdc5 and CK2 and undergo accelerated

adaptation in response to Cdc5 overexpression (Ratsima

et al., 2016; Coutelier et al., 2018).

Recovery and adaptation: Same exit
different doors?

A release from the arrest-state and resumption of cell

cycle progression are the phenotypic outcome of both

recovery and adaptation. In both cases, the checkpoint

signaling is turned off and mitotic machinery is re-

engaged; however, the cellular contexts are very different.

While cells recovering from G2 arrest do so after the DNA

damage has been repaired, cells undergoing adaptation

override arrest when the damage is still present. As

discussed above, during the repair-driven recovery,

checkpoint signaling is dampened in step with the DNA

repair. However, terminating the upstream signals is not

sufficient for recovery; the protein modifications of

checkpoint effectors present during G2 arrest must also be

reversed. In mammalian cells, WIP1, PP1 and PP2A

dephosphorylate γH2A and inactivate ATM-Chk2 axis

(Ramos et al., 2019). In yeast, phosphorylated Rad53 is a

prominent player in the checkpoint signaling and is

dephosphorylated by Ptc2/Ptc3 phosphatases during

recovery (Leroy et al., 2003). In addition, the regulators of

mitosis play an important role in the process of recovery.

Although polo-like kinase PLK1 or CDC25B phosphatase are

not strictly required for mitotic entry in undamaged cells,

both these regulators are important for the recovery from

DNA damage-induced G2 arrest (van Vugt et al., 2005;

Bansal and Lazo, 2007; Hyun et al., 2014). PLK1 also

promotes proteolytic degradation of the CDK1 inhibitory

kinase WEE1 (van Vugt et al., 2004).

The adaptive response shares some regulatory aspects with the

recovery process. Most prominent in this context is the role of

phosphatases: WIP1, PP1, and PP2A in mammalian cells and

Ptc2/Ptc3 in yeast (Heideker et al., 2007; Freeman and Monteiro,

2010). It is not clear, at least in yeast, whether Ptc2/Ptc3 phosphatases

act constitutively or require adaptation-specific activation. Since the

option of dampening down of upstream events by repair complexes

(during recovery in yeast) is not available during adaptation, limiting

the continued activation of these events by other means is important

(Mailand et al., 2006). In mammalian cells, involvement of polo-like

kinase is another element shared by both recovery and adaptation

response (Liang et al., 2014). PLK1 can phosphorylate and promote

the degradation ofWEE1 during both responses (Takaki et al., 2008).

However, the role of polo-like kinase Cdc5 in adaptation in yeast is

somewhat perplexing. That adaptation defective (and repair

proficient) cdc5-ad mutant can efficiently recover from DNA

damage-induced arrest implies that Cdc5 is not required for

recovery (Pellicioli et al., 2001; Vidanes et al., 2010). The fact that

both cdc5-ad and cdc5Δ mutants are adaptation deficient and

overexpression of Cdc5 accelerates adaptation suggests that

Cdc5 is a key rate limiting factor for the adaptative process

(Shaltiel et al., 2015; Serrano and D’Amours, 2014). As

dephosphorylation of Rad53 is one of the prominent features of
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cells undergoing adaptation, it is not clear how Cdc5 causes

dephosphorylation of Rad53. It has been reported that Cdc5 does

not inhibit the formation of Rad9-Rad53 complex but does prevent

hyperphosphorylation of Rad53 (Vidanes et al., 2010). Since

Rad53 is proposed to prevent BRCT-SCD domain-specific

oligomerization of Rad9 required to maintain checkpoint

signaling (Usui et al., 2009), it is possible that this action of

Rad53 limits its own activation. As Cdc5 also inhibit

Rad53 autophosphorylation in vivo, this may result in the

enhancement of the negative feedback loop between Rad9 and

Rad53 (Usui et al., 2009; Lopez-Mosqueda et al., 2010; Vidanes

et al., 2010). As Rad53 has been reported to inhibit Cdc5 in response

to DNA damage (Sanchez et al., 1999; Coutelier et al., 2021), this can

potentially add an additional regulatory branch. Important as

dephosphorylation of Rad53 during adaptation is, it remains

unclear if this is the primary event that initiates adaptation.

Recently, a change in the abundance of Mec1-associated protein

Ddc2 is suggested to be an important event in adaptation in response

to a persistent DSB (Memisoglu et al., 2019).

Closing remarks

Halting of cell cycle progression by checkpoint mechanism in

response to DNA damage is a critical aspect of survival for a dividing

cell. Cells utilize various means to temporarily decouple from the

division protocol to execute the repair program. Reengagement of the

divisionmachinery after this transient hiatus is equally important and

requires disconnection from the checkpoint protocol. The nature of

this reengagement and its outcome is dependent on the execution of

repair program: successful repair maintains genomic stability,

enhances viability (recovery) and results in healthy progeny,

whereas failure to repair results in genomic instability and loss of

viability (adaptation). Checkpoint needs to be extinguished during

both recovery and adaptation. In organisms as distantly related as

yeast and human, recovery and adaptation involve some common

strategies and regulatory elements to extinguish the checkpoint

(Figure 5). However, there are some notable differences. Since the

repair process itself acts to diminish the checkpoint signaling, DNA

repair and recovery are closely coupled events. In repair-deficient (or

inefficient) cells, the repair mediated whittling down of checkpoint

signaling is not an option available during adaptive response.

Therefore, cells must achieve it by employing other strategies in

which Polo-like kinase plays a critical role as described in the previous

sections. Importantly, it is unclear when cells ‘decide’ to give up

attempting to repair the DNA damage and to initiate the adaptative

process. Based on the available evidence, adaptation does not appear

to be an active process. Rather, it may be a timed response in that the

checkpoint erosion is naturally coupled to its activation. Unless aided

by the DNA repair system, the natural checkpoint inactivation is

perhaps a slow process requiring progressive accumulation of some

effectors or establishment of some feedback loops. This would explain

why adaptive response is so prolonged an event. Nevertheless, as cell

cycle reentry in the presence of DNA damage (as in adaptation) is a

harmful undertaking resulting in genomic instability, adaptive

response may be relevant to cancer progression in multicellular

organisms. Upregulation of proteins implicated in recovery/

adaptation is reported in many cancers and is correlated to poor

treatment outcomes. A deeper understanding of the regulatory

interfaces between DNA damage/repair/checkpoint controls/

recovery/adaptation would be relevant to cancer prevention and

treatment.
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