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Heavy-ion radiotherapy utilizing high linear energy transfer (high-LET) ionizing

radiation (IR) is a promising cancer treatment modality owing to advantageous

physical properties of energy deposition and associated toxicity over X-rays.

Therapies utilizing high-LET radiationwill benefit from a better understanding of

the molecular mechanisms underpinning their increased biological efficacy.

Towards this goal, we investigate here the biological consequences of well-

defined clusters of DNA double-strand breaks (DSBs), a form of DNA damage,

which on theoretical counts, has often been considered central to the

enhanced toxicity of high-LET IR. We test clonal cell lines harboring in their

genomes constructs with appropriately engineered I-SceI recognition sites that

convert upon I-SceI expression to individual DSBs, or DSB-clusters comprising

known numbers of DSBs with defined DNA-ends. We find that, similarly to high-

LET IR, DSB-clusters of increasing complexity, i.e. increasing numbers of DSBs,

with compatible or incompatible ends, compromise classical non-homologous

end-joining, favor DNA end-resection and promote resection-dependent DSB-

processing. Analysis of RAD51 foci shows increased engagement of error-free

homologous recombination on DSB-clusters. Multicolor fluorescence in situ

hybridization analysis shows that complex DSB-clusters markedly increase the

incidence of structural chromosomal abnormalities (SCAs). Since RAD51-

knockdown further increases SCAs-incidence, we conclude that

homologous recombination suppresses SCAs-formation. Strikingly, CtIP-

depletion inhibits SCAs-formation, suggesting that it relies on alternative
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end-joining or single-strand annealing. Indeed, ablation of RAD52 causes a

marked reduction in SCAs, as does also inhibition of PARP1. We conclude that

increased DSB-cluster formation that accompanies LET-increases, enhances

IR-effectiveness by promoting DNA end-resection, which suppresses c-NHEJ

and enhances utilization of alt-EJ or SSA. Although increased resection also

favors HR, on balance, error-prone processing dominates, causing the generally

observed increased toxicity of high-LET radiation. These findings offer new

mechanistic insights into high-LET IR-toxicity and have translational potential in

the clinical setting that may be harnessed by combining high-LET IR with

inhibitors of PARP1 or RAD52.

KEYWORDS

double-strand break clusters (DSB-clusters), high-LET ionizing radiation, DNA end-
processing, SCAs-formation, mFISH

Introduction

Radiotherapy is an intricate and essential component of

present-day cancer therapy and uses either photons in the

form of X-rays, or accelerator-produced charged

particles – mainly protons and heavy ions (HI) (Allen et al.,

2011; Durante et al., 2017; Durante, 2019). The rationale for

using charged-particle therapy comes from their favorable

physical properties of energy deposition, as defined by the

Bragg peak, as well as by the associated increase in LET that

is more pronounced and relevant with HI. Thus, compared to

X-rays, charged particles can penetrate deeply into the human

body to reach and sterilize tumors via increased energy

deposition. In addition, the increased LET at the Bragg peak

induces complex DNA damage that further increases their

efficacy.

The key DNA lesion induced by IR and responsible for the

effectiveness of radiotherapy is the DSB (Schipler and Iliakis,

2013; Mavragani et al., 2019). DSBs are severe lesions that

threaten genomic integrity. If left unrepaired or incorrectly

repaired, DSBs lead to cell death – which is the desired

outcome for tumor cells during radiotherapy. The increased

biological efficacy of high-LET IR is reflected in a large

increase in cell killing that is frequently rationalized as

deriving from an increase in the yield of “complex”

DSBs – an equivocal term with a wide range of connotations

(Hada and Georgakilas, 2008; Sage and Harrison, 2011; Cadet

et al., 2012; Schipler and Iliakis, 2013). Notably, the adverse

biological consequences of increased DSB-complexity underpin

the expected therapeutic benefit and guide current efforts for

increased implementation of HI in radiotherapy (Schulz-Ertner

et al., 2006; Durante et al., 2017; Durante, 2019). Therapies

utilizing high-LET radiation will benefit from a better

understanding of the molecular characteristics of the

associated “complex” DNA damage and its consequences in

the repair pathways guarding the integrity of irradiated genomes.

In mammalian cells, four mechanistically distinct DSB-repair

pathways have evolved to mitigate the consequences of DSB

induction. Homologous recombination (HR) is the only error-

free repair pathway that restores both DNA integrity and

sequence at the break site, but its engagement is limited to

DNA post-replication stages. Classical non-homologous end-

joining (c-NHEJ) rapidly processes DSBs throughout the cell-

cycle, but frequently causes mutations (Lieber, 2010; Mladenov

et al., 2013; Reid et al., 2015) and SCAs that lead to cell death and

cancer (Simsek and Jasin, 2010; Soni et al., 2015).

Alternative end-joining (alt-EJ) is thought to engage when

HR or c-NHEJ are inactive or fail – hence often termed backup

end-joining (Iliakis et al., 2007; Cho and Greenberg, 2015;

Mateos-Gomez et al., 2015; Soni et al., 2015; Sallmyr and

Tomkinson, 2018; Wang et al., 2020). Alt-EJ operates with

slower kinetics and lower efficiency than c-NHEJ, and is

error-prone causing deletions and other modifications at the

junction, more than c-NHEJ. Alt-EJ also can join unrelated

DNA-ends and is therefore considered a dominant source of

SCAs (Zhang et al., 2010; Soni et al., 2015; Mladenova et al.,

2022). Single-strand annealing (SSA) is also error-prone owing to

the large deletions it generates between the homologous DNA

segments it requires for normal function, and can be

promiscuous in partner selection and form SCAs (Bhargava

et al., 2016; Iliakis et al., 2019).

HR, alt-EJ and SSA are classified as DNA end-resection

resection (henceforth simply resection) -dependent DSB-repair

pathways, because they share this initial processing step (Ceccaldi

et al., 2016). During this step, the MRN/CtIP complex orchestrates

short-range resection that is followed by BLM-DNA2/EXO1-

mediated long-range resection (Sartori et al., 2007; Mladenova

et al., 2022). The resulting ssDNA is a prerequisite for the

engagement of HR and SSA, and benefits also alt-EJ (Paiano

et al., 2021) by exposing microhomologies (4-6bp). In alt-EJ,

POL θ facilitates the annealing of resected 3′-tails, and extends

one 3′ DNA-end using the annealing partner as a template (Wyatt

et al., 2016) to facilitate the ultimate ligation by either Lig1 or Lig3.

Notably, excessive resection can have deleterious consequences,

including large deletions and SCAs that promote genomic

instability and cell death (Bunting and Nussenzweig, 2013).
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The divergent properties and fidelities of the four DSB-repair

pathways indicate that they cannot be considered as equivalent

alternatives of DSB-repair, and suggest that they may actually

also serve to accommodate necessities generated from different

sources, including the increased complexity of high-LET IR-

induced DSBs (Schipler and Iliakis, 2013; Iliakis et al., 2019).

Indeed, DSBs induced by high(er)-LET IR have different

processing requirements than those induced by low-LET IR,

including increased engagement of HR (Zafar et al., 2010; Shibata

et al., 2011; Yajima et al., 2013; Grosse et al., 2014; Fontana et al.,

2015; Rall et al., 2015). Also, a subset of DSBs induced by high-

LET IR cannot be processed by c-NHEJ, and as a consequence

c-NHEJ-deficient cells are equally sensitive to high and low-LET

IR. Thus, the most consequential effect of high-LET IR and the

type of DSBs it induces, is to shunt them from c-NHEJ to

resection-dependent processing by HR, alt-EJ and SSA (Wu

et al., 2008; Ceccaldi et al., 2016). In line with this, CtIP

depletion, which fully suppresses resection, sensitizes cells to

high-LET IR and decreases SCAs-formation (Zhang and Jasin,

2011; Davies et al., 2015; Himmels and Sartori, 2016; Ceppi et al.,

2020).

However, increased engagement of an error-free DSB-repair

pathway in the form of HR is difficult to reconcile with the

dramatic increases in radiosensitivity and SCAs-formation that

accompany increases in LET (Lee et al., 2011; Durante et al.,

2013; Loucas et al., 2013; Soni et al., 2015). Therefore, we

hypothesized that after high-LET IR, the associated

suppression of c-NHEJ, causes a general increase in resection-

dependent DSB-processing. Although this includes increased

utilization of HR, it is also associated with increased

utilization of alt-EJ and SSA, and we considered plausible that

these altered DSB-processing dynamics ultimately tilt the balance

towards error-prone processing, causing the radiosensitization

observed. Here, we describe experiments designed to test this

hypothesis.

Among the levels of DSB-complexity that have been

considered hitherto (Schipler and Iliakis, 2013), DSB-clusters

may represent the most consequential form, as they destabilize

chromatin and interfere with many forms of DSB-repair (Iliakis

et al., 2019). There is evidence that the probability of DSB-cluster

formation increases with increasing LET of IR (Schipler and

Iliakis, 2013; Schipler et al., 2016). In the present study we employ

a previously described model system (Schipler et al., 2016) to test

the balance between HR, alt-EJ and SSA in the processing of

complex DSBs defined as DSB-clusters. The model system allows

the induction in rodent cells of multiple single DSBs (simple

form), or clusters of two or four DSBs (increasing complexity)

with compatible or incompatible ends (another parameter of

complexity) and to compare their consequences on DSB-repair

pathway engagement.

We show that increased DSB-clustering suppresses c-NHEJ,

promotes CtIP-dependent resection and favors HR, alt-EJ and

SSA. However, our results show that on balance, despite the

relative increase in the utilization of HR, DSB-clusters cause

increased cell killing and increased SCAs-formation through SSA

and alt-EJ. The similarities in the processing characteristics

between high-LET-induced “complex” DSBs throughout the

genome, and of well-defined complex DSBs in form of DSB-

clusters, at fixed location in the genome, support the hypothesis

that DSB-clusters underpin the biological effects of high-LET IR

(Friedland et al., 2011).

Materials and methods

Cell culture and inhibitor treatment

Chinese hamster ovary (CHO) clones (Figure 1) carrying

stable integrations of I-SceI recognition sequences were

generated and described previously (Schipler et al., 2016). The

parental cell line CHO10B4 was utilized as a control. Cells were

maintained in McCoy’s 5A growth medium (Sigma-Aldrich),

supplemented with 5% fetal bovine serum (FBS) (Sigma-

Aldrich), at 37°C, in an atmosphere of 5% CO2 in air in the

presence of 400 μg/ml G418 (Capricorn Scientific). Inhibitors

were administered either immediately after transfection or 4 h

later. 6-hydroxy-DL-DOPA (RAD52i) (Sigma-Aldrich) was used

at a concentration of 20 μM. DNA-PKcs inhibitor NU7441

(DNA-PKcsi) (Tocris Bioscience) was applied at a

concentration of 5 μM.

Colony formation assay

To assess the colony forming ability after expression of

I-SceI, 200–1000 cells were plated in triplicate following

transfection with pCMV-3xNLS-ISceI plasmid. In some

experiments, as indicated, the expression plasmid

pISceI-T2A-Trex2-IRES-BFP was utilized (Certo et al., 2012).

Cells were grown for 9 days and stained with 1% crystal violet

dissolved in 70% ethanol; the dishes were scanned and colonies

scored automatically.

Immunofluorescence (IF) staining and
cell-cycle dependent evaluation of DSB-
repair foci by quantitative image-based
cytometry (QIBC)

For indirect IF analysis, 0.1–0.5 × 106 transfected cells were

plated in 12-well plates. For foci scoring in specific phases of the

cell cycle, cells were labeled for 30 min with 2 μMEdU just before

the indicated times post-transfection for I-SceI expression. EdU

negative (EdU−) and EdU positive (EdU+) cells were analyzed in

distinct cell cycle compartments after staining following standard

protocols (Mladenov et al., 2020). Cell cycle dependent QIBC
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evaluation of γH2AX and RAD51 foci was performed as

previously described (Mladenov et al., 2020). The following

primary antibodies were used: anti-γH2AX (3F2) mouse

monoclonal (Abcam), anti-RAD51 (14B4) mouse monoclonal

(GeneTex). The secondary antibodies were goat anti-mouse

AlexaFluor488, goat anti-mouse AlexaFluor647 (Thermo

Scientific).

SDS-PAGE and western-blot analysis

Protein extracts were prepared and run on SDS-PAGE using

standard protocols. Proteins were transferred onto nitrocellulose

membranes, which were incubated in Intercept™ (TBS) blocking

buffer (LI-COR) for 1 h at room temperature, followed by

overnight incubation with primary antibody (diluted in

FIGURE 1
(A) Stably integrated constructs carrying different combinations of I-SceI recognition sites engineered at different distances and orientations to
model individual DSBs or DSB-clusters. The names of the corresponding clonal cell lines are indicated in dark blue. (B) Representative images
showing the formation of γH2AX foci in CHO clones transfected with I-SceI expressing plasmid.
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Intercept™ T20 (TBS) antibody diluent) at 4°C. Membranes were

washed three times with TBS-T (0.1% Tween-20, 150 mM NaCl,

25 mM Tris–HCl, pH 7.6) and incubated for 1 h with secondary

antibody. The following primary antibodies were used: anti-CtIP

(D-4) mouse monoclonal (Santa Cruz Biotechnology), anti-

RAD51 rabbit polyclonal (Merck Millipore) and anti-GAPDH

mouse monoclonal antibody (Merck Millipore). The secondary

antibodies were: goat anti-mouse IgG conjugated with

IRDye680 or goat anti-rabbit IgG conjugated IRDye800 (LI-

COR Biosciences). The proteins on the membranes were

visualized by scanning using Odyssey infrared imaging

scanner (LI-COR Biosciences).

Multicolor fluorescence in situ
hybridization (mFISH) and classical
cytogenetic analysis

To analyze SCAs-formation, mFISH analysis and classical

cytogenetic analysis were employed. Briefly, 2.5 × 106 cells

transfected with pCMV-3xNLS-ISceI plasmid were split in

three dishes and plated for 24, 30 and 48 h, respectively. To

accumulate cells at metaphase, colcemid (Biochrom AG) was

added for 2–3 h at a concentration of 0.1 μg/ml. Metaphase

spreads were prepared using standard procedures. mFISH was

performed using 12XCHamster Multicolor FISH Probe for

Chinese Hamster Chromosomes (MetaSystems Probes)

according to manufacturer’s protocol. An automated imaging

system (MetaSystems) was used to obtain high quality images of

metaphase chromosomes, as previously described (Soni et al.,

2019). For analysis, at least 100 metaphases were scored in each

of three independent experiments. The number of the SCAs

formed in the non-transfected clones is subtracted from the SCAs

number in cells transfected with I-SceI expressing plasmid.

Classical cytogenetic methods were also employed, as

previously described (Schipler et al., 2016). High quality

images of metaphase chromosomes were captured using Zeiss

AxioScan.Z1 imaging platform at a magnification of ×40 dry

objective. Images were analyzed using the integrated ZEN

software. For analysis, at least 100 metaphases were scored in

each of three independent experiments.

Protein knockdown by siRNA interference

For depletion of CtIP, RAD52 and RAD51, a pool of three

siRNAs, specific for each protein, as previously described (Kostyrko

et al., 2017) (Eurogentec), was introduced by electroporation

(Nucleofector™ II device, Amaxa Biosystems) following

manufacturer’s protocol and program U-23. Briefly, the following

oligonucleotides were used for depletion of CtIP: 5′-GUGCAAGGU
UUACAAAUAA-3′; 5′-CAAAGUCCCUGCCAAACAA-3′; 5′-
AGAAUACUCUCCAGGAAGA-3′ (Eurogentec). Similarly, for

downregulation of RAD52, again a cocktail of three specific

RNAs was utilized, following the same transfection procedure:

5′-UGAGAUGUUUGGUUACAAU-3′; 5′-ACUGCAUUCUGG
ACAAAGA-3′; 5′-CCCUGAAGACAACCUUGAA-3′. For

efficient RAD51 ablation the following three specific siRNA

sequences were used: 5′-GUGCCAAUGAUGUGAAGAA-3′; 5′-
GGGAAUUAGUGAAGCCAAA-3′; 5′-GGCGUUCAGAAAUCA
UACA-3′. The following negative control RNA (ncRNA) sequence

was used: 5′-UUCUCCGAACGUGUCACGUdTdT-3′. ncRNA is

used for mock-transfection.

Statistical analysis

The statistical analysis was carried out by the online version

of the MedCalc software (MedCalc Software Ltd. Comparison of

means calculator. https://www.medcalc.org/calc/comparison_

of_means.php (Version 20.114; accessed September 4, 2022)).

For the one-way analysis of variations test (ANOVA) a network

applet was utilized (https://statpages.info/anova1sm.html). The

applet also calculates the Tukey HSD (“Honestly Significant

Difference”) post-hoc test, to indicate the significance between

different groups. Unless otherwise stated, data shown represent

means and standard deviations (±SD) from at least three

independent biological determinations. The detailed data of

the statistical analysis is included in the corresponding

Supplementary information .xlsx files.

Results

Cell-cycle dependent analysis of γH2AX
foci reveals attenuated repair of complex
DSBs in G2-phase

Figure 1A shows the CHO clonal cell lines employed in the

present study (described in detail earlier (Schipler et al., 2016)).

For each clone, the type of integrated construct and the number

of integrations measured by Southern blotting are indicated. The

arrangement shows the simple forms of DSBs on top and the

more complex forms at the bottom. Complexity is defined by the

number of DSBs in the cluster and the type of apical ends

generated assuming digestion of all I-SceI sites. Thus, DSBs

comprising compatible ends are considered simpler than those

with incompatible ends. Owing to the integration of these

constructs into the genome of CHO cells, DSBs are generated

upon transfection of the I-SceI expression vector, always at the

same genomic locations. Note that after exposure to IR, DSBs are

randomly generated throughout the genome. Therefore, in an

irradiated cell population, no two cells will sustain DSBs at the

same genomic locations. The fully defined nature of complexity

and the precise induction of DSBs in the genome, both in terms of

numbers as well as location, are the two key strengths of our
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model. A report published in 2016 provides evidence that despite

different complexity, I-SceI expression induces one γH2AX focus

per DSB cluster, independently of the number of DSBs it

comprises (Schipler et al., 2016). Formation and repair of

these DSBs obeys the specifics of I-SceI expression that starts

a few hours after transfection and lasts 3 days or more (Schipler

FIGURE 2
Increased DSB-complexity correlates with attenuated decay of γH2AX foci in G2-phase cells; impact of DNA-PKcs-inhibition. (A) Quantitative
analysis (QA) of γH2AX foci formation and decay in G1-phase cells, selected according to the gates defined in Supplementary Figure S1A. Foci scored
in I-SceI transfected cells is subtracted from the background foci scored inmock transfected cells. (B) As in Figure 2A, but for EdU−, G2-phase cells (C)
Histogram plots of γH2AX foci in EdU−, G1-phase cells. (D) As in Figure 2C, but for G2-phase cells. (E) Upper Panels:QA of formation and decay
of γH2AX foci in I-SceI transfected, G1-phase cells, after DNA-PKcs inhibition. DNA-PKcsi was administered immediately after transfection and was
kept for 24 h. Lower Panels: As in the upper panels but for EdU−, G2-phase cells. Data represent means and standard deviations (±SD) from three
independent experiments. (ns, no significance, p > 0.05); (*p ≤ 0.05); (**p ≤ 0.01); (***p ≤ 0.001); (****p ≤ 0.0001).
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et al., 2016). The prolonged presence of I-SceI in transfected cells

has as a consequence that repair events restoring the I-SceI

recognition-site will allow re-cutting and will generate a

“chronic” DSB. The first rejoining event that alters the I-SceI

recognition site will be “terminal” and will mark, alternatively to

I-SceI extinction, the beginning of γH2AX focus-decay. These

facts need to be considered in the analysis of γH2AX foci-

formation and decay, as a proxy for the repair of the

underlying DSBs.

To facilitate the interpretation of the results obtained, we

follow here γH2AX foci in a cell-cycle-dependent manner, for up

to 96 h after I-SceI transfection. We focus on the G1-and G2-

phase compartments, as delimited by DAPI-signal intensity in

EdU− cells (EdU given 30ʹ before processing of each time point),

to reduce complications from background signals generated in

S-phase cells (Figures 1B, 2 and Supplementary Figure S1A). An

additional reason for this choice is that recent work demonstrates

unexpected but highly significant mechanistic shifts in DDR and

DSB-repair, depending not only upon the phase of the cell-cycle

cells are irradiated, but also the phase of the cell-cycle responses

are analyzed (Mladenov et al., 2019a; Mladenov et al., 2019b;

Mladenov et al., 2020).We note however that because, in contrast

to IR, damage induction by I-SceI is not instantaneous but

protracted, our cell-cycle-specific analysis is devoid of

information on the phase of the cell-cycle DSBs are generated.

Figures 2A,B and Supplementary Figure S1C show that in

both G1-and G2-phase, γH2AX foci-formation reaches a

maximum at 12 h and declines thereafter. As expected from

the doubling of DNA content, G2-phase cells display about twice

the number of foci measured in G1–phase cells and appear to

retain them for longer. There is a trend, more dominant in

G2 – than in G1-phase cells, for γH2AX foci to decline faster in

clones with “simple” DSBs than in clones with complex DSBs.

This analysis becomes more informative when analyzing γH2AX

foci distribution per cell (Figures 2C,D). Whereas in G1–phase,

foci reduction occurs similarly at all levels of DSB-complexity,

clearly more cells with large numbers of foci are scored in G2-

phase for DSB-doublets and quadruplets with incompatible ends,

i.e. for complex DSBs.

Clustered DSBs suppress the engagement
of c-NHEJ

To obtain information on the repair pathways processing

DSBs of increasing complexity in different clones, we

inhibited DNA-PKcs, the key kinase of c-NHEJ, with

NU7441 and follow γH2AX foci in a cell-cycle-dependent

manner, for up to 96 h after I-SceI transfection. Notably, this

treatment has only a small effect on DSB-repair in G1–phase,

mostly 24- and 48 h post-transfection, at all levels of

complexity. However, in G2-phase cells, NU7441 only

suppresses repair of single DSBs (Figure 2E), suggesting

that, similarly to previous observations using different

endpoints (Pang et al., 2011; Schipler et al., 2016), DSB-

clusters fail to engage c-NHEJ. We conclude that in G2-

phase, complex DSBs engage resection-dependent DSB-

repair pathways that remain unaffected by DNA-PKcs

inhibition.

Increased contribution of HR to the
processing of DSB-clusters

To examine the contribution of HR to the repair of DSB-

clusters, we scored RAD51 foci as a function of time after I-SceI

transfection, specifically in EdU− G2-phase cells (Figure 3 and

Supplementary Figure S1B). RAD51 accretion to DSBs is

detectable at 8 h post transfection and reaches a maximum at

24 h (Figures 3A,B). Notably, QIBC results show that in cells,

where complex DSBs are generated, RAD51 foci develop to a

greater extent (Figure 3B). Indeed, nearly fourfold more

RAD51 foci are scored at clusters of four DSBs, as compared

to single DSBs. Calculation of the proportion of DSBs processed

by HR by calculating the ratio of RAD51 to γH2AX foci shows,

despite the above discussed caveats associated with these

estimations, a clear increase with increasing DSB-complexity

(Figure 3C). However, it is notable that even at the highest

level of RAD51 foci measured in the clone with DSB-quadruplets,

only ~25% of DSBs are processed by HR – leaving 75% to be

processed by other repair pathways. Since we show above that

these DSBs also suppress the engagement of c-NHEJ, we infer

that these remaining DSBs are repaired either by alt-EJ or SSA.

To substantiate the contribution of HR to the repair of

complex DSBs, we studied the impact of RAD51 depletion by

RNA interference on cell viability. Figure 3D indicates efficient

knockdown with the selected siRNAs. Notably, RAD51-

knockdown selectively sensitizes to killing cells that sustain

complex DSBs (Figure 3E and Supplementary Figure S2A).

We conclude that HR is preferentially involved in the

processing of complex DSBs.

DSB clusters increase the incidence of
SCAs

A recent study shows that complex DSBs in the form of DSB

clusters are markedly more efficient in generating SCAs than

single DSBs (Schipler et al., 2016). It is also known that high-

LET IR induces complex SCAs (Anderson et al., 2002), whose

incidence correlates with the increased lethality observed. Here,

we extend these studies using mFISH. For karyotyping, we

follow the previously published chromosome annotation

(Wurm and Hacker, 2011) of CHO cells (Figure 4B).

Karyotyping of the parental CHO10B4 cell line and the

derived clones shows no detectable changes among them.
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The analysis also reveals several stable, reciprocal

translocations, as well as aneuploidy (2n = 21), inherent in

this cell line (Figure 4B).

We assessed the potential of simple and clustered DSBs to

form SCAs (Figures 4C,D). As a first step, we use classical

cytogenetics and confirm our previous results by showing

increased levels of SCAs with increasing DSB-complexity.

Notably, we also observe that suppression of HR increases

SCAs formation and conclude that HR suppresses not only

killing, but also SCAs formation in cells sustaining complex

DSBs (Figure 4A and Supplementary Figure S3).

mFISH data also confirm the above results (Figure 4D). As

expected, the total number of SCAs is higher compared to those

obtained using classical cytogenetics, which reflects the superior

detection potential of mFISH analysis (Figure 4D). Interestingly,

with increasing post-transfection time, we observe a shift in the

FIGURE 3
Stronger RAD51 accumulation to DSB-clusters than individual DSBs. (A) Representative images of RAD51 foci in I-SceI-transfected CHO clones.
(B) QIBC of RAD51 foci, specifically in the EdU–G2-phase cells. The selection of EdU–, G2-phase cells is according to the gates defined in
Supplementary Figure S1B. Only results for EdU–, G2-phase cells are presented, as there are no detectable RAD51 foci in the G1-cell population. (C)
Ratio between RAD51 and γH2AX foci in the indicated CHO clones, as a measure of the fraction of DSBs that engage HR. It is calculated using
the data from the 24 h time point, where the maximum in RAD51 foci is observed and γH2AX foci numbers are close to the maximum measured at
12 h (D)Western-blot analysis showing the level of RAD51 depletion. (E) Survival of transfected cells after depletion of RAD51 recombinase by siRNA
interference calculated using the plating efficiency measured in mock-transfected cells of the corresponding clone. Data represent means and
standard deviations (±SD) from three independent experiments. (ns, no significance, p > 0.05); (*p ≤ 0.05); (**p ≤ 0.01); (***p ≤ 0.001); (****p ≤
0.0001).
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ratio between chromatid- and chromosome-type aberrations

(Figures 4C,D), indicating progression of cells through more

than one cell-cycles and the conversion plus transmission of

structural changes initially affecting chromatids, to chromosome

type alterations (Huret et al., 2001).

Similar conclusions are drawn from the analysis of

complex SCAs (Figure 5A). However, cells sustaining

complex DSBs with incompatible ends show increased

incidence of complex SCAs (Figure 5B). Notably, the

incidence of complex SCAs in cells sustaining DSB-

FIGURE 4
mFISH analysis of SCAs following induction of single and clustered DSBs. (A) QA of SCAs scored 24 h after I-SceI transfection in RAD51-
depleted CHO clones. (B)mFISH karyotype of CHO-1xS.D8 cells. Note: the karyograms of undamaged chromosomes in all CHO clones are identical
with the karyogramof CHO10B4 cells. (C) Representative images of chromatid- and chromosome-type SCAs captured 24 h after I-SceI transfection.
(D) QA of chromatid and chromosomal abnormalities scored at the indicated times after transfection of the indicated CHO clones. The
numbers of SCAs scored in mock-transfected cells have been subtracted from the results presented. At least 100 metaphases are scored per
metaphase spread. Data represent means and standard deviations (±SD) from three independent experiments. (ns, no significance, p > 0.05); (*p ≤
0.05); (**p ≤ 0.01); (***p ≤ 0.001); (****p ≤ 0.0001).
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doublets with compatible ends remains low. Complex SCAs

are not detected in cells sustaining individual DSBs

(Figures 5A,B).

Since I-SceI DSBs are not randomly distributed, but are

localized at the sites of construct integration in the CHO

genome, we assessed the frequencies of SCAs at each

FIGURE 5
Increased DSB-complexity correlates with increased incidence of complex SCAs and NCAs. (A) As in Figure 4C but for complex SCAs. (B) As in
Figure 4D but for complex SCAs. (C) Representative mFISH images of selected NCAs captured 48 h after transfection. (D) QA of NCAs. At least
100 metaphases are scored per sample. Data represent means and standard deviations (±SD) from three independent experiments. (ns, no
significance, p > 0.05); (*p ≤ 0.05); (**p ≤ 0.01); (***p ≤ 0.001); (****p ≤ 0.0001).
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FIGURE 6
Depletion of CtIP or RAD52 and blunting of DNA-ends reduces SCAs in cells harboring DSB-clusters (A) Heat-map plots generated on the
Orange software platform showing SCAs-frequencies of individual hamster chromosomes in the indicated clones. (B) Upper Panel: Western-blot
analysis showing CtIP knock-down in the indicated clones; Lower Panel:QA of SCAs scored 24 h post-I-SceI transfection following CtIP depletion.
(C) As in Figure 6B, Lower Panel, but for RAD52-depleted cells (D) QA of SCAs scored 24 h post I-SceI transfection following CtIP depletion,
combined with RAD52 inhibition. RAD52i was administered immediately after transfection and was kept for 24 h. Results represent means and SD
from at least three independent experiments; only two independent experiments are conducted for CtIP-depletion in combination with
RAD52 inhibition. (E) SCAs scored 24 h post transfection with either the I-SceI expression vector alone, or together with the TREX-expression vector
in CHO-2xS.D12 or CHO-2xS.R14 cells, in the presence or absence of DNA-PKcsi. At least 100 metaphases are scored per sample. Data represent
means and standard deviations (±SD) from three independent experiments. (ns, no significance, p > 0.05); (*p ≤ 0.05); (**p ≤ 0.01); (***p ≤ 0.001);
(****p ≤ 0.0001).
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individual chromosome. Our results suggest that some

chromosomes preferentially sustain SCAs – from the non-

random integration of I-SceI constructs into the clone-genome

(Figure 6A). The heat-map-plots indicate that there are at least

two groups of chromosomes (the first group includes

chromosomes 1, Z1 and 2 and the second chromosomes Z8,

Z9 and 8), which more frequently participate in SCAs; this trend

is preserved and further enhanced 48 h after transfection. The

heat-maps also reveal that the frequency of SCAs at the

X-chromosome increases at later time points, indicating

another SCAs hot-spot and possibly also a different

mechanism of formation. We are presently sequencing the

genome of our clones to determine the precise locations of

the I-SceI-construct integrations.

We also observe a correlation between DSB-cluster

formation and increased frequency of numerical chromosome

abnormalities (NCAs) (Figures 5C,D). The number of such

events increases with time after transfection. There is a strong

increase in NCAs at 48 h post-transfection in clones with

complex DSB-clusters, whereas clones harboring individual

I-SceI sites show less time-dependent increase in NCAs.

Overall, the results show that increased DSB-clustering results

in extensive deletions and driftage apart of diverse acentric

chromosome fragments (AFs) (Supplementary Figure S2B).

Such AFs, or even whole chromosomes, could be potentially

incorporated into micronuclei that are considered genotoxic

events and signs of chromosomal instability (Durante and

Formenti, 2018).

Abrogation of resection suppresses SCAs-
formation at complex DSBs

A recent study shows that inhibition of alt-EJ using

PARP1 inhibitors abrogates SCAs-formation, and that this

effect is stronger for DSB-clusters (Schipler et al., 2016). Here

we complement these studies by investigating the role of

resection in SCAs formation, which is an operational

requirement for all DSB-repair pathways, except c-NHEJ.

Resection is initiated by the MRN/CtIP complex and therefore

we started by knocking-down CtIP. Western-blot analysis 24 h

post-transfection shows efficient knock-down of the protein in all

CHO clones (Figure 6B). Notably, CtIP knockdown has no, or

only a marginal, effect on SCAs-formation in cells sustaining

single DSBs or pairs with compatible DNA-ends. On the other

hand, CtIP knockdown markedly inhibits SCAs-formation in

clones sustaining complex DSB with incompatible ends

(Figure 6B).

To assess the contribution of SSA to SCAs-formation under these

conditions, we depleted RAD52, 24 h before transfection for I-SceI

expression. Similar to CtIP depletion, RAD52 knockdown has no

impact on SCAs in cells sustaining individual DSBs and has no

statistically significant effect on cells sustaining DSB pairs with

compatible ends (Figure 6C). However, upon RAD52 knockdown,

a significant reduction in the number of SCAs is observed in cells

sustaining complex DSBs with incompatible ends (Figure 6C).

Expectedly, inhibition of RAD52 in cells depleted for CtIP fails to

further enhance SCAs-formation (Figure 6D), confirming the

postulated contribution of SSA.

TREX processing of DNA-ends suppresses
SCAs-formation

To evaluate whether processing of theDSB-overhangs present at

I-SceI induced DSBs (Figure 1A) modulates SCAs-formation, we

adopted an approach in which DSB-ends generated by I-SceI in

CHO-2xS.D12 and CHO-2xS.R14 are modified by transient

expression of TREX, fused to I-SceI. TREX is a non-processive

3′-exonuclease that can degrade the 3′-overhangs generated by

I-SceI (Certo et al., 2012). This processing generates blunt DNA-

ends and may modulate SCAs-formation. To investigate this

possibility, we co-transfected cells with pCMV-3xNLS-ISceI and

pISceI-T2A-Trex2-IRES-BFP and scored SCAs 24 h later. Notably, a

reduction by 60–70% in SCAs-formation is noted in both CHO-

2xS.D12 and CHO-2xS.R14 cells upon I-SceI and TREX co-

expression (Figure 6E). This result suggests that single-stranded

overhangs at the DNA-ends facilitate the processes underpinning

SCAs-formation. Furthermore, our results also show that blunted

DNA-ends are processed by DNA-PKcs, and therefore DNA-PKcsi

causes a nearly six-fold increase in SCAs in the CHO-4xS.R12 clone

(Figure 6E).

In aggregate, our results confirm previous findings that DSB-

clusters suppress c-NHEJ, through mechanisms, which still

remain poorly understood. We conclude that the high toxicity

of DSB-clusters modelling high-LET-DNA damage derives from

promotion of alt-EJ and SSA despite increases in HR. (Figure 7).

Discussion

The results summarized above show that increased DSB-

complexity, as defined by I-SceI-induced DSB-clustering and

the ligatability of the generated apical DNA-ends, has

profound implications to DSB-processing and that this

processing exhibits marked cell-cycle dependencies. Thus,

while DSB-repair (γH2AX-foci-decay) shows only relatively

small changes with increasing DSB-complexity in cells

analyzed in G1-phase, it causes pronounced delays in cells

analyzed in G2-phase. Furthermore, the observation that

processing of complex DSBs in G2-phase is resistant to

DNA-PKcs inhibitors, not only explains this delay, but also

suggests that DSB-complexity is a strong suppressor of

c-NHEJ (Schipler et al., 2016).

A key characteristic of G2-phase cells with reference to DSB-

processing that also distinguishes them from G1 -phase cells, is that
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resection and HR are fully active. We therefore infer that resection

and HR are intimately contributing to the observed distinct

outcomes in G2-phase cells. Indeed, we show that HR

engagement increases with increasing DSB-complexity (Figure 3).

This result is in line with reports of increased HR-engagement in

cells exposed to high-LET IR and validates the simulation potential

of our model for high-LET IR-effects. This similarity of response

further suggests that DSB clusters are a highly consequential form of

complex DNA damage induced by high-LET IR.

Notably, despite increased engagement of HR on complex DSBs,

more than 75% of them are still processed by other repair pathways.

Since c-NHEJ fails to engage on complex DSBs, it follows that the

remaining 75% are processed by alt-EJ or SSA. Since these pathways

are inherently error-prone, the results allow us to resolve the

conundrum as to why and how increased engagement of HR in

high-LET irradiated cells fails to make them radioresistant. Evidently,

the majority of complex DSBs are repaired under these conditions by

highly error-prone repair pathways leading to the enhanced cell killing

and genomic instability observed. The choice among these pathways

may be regulated by the degree of resection, an aspect that is presently

under investigation (Sallmyr and Tomkinson, 2018; Seol et al., 2018;

Jalan et al., 2019). These aspects of DSB-processing on simple and

complex DSBs are summarized in a graphical manner in Figure 7.

Notably, the enhanced role of HR generates opportunities for further

radiosensitization of cells exposed in high-LET IR, a pointwe return to

below. It is also highly relevant that the suppression of c-NHEJ causes

a switch to resection-dependentDSB-processing at complexDSBs and

places the process of resection at the forefront.

Since error-prone DSB-processing causes SCAs, we analyzed

the mechanisms underpinning their formation as a function of

DSB-complexity. Indeed, the increases in DSB-complexity

modelled here (Figure 1A), lead to remarkable increases in

SCAs-formation (both simple and complex, and extending to

NCAs) (Figures 4, 5). Marked increases in SCAs-formation are

also observed after exposure to high-LET IR, further validating

our model system (Franken et al., 2012; Loucas et al., 2013).

However, when cells are exposed to high-LET IR the presence of

a wide spectrum of additional lesions randomly distributed in the

genome seriously limits the interpretation of the results obtained

and their mechanistic analysis.

Notably, suppression of HR increases SCAs-formation and

sensitizes cells to complex DSBs, as expected from an error-free

repair pathway promoting genomic stability and cell survival

(Figure 4A and Supplementary Figure S3). Ablation of resection

by CtIP knockdown has a small effect on SCAs-formation from

simple DSBs, but generates a profound suppression of SCAs from

complex DSBs. This implies that SCAs-formation from complex

DSBs requires resection. It is important to point out that suppression

of resection will also strongly suppress HR, and as a consequence

estimates of “real” suppression should be made by taking the

increased SCAs-levels measured following RAD51 knockdown

into consideration.

Knockdown of RAD52, a key component of SSA, strongly

suppresses SCAs-formation (Figure 6C) confirming thus the

involvement of SSA in their formation. It has been previously

reported that inhibition of PARP1, a component of alt-EJ, also

strongly suppresses SCAs-formation (Wray et al., 2013; Schipler

et al., 2016). Collectively, these results provide thus conclusive

evidence for a dominant role of alt-EJ and SSA in high-LET

genomic instability and define targets for enhancing their effects,

FIGURE 7
Amodel describing the altered DSB repair pathway balance in simple versus complex DSBs (A) Simple DSBs engage repair by both c-NHEJ and
DNA end-resection dependent pathways, which results in low level of SCAs formation. (B)DSBs clusters suppress the repair by c-NHEJ thus allowing
the involvement of error-prone DNA end-resection dependent repair pathways. This manifests in the increased level of SCAs when alt-EJ and SSA
are involved in repair. Elevated number of RAD51 foci indicates the involvement of HR in the repair of DSB-clusters; However, it remains unclear
to what extent HR is productive.
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by additional suppression of error-free DSB-repair pathways

like HR.

It is intriguing that SCAs-formation utilizes the 4 bp TTAT 3′-
overhangs generated by I-SceI, as their removal by TREX strongly

suppresses SCAs-formation. It is equally interesting that DNA-ends

apparently blunted by TREX, can be processed by DNA-PKcs even

when highly complex, as inhibition of DNA-PKcs dramatically

increases SCAs-formation. The result of this inhibition further

indicates that blunted DNA-ends, actually good substrates of DNA-

PKcs (Lieber, 2010), can be effortlessly shunted to alt-EJ or SSA, upon

DNA-PKcs inhibition, to effectively form SCAs. This result points to

repair pathway choice dynamics that are intimately regulated by

relatively small modifications at the DNA-ends and which have

hitherto remained elusive – pointing again to the power of our

model system.

The important role of resection in the processing of modelled

complex DSBs in G2-phase has important parallels to the effects of

high-LET IR as compared to low-LET IR. Indeed, the enhanced

resection initiated at complex DSBs predicts increased engagement of

ATR as it is observed (Xue et al., 2015; Mladenov et al., 2019a;

Mladenov et al., 2019b; Mladenova et al., 2021). There are reports

showing that ATR is recruited and activated at DSBs after exposure of

cells to high-LET IR, and that under these conditions ATR also

regulates resection. The same holds true for the activation of the G2-

checkpoint (Xue et al., 2015; Mladenov et al., 2019a; Mladenov et al.,

2019b; Mladenova et al., 2021). The high-LET IR-dependent

stimulation of resection is also supported by the 53BP1 and RPA

chromatin dynamics after exposure to X-rays and α-particles (Roobol
et al., 2020). Interestingly, extended cell-cycle analysis demonstrates

that resection-promoting factors are present at DSBs generated by

high-LET IR, even in G1-phase, where resection is normally

suppressed (Averbeck et al., 2014).

The expansion of particle therapy using protons or HI offers new

opportunities for improving cancer care (Durante et al., 2017;

Durante, 2019), but requires profound understanding of molecular

mechanisms underlying the higher effectiveness of high-LET IR. We

provide here for the first time some important advances in this regard

that offer concrete strategies to improve these forms of therapy. A

model system generating DSBs of molecularly defined complexity has

been instrumental in this analysis. Our results provide strong rationale

for the use of HR inhibitors, as well as ATRi (which are also known to

indirectly suppress HR) in particle therapy to further sensitize tumor

cells and also suggest the use of RAD52 and PARP1 inhibitors to

further enhance efficacy. Modulation of the engagement of high-

fidelity HR and highly error prone alt-EJ and SSA has also direct

potential in radiation protection of astronauts during space travel.
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