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Introduction: Low HIV viral load is associated with delayed disease progression and
reduced HIV transmission. HIV controllers suppress viral load to low levels in the absence
of antiretroviral treatment (ART). We used an antibody profiling system, VirScan, to
compare antibody reactivity and specificity in HIV controllers, non-controllers with
treatment-induced viral suppression, and viremic non-controllers.

Methods: The VirScan library contains 3,384 phage-displayed peptides spanning the HIV
proteome. Antibody reactivity to these peptides was measured in plasma from a
Discovery Cohort that included 13 elite controllers, 27 viremic controllers, 12 viremic
non-controllers, and 21 non-controllers who were virally suppressed on ART. Antibody
reactivity to selected peptides was also assessed in an independent cohort of 29 elite
controllers and 37 non-controllers who were virally suppressed on ART (Validation Cohort)
and in a longitudinal cohort of non-controllers.

Results: In the Discovery Cohort, 62 peptides were preferentially targeted in HIV
controllers compared to non-controllers who were virally suppressed on ART. These
specificities were not significantly different when comparing controllers versus viremic
non-controllers. Aggregate reactivity to these peptides was also high in elite controllers
from the independent Validation Cohort. The 62 peptides formed seven clusters of
homologous epitopes in env, gag, integrase, and vpu. Reactivity to one of these
clusters located in gag p17 was inversely correlated with viral load set point in an
independent cohort of non-controllers.
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Conclusions: Antibody reactivity was low in non-controllers suppressed on ART, but
remained high in viremic controllers despite viral suppression. Antibodies in controllers
and viremic non-controllers were directed against epitopes in diverse HIV proteins; higher
reactivity against p17 peptides was associated with lower viral load set point.
Further studies are needed to determine if these antibodies play a role in regulation of
HIV viral load.
Keywords: HIV control, viral load set point, antibody profiling, phage display, VirScan
INTRODUCTION

In the absence of antiretroviral treatment (ART), most persons
living with HIV have on-going viral replication that leads to
CD4+ T cell depletion and severe immunodeficiency. Effective
ART suppresses viral replication to low levels which reduces
morbidity, mortality and the risk HIV transmission (1). HIV
controllers are individuals who control viral replication to low
levels in the absence of ART (2). Elite controllers maintain viral
loads of <50 copies/mL, while viremic controllers maintain viral
loads of <2,000 copies/mL (3). These individuals usually
maintain high CD4+ T cell counts for long periods before
experiencing immune system decline (4, 5). In non-controllers,
a viral load set point is usually established in the absence of
treatment; higher viral load set points are associated with higher
transmission rates and more rapid disease progression in the
absence of treatment.

The mechanisms responsible for suppression of viral replication
in HIV controllers are not well understood (4). Many elites and
viremic controllers are infected with replication-competent virus
(6–9), suggesting that host factors play a role in controlling viral
replication. Class I major histocompatibility (MHC) alleles, such
as HLA-B*57 and HLA-B*27, have been implicated in elite control
through cohort studies (10) and genome-wide association studies
(11, 12). This suggests a role for CD8+ T cells in HIV control.
More effective CD8+ T cell responses have been observed in elite
controllers compared to individuals with progressive HIV disease
(13–16). Furthermore, in vivo depletion of CD8+ T cells in
monkey elite controllers of simian immunodeficiency virus
infection leads to loss of control of viral replication (17, 18).
Other genetic studies suggest that certain natural killer cell
receptors, such as the killer immunoglobulin-like receptors, may
also be involved in elite control (19–21).

The role of humoral immunity in viremic control and control
of viral load set point is not clear. Serologic assays used for cross-
sectional HIV incidence estimation demonstrate that most elite
controllers have lower antibody titers than viremic individuals
(22). Broadly neutralizing antibodies are also more likely to be
found in non-controllers with high viral loads (23). However,
elite controllers do not have higher titers of neutralizing
antibodies to autologous (24) or heterologous viruses (3, 25)
compared to non-controllers. Some studies have suggested that
some elite controllers may have higher levels of antibody-
dependent cellular cytotoxicity (ADCC) than viremic persons
(26), while other studies found that elite controllers do not have
org 2
higher levels of either antibodies (27) or effector cells (28) that
can mediate ADCC. A recent study suggested that while
antibodies from elite controllers were not more effective for
ADCC in any single assay, they were more likely to be
polyfunctional than antibodies from non-controllers (29).
However, it is not clear whether this polyfunctional antibody
profile is a cause or consequence of elite control.

There are limited data comparing the fine specificity of anti-
HIV antibodies in persons with suppressed viral load on ART
and persons with low viral load set points. The VirScan assay is a
highly multiplexed antibody profiling system that can be used to
characterize the fine specificity of antibodies to viral peptides that
lack highly conformational or glycosylated epitopes (30). We
previously used VirScan to characterize the evolution of HIV
antibodies in early- to late-stage HIV infection (31). In this
report, we used VirScan to compare the antibody profiles in HIV
controllers, non-controllers on ART, and viremic non-
controllers, including persons with different viral load set points.
MATERIALS AND METHODS

Samples Used for Analysis
Samples used to compare antibody reactivity in HIV controllers
and non-controllers were grouped into two cohorts (Table 1).
The Discovery Cohort included samples from elite controllers,
viremic controllers, non-controllers suppressed on ART, and
viremic non-controllers enrolled a clinic-based cohort [Study of
the Consequences of the Protease Inhibitor Era (SCOPE) study],
San Francisco, CA (32, 33). The Validation Cohort included
samples from elite controllers enrolled in a clinic-based cohort
[Johns Hopkins University (JHU) Elite Controller Cohort,
Baltimore, MD (24)] and non-controllers from a clinic-based
cohort who were virally suppressed on ART [JHU Moore Clinic
(34), Baltimore, MD]. Samples used to analyze the association
between viral load set point and antibody reactivity were
obtained from a study of the natural history of HIV infection
conducted in Uganda and Thailand [the Early Capture HIV
Cohort Study (RV217 Cohort); this study recruited men and
women at locations associated with transactional sex (35)].
Participants in the Discovery and Validation cohorts are from
the United States, where most HIV strains are subtype B. The
cohort used to evaluate antibody reactivity and viral load set
point included samples from persons with diverse HIV subtypes
and strains (Table 1).
August 2021 | Volume 12 | Article 740395
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Informed Consent
The SCOPE, RV217 and JHU studies were approved by
institutional review boards at the parent research institutions.
Participants provided written informed consent for their samples
to be used in HIV-related research.
Antibody Profiling Using the VirScan Assay
Plasma samples were analyzed using the VirScan assay, as
described previously (30, 31, 36). The VirScan library includes
3,384 HIV peptides spanning the viral genome, representing
numerous HIV subtypes and strains (30). This includes 821
peptides in 21 proteins for subtype B; 203 peptides in 18 proteins
in subtype A; and 224 peptides in 20 proteins in subtype D; the
subtype/strain designation for other peptides is described
previously (31). Peptides are expressed on bacteriophage from
DNA tiles; the expressed peptides are 56 amino acids long with
28 amino acid overlaps. The number of peptides in each location
varies across the HIV genome, reflecting the level of genetic
diversity (31). The VirScan library also encodes peptides
spanning the genomes of >200 other viruses that infect
humans. Antibody reactivity to Ebola virus and rabies virus
peptides was used to normalize HIV antibody binding data to
account for differences in sequencing depth between samples
(31). IgG concentrations in plasma samples were determined
using an enzyme-linked immunosorbent assay (ELISA) for IgG,
so that input to the VirScan assay was constant at 2 mg IgG per
reaction (36). Data from mock immunoprecipitation reactions
were used for normalization as described previously (31). After
incubation with samples, antibody-bound phage was
immunoprecipitated using magnetic beads coated with protein
A and protein G. After bead washing, DNA tiles in the
immunoprecipitated phage were amplified by polymerase
chain reaction (PCR) using primers containing sample-specific
barcodes. PCR products were sequenced using a NextSeq 500
instrument (Illumina, San Diego, CA) to determine the amino
Frontiers in Immunology | www.frontiersin.org 3
acid sequences of the antibody-bound peptides. The samples
were tested via VirScan from May 2019 to August 2019.

VirScan Data Analysis
Antibody reactivity to each peptide was quantified using
normalized read counts and relative fold change values, as
described (31). Briefly, a raw read count was obtained for each
peptide, reflecting the number of times the corresponding DNA
sequence was detected in immunoprecipitated phage. Raw read
counts were log10 transformed after adding one read count to the
result for each peptide in each sample. The log-transformed
values for each peptide and each sample were then normalized to
the average read count obtained for all Ebola virus and rabies
virus peptides for the same sample, in order to adjust for sample-
to-sample differences in sequencing depth (none of the
participants had these infections and antibody reactivity to
these viruses most likely reflected non-specific antibody
binding or spurious cross reactivity). Finally, a log10 relative
fold change value for each peptide was calculated by subtracting
the median of the normalized values for the same peptide
observed in mock immunoprecipitation reactions run on the
same plate from the log10 normalized value of the peptide. Six to
eight mock immunoprecipitations were included on each 96 well
immunoprecipitation plate.

Statistical Methods
For analysis of antibody reactivity in controllers versus non-
controllers, statistical inference between groups was carried out
by moderated t-tests (37). Multiple comparison corrected q-
values (38) were calculated from the observed p-values. If a
peptide had a q-value of 0.05, it was expected that 5% of the
peptides with smaller p-values would be false positives. Peptides
with a q-value <0.05 were considered to have significantly
different levels of antibody reactivity in the two groups. To test
for replication, permutation analysis was performed to compare
antibody reactivity for a combined set of 62 pre-identified
TABLE 1 | Samples used for analysis.

Study Cohort Sample Source Prevalent HIV Subtype Participant Status Viral loada

(copies/mL)
# persons # samples

Discovery Cohort SCOPE Study B Elite contollers <40 13 13
Viremic controllers 40-2,000 27 27
Non-controllers suppressed on ART <40 21 21
Viremic non-controllers >2,00 12 12

Validation Cohort JHU Elite Controller
Cohortb

B Elite controllers <50 29 29

JHU Moore Clinicc B Non-controller suppressed on ART <400 37 37
Analysis of viral load set
pointe

RV217 Cohortd A, D, and other
subtypes/strains

Longitudinal samples collected prior to
ART initiation

Various 53 298
August 2021 | Vo
lume 12 | Art
The table provides the sample source and type of samples included in the Discovery Cohort, Validation Cohort, and the longitudinal cohorts.
aDifferent cutoff for viral suppression were used in the four parent studies; an assay with a lower limit of quantification of 400 copies/mL was in the JHU Moore Clinic at the time of sample collection.
bSamples from the JHU Elite Controller Cohort were from the earliest available sample collection date.
cSamples from the JHU Moore Clinic were obtained from the first visit after ART initiation where the viral load was <400 copies/mL.
dThe RV217 Cohort included participants from different countries and risk groups (29 Thailand, 15 Kenya, 9 Uganda; 25 cisgender women, 18 cisgender men, 10 transgender women;
median age: 24 years, interquartile range [IQR]: 19-26; 2-7 samples per person, mean: 5.6 samples/person). Samples from this cohort were collected from 6 months after HIV
seroconversion to the last visit prior to ART initiation. Seven participants had viral loads <2,000 copies/mL at all visits.
eViral load set point for participants in the RV217 Cohort was determined using viral load values from 6 months after seroconversion to initiation of antiretroviral treatment or the onset of AIDS.
These participants were infected with following HIV subtypes and strains: 23 AE, 11 A, 11 AD, 2 B, 1 C, 5 recombinant (3A/C, 1B/AE, 1 C/AE). ART, antiretroviral therapy; JH, Johns Hopkins.
icle 740395
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peptides in elite controllers vs. non-controllers. For this analysis,
one-sided moderated t-tests were used to obtain a p-value for each
of the 62 peptides. Fisher’s inverse chi-square test (39) was then
used to calculate a test-statistic based on the full set of 62 p-values
by adding the -log10 p-value for each peptide. Since the null
distribution in Fisher’s test assumes independence of p-values, a
permutation test with 10,000 permutations was used to assess
statistical significance, accounting for dependence of test statistics
(e.g., due to overlapping and homologous peptides). In each
permutation, the group labels (29 elite controller labels, 37 non-
controller labels) were randomly assigned to the 66 participants; a
p-value for each of the 62 peptides was calculated using a one-
sidedmoderated t-test statistic, and a test-statistic was obtained for
the full set of peptides using Fisher’s method. Finally, a one-sided
p-value of the permutation test was calculated as the proportion of
sample permutations where the value of the test-statistic was
greater than or equal to the observed test-statistic.

For analysis of viral load set point, the set point for each
individual (log10 HIV RNA copies/mL) was calculated by taking
the median pre-ART viral load for each person. Median antibody
reactivity (log10 normalized fold change) was calculated for the
same samples. Simple linear regression was conducted for each
peptide with viral load set point as the dependent variable and
median antibody reactivity as the independent variable. The
estimate of the slope is reported as effect size; the statistical
significance of the effect size (p-value) was derived by testing the
hypothesis that the true slope was zero (i.e., no association
between viral load set point and antibody reactivity). Multiple
comparisons correction was carried out by controlling the
family-wise error rate using the Bonferroni method. Due to the
Frontiers in Immunology | www.frontiersin.org 4
homology of peptides in the VirScan library and possible
dependence of test statistics and p-values, a permutation test
was also performed, jointly shuffling the viral load set point
across all peptides, thereby maintaining the correlation structure.

The software environment R (version 4.0.1) was used for
statistical computing. The software epitopefindr (GitHub:
https://brandonsie.github.io/epitopefindr/) was used to identify
amino acid motifs associated each peptide clusters.
RESULTS

Comparison of Antibody Profiles in HIV
Controllers and Non-Controllers
We first used VirScan to compare antibody reactivity among 40
HIV controllers and 33 non-controllers in the Discovery Cohort
(Table 1). Antibody reactivity was quantified for each peptide in
the VirScan assay. Sixty-two peptides had significantly higher
levels of antibody reactivity in HIV controllers compared to non-
controllers who were virally suppressed on ART (Figure 1A).
Despite observing a similar trend for most of these peptides when
comparing HIV controllers to viremic non-controllers none of the
peptides displayed statistically significant differences in reactivity
in these two groups after multiple testing correction (Figure 1B).

The relative level of antibody reactivity to peptides in HIV
controllers versus non-controllers who were virally suppressed
on ART varied as a function of peptide location (Figures 2, S1).
Sixty-one of the 62 peptides formed seven distinct clusters of
homologous peptides (Figure 2B and Table S1). Twenty-two
peptides were located in the gag region: 18 in the N-terminus of
A B

FIGURE 1 | Antibody reactivities in HIV controllers compared to non-controllers. (A) Antibody reactivity was compared for 40 HIV controllers (13 elite controllers and
27 viremic controllers) and 21 non-controllers suppressed on ART. The volcano plot shows on the x-axis the difference in antibody reactivity in the two groups
(estimated log10 fold change; positive numbers correspond to stronger reactivity in controllers) and the y-axis shows the -log10 p-value for each peptide based on
moderated t-statistics. Red dots indicate the 62 peptides that are significantly more reactive in controllers at a false discovery rate of 5%. The blue dashed line
indicates the highest q-value less than 5% (q=0.0485), which corresponds to a p-value of 0.001. (B) Antibody reactivity to each HIV peptide was compared for 40
HIV controllers and 12 viremic non-controllers. No significant differences in antibody reactivity were observed for these 62 peptides in these two groups.
August 2021 | Volume 12 | Article 740395

https://brandonsie.github.io/epitopefindr/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kammers et al. Antibody Profiles in HIV Controllers
gag (p17, cluster 1) and four in the C-terminus of gag (p24,
cluster 2). Four peptides were located in the C-terminus of
integrase (cluster 3). Two peptides were located in the N-
terminus of the vpu accessory protein (cluster 4). The
remaining 34 peptides were located in the env region. Seven of
these peptides spanned the V3 loop and CD4 binding loop of
gp120 (six in cluster 5, one that was not in a cluster), 23 spanned
the V5 loop of gp120 and the fusion peptide of gp41 (cluster 6),
and four were in gp41, proximal to the membrane proximal
external region (MPER, cluster 7). The peptides detected in each
cluster are provided in Table 2.

The program epitopefindr (40) was used to identify amino acid
motifs that were common to peptides in each cluster. The number
of peptides included in eachmotif varied from two to 23 (Table 2).
Five clusters had one motif (clusters 1-4 and 7) and two had two
motifs (clusters 5 and 6). Table 2 shows additional characteristics
of the nine motifs. Note that one peptide near cluster 5 did not
include either of the motifs associated with other peptides in that
cluster. The pattern of antibody reactivity to peptides in each
cluster varied among study participants (Figure 3). Most elite and
viremic controllers had increased antibody reactivity to multiple
peptides in multiple clusters. In contrast, antibody reactivity was
Frontiers in Immunology | www.frontiersin.org 5
minimal among non-controllers who were virally suppressed on
ART and was predominantly observed for integrase peptides in
viremic non-controllers (cluster 3).

Analysis of Antibody Reactivity in
Independent Cohorts
We next evaluated antibody reactivity to the 62 significant
peptides using samples from an independent Validation
Cohort that included samples from 29 elite controllers and 37
non-controllers who were virally-suppressed on ART (Table 1).
Figure S2 shows the difference in antibody reactivity in these two
groups. Reactivity in elite controllers was higher for 51 peptides
and lower for 11 peptides. We used a permutation test to
compare antibody reactivity for all 62 peptides combined in
the two participant groups. The average antibody reactivity for
the combined set of peptides was significantly higher for elite
controllers than for virally suppressed non-controllers (p=0.024).

Association of HIV Peptide Reactivity With
the Protective HLA-B*57 Allele
We then evaluated the association between antibody reactivity
and the presence of the protective HLA-B*57 allele. This analysis
A

B

FIGURE 2 | Specificity of antibodies targeted in HIV controllers compared to non-controllers who were virally suppressed on ART. (A) The positions and lengths of
open reading frames (ORFs) in the HIV genome are plotted relative to genomic coordinates for HIV (HXB2, NCBI #NC_001802). (B) The significance for the difference
in antibody reactivity in controllers versus non-controllers who were virally suppressed on ART is shown for each peptide. The x-axis shows the position of each
peptide in the HIV genome. The y-axis shows the -log10 p-value based on moderated t-statistics for each peptide. Each dot shows the result for a single peptide.
Red dots indicate peptides that had higher antibody reactivity in the HIV controller group. Blue dots indicate peptides that had lower antibody reactivity in the HIV
controller group. The blue dashed line indicates the highest q-value less than 5% (q=0.0485), which corresponds to a p-value of 0.001. The 62 significant peptides
with q-values <0.05 (above the blue dashed line) had significantly higher peptide reactivity in HIV controllers compared to non-controllers who were virally
suppressed on ART. Cluster numbers (1-7) are noted above each group of clustered peptides (see Table 2).
August 2021 | Volume 12 | Article 740395
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was performed using samples from the 40 HIV controllers in the
Discovery Cohort (21) (27 with the HLA-B*57 allele, 13 without
the allele; Figure S3). None of the peptides in the VirScan library
Frontiers in Immunology | www.frontiersin.org 6
(including the 62 peptides described above) had antibody
reactivity that was significantly different between these
two groups.
FIGURE 3 | Individual patterns of antibody reactivity to peptides in peptide clusters. The patterns of antibody reactivity are shown for the 13 individual elite
controllers (EC), 27 viremic controllers (VC), 12 non-controllers with viral loads >2,000 copies/mL (NC VL >2000), and non-controllers who were virally suppressed
on ART (NC ART). Colors indicate the level of antibody reactivity (log10 fold change in VirScan read counts compared to mock immunoprecipitation reactions); values
less than zero were assigned a value of zero. Each colored square represents data for a single peptide from a single individual. Darker colors indicate higher levels of
antibody reactivity. Data are grouped by participant group and peptide cluster (see Table 2).
TABLE 2 | Peptides with higher antibody reactivity in HIV controllers compared to non-controllers who were virally suppressed on antiretroviral therapy.

Peak Genomic Location HXB2 Coordinates Motif # peptides Sequence Logo

1 N-terminus of gag 420-588 1 18

2 C-terminus p24 1251-1512 2 4

3 C-terminus of integrase 4415-4616 3 4

4 N-terminus of the cytoplasmic domain of vpu 5674-5854 4 2

5 gp120, spanning V3 and the CD4 binding loop 6548-6872 5a 4

5b 6

6 gp120/41, spanning V5 and the fusion peptide 7130-7436 6a 23

6b 21

7 gp41, HR2 domain 7586-7799 7 4
The table shows features of the 62 peptides that had higher antibody reactivity in HIV controllers compared to non-controllers who were virally suppressed on ART. The 62 peptides were
located in seven clusters. HIV protein location was determined using the full-length peptides in each cluster. HXB2 coordinates are shown for each cluster (HXB2, NCBI #NC_001802). The
number of potential peptide targets in the VirScan library varied from region to region, reflecting the level of viral diversity; the library included 35 peptides in cluster 1; 60 peptides in cluster
2; 5 peptides in cluster 3; 32 peptides in cluster 4; 593 peptides in cluster 5; 77 peptides in cluster 6; and 21 peptides in cluster 7.
August 2021 | Volume 12 | Article 740395
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Association Between Viral Load Set Point
and Antibody Reactivity
We next evaluated whether antibody reactivity to the 62 peptides
was associated with viral load set point in non-controllers who
were not on ART. This analysis was performed using samples
from the RV217 Cohort, which included men and women from
East Africa and Thailand with different risk factors for infection.
Antibody reactivity to nine of the 62 peptides was significantly
associated with viral load set point after using a permutation test
for multiple testing correction (Figure 4). All nine peptides were
located in gag protein, p17 (cluster 1; Table S2).
DISCUSSION

Using the VirScan antibody profiling assay, we compared the
antibody profiles in viremic non-controllers to persons with
natural HIV control and those who were virally suppressed on
ART. In a previous study, we demonstrated that most persons
living with HIV express a diverse array of anti-HIV antibodies
(31). This report was focused on characterization of antibodies in
persons with natural and ART-induced viral suppression and
persons with lower viral load set points. Previous studies show
that overall HIV antibody expression is down-regulated in HIV
controllers and individuals who are virally suppressed on ART
(22, 41).

We identified groups of peptides that were preferentially
targeted by antibodies in HIV controllers and persons with
lower viral load set points. These peptides were grouped into
Frontiers in Immunology | www.frontiersin.org 7
homologous clusters in HIV env (gp120 and gp41), gag (p17 and
p24), integrase, and vpu. Most of the HIV controllers in the
Discovery Cohort had antibodies to peptides in all or most of the
seven clusters. The level of reactivity to these peptides was similar
in viremic non-controllers and HIV controllers, but was
significantly lower in non-controllers who were suppressed on
ART. Aggregate antibody reactivity to the same peptides was
significantly higher in elite controllers compared to ART-
suppressed non-controllers in an independent cohort. These
findings demonstrate that elite and viremic HIV controllers
produce many of the same antibodies as viremic non-
controllers, and that these antibodies persist in HIV controllers
despite long-term, natural suppression of viral replication. It is
not clear whether the high levels of expression of these antibodies
in HIV controllers reflects on-going viral replication (antigen
stimulation) or other factors. It is also not clear whether these
antibodies play a role in the natural control of HIV infection.

We also found that the pattern of antibody reactivity to
peptides in the clusters varied among non-controllers,
depending on HIV viral load. In the RV217 Cohort, antibody
reactivity to peptides in the p17 cluster was significantly higher in
non-controllers with lower viral load set points. These peptides
are located in the p17 matrix protein. p17 is released from
infected cells and plays a critical role in the viral replication
cycle (42). This protein exerts cytokine-like activities that
promote viral replication through interaction with target cell
receptors (43). The functional epitope of p17 is located at the N-
terminus of the protein (44), immediately upstream from the
peptides identified in this report. Antibodies to p17 are
A B

FIGURE 4 | Association between viral load set point and antibody reactivity in the RV217 Cohort. (A) The plot shows the association between viral load set point
and median antibody reactivity for the 62 peptides of interest. The x-axis shows the estimated effect of median antibody reactivity on viral load set point (effect size
from the regression analysis); the y-axis shows the -log10 p-value of the association. Negative effect sizes indicate that antibody reactivity was higher for participants
with lower viral load set points. The dashed line indicates the cutoff for significance using the Bonferroni correction (p=0.0008); the dotted line indicates the cutoff for
significance using a permutation test (p=0.0018). Red dots indicate peptides that had a statistically significant association between viral load set point and median
antibody reactivity. (B) The plot shows the median reactivity of the peptide (x-axis) that had the strongest observed association with viral load set point (y-axis). Each
dot represents data from a single participant. The blue line indicates the least squares regression line. The grey shaded area represents the 95% confidence band for
the mean viral load set point.
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associated with slower HIV disease progression (45). A synthetic
peptide that includes the functional epitope of p17 was evaluated
in a Phase 1 clinical trial as a therapeutic vaccine (46, 47). Further
studies are needed to determine whether antibodies directed
against p17 or other gag epitopes identified in this study play a
functional role in natural control of HIV replication.

Three of the seven peptide clusters identified in this study
were in HIV env. The capacity of env antibodies to modulate
HIV replication is well-established. Broadly neutralizing
monoclonal antibodies directed against HIV env are being
evaluated in clinical trials as interventions for HIV prevention
and treatment (48). These antibodies target epitopes on the
surface of gp120 (e.g., in the CD4 binding site, the V3 loop,
and V1/V2 region) or gp41 (in the MPER) (48). Most of the env
peptides identified in this report were in gp120, spanning the V3
loop and CD4 binding loop or the V5 loop and fusion peptide;
four peptides were located in the coiled coil domain of gp41,
proximal to the MPER.

Antibodies to integrase peptides were also targeted by HIV
controllers in this report. These antibodies were also observed in
some viremic non-controllers; however, this reactivity was much
lower when non-controllers were virally suppressed on ART.
Antibody reactivity to non-surface proteins has been observed in
other viral infections. For example, strong reactivity to nuclear
antigens is observed in Epstein Barr virus infection (49), and
reactivity to the nucleocapsid protein is often used to evaluate
prior SARS-CoV-2 infection (50). In HIV-infected individuals,
integrase antibodies often appear after antibodies to other HIV
targets (51, 52). Intracellular antibody fragments directed against
HIV integrase or its cellular target have been shown to inhibit
viral replication (53, 54).

We also identified vpu peptides that were preferentially
targeted in HIV controllers compared to non-controllers who
were suppressed on ART. Vpu is a transmembrane protein that
enhances virion release from infected cells by antagonizing the
host restriction factor, tetherin. Enhanced release of virions by vpu
may reduce antibody binding to infected cells by limiting the
amount of time that gp120 is expressed on the cell surface (55). In
a previous study, antibodies directed against specific ADCC vpu
epitopes were detected in long-term slow progressors (LTSP), but
not in a control group of non-LTSP (56). Antibodies directed
against a vpu peptide were also more likely to elicit responses in an
ADCC assay in elite controllers compared to viremic individuals
(57). The vpu peptides targeted by LTSP and elite controllers in
those studies overlap with the vpu peptides that were preferentially
targeted in HIV controllers in this report. The sequence of one
peptide cluster from the LTSP study was contained within the vpu
amino acid motif identified in this report; the sequence of another
peptide cluster from the LTSP study overlapped with that motif
(Table S3).

Many assays used to evaluate the specificity of HIV antibodies
include antigen targets that are expressed as proteins rather than
discrete peptides, or include a small number of protein and
peptide targets (58–60). In contrast, the VirScan assay provides a
comprehensive, unbiased platform for assessing the full range of
linear, non-glycosylated HIV peptide targets. By aligning reactive
Frontiers in Immunology | www.frontiersin.org 8
peptides that share sequence homology, VirScan also provides
information on the fine specificity of antibodies, including
specific amino acid motifs that were preferentially targeted in
HIV controllers. Further studies are needed to characterize
antibody binding to non-linear and glycosylated epitopes.

Several factors may have limited our ability to identify the full
range of antibody targets associated with viremic control of HIV
infection. The sample sets used for peptide discovery were relatively
small and were limited to samples from the United States that were
likely to have subtype BHIV. These samples were collected from the
general population and from a cohort comprised predominantly of
men who have sex with men; other HIV subtypes and risk groups
were not represented. Another limitation of this study is that the
VirScan assay only detects antibody reactivity to linear epitopes in
unglycosylated target peptides; the conformation of peptides
expressed on bacteriophage may also differ from the natural
conformation of peptides expressed in vivo. Antibodies to
peptides in the HIV antisense protein 62 will also not be detected,
since the current VirScan library does not include these peptides.
This study also does not provide any information about cellular
responses to HIV infection, which have been shown to play an
important role in viremic control of HIV infection. However, T cell
and B cell responses are coordinated and frequently target closely
linked or overlapping epitopes. The antibody specificities reported
here may therefore be associated with enhanced T cell recognition
of linked epitopes presented on infected cells.
CONCLUSION

The studies cited above and findings in this report demonstrate
that expression of antibodies against gp120, gp41, p17, integrase,
and vpu persist in HIV controllers despite viral suppression.
Additional research is needed to determine whether antibodies
directed against peptides in these regions play a role in
controlling HIV replication, and/or are indicators of enhanced
T cell responses. This could be evaluated by comparing proviral
and plasma sequences from HIV controllers to assess whether
there is evidence of antibody-mediated selection against these
peptides; this approach was used previously to identify cytotoxic
T lymphocyte (CTL) escape mutations in HIV controllers
reflecting selective pressure against HLA-B*57-restricted
epitopes (61). It may also be possible to generate antibodies
against epitopes identified in this report, or to isolate those
antibodies from HIV controllers, and to test whether those
antibodies can neutralize HIV or exert other functional effects
on viral replication. Further characterization of antibodies in
HIV controllers in other cohorts and populations may provide
further insights into antibody-mediated control of HIV infection.
This information may help inform development of therapeutic
vaccines and monoclonal antibodies for HIV treatment and
prevention. The VirScan assay also contains phage that express
peptides spanning the full genomes of >200 other viruses that
infect humans. The approach used in this report could also be
used to identify peptides associated with control of viral
replication for other clinically relevant viruses.
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