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Therapy with mesenchymal stem cells (MSCs) has showed to be promising due to its immunomodulatory function. Traumatic
brain injury (TBI) triggers immune response and release of inflammatory mediators, mainly cytokines, by glial cells creating a
hostile microenvironment for endogenous neural stem cells (NSCs). We investigated the effects of factors secreted by MSCs on
NSC in vitro and analyzed cytokines expression in vitro in a TBI model. Our in vitro results show that MSC-secreted factors
increase NSC proliferation and induce higher expression of GFAP, indicating a tendency toward differentiation into astrocytes.
In vivo experiments showed that MSC injection at an acute model of brain injury diminishes a broad profile of cytokines in the
tissue, suggesting that MSC-secreted factors may modulate the inflammation at the injury site, which may be of interest to the
development of a favorable microenvironment for endogenous NSC and consequently to repair the injured tissue.

1. Background

For many years, the central nervous system (CNS) was
considered an immunologically privileged site, due to its
particular and limited immune response, different from
other systems [1]. It is now clear that CNS is connected
to the immune and endocrine systems and has a local
inflammatory response, which can contribute to the patho-
physiology of acute and chronic brain diseases [2, 3]. Acute
neurodegenerative conditions such as traumatic brain injury
(TBI) are characterized by severe neuronal loss [4]. TBI
breaks the impermeability of the blood brain barrier, which
allows the invasion of immune cells and activation of glial
cells, mainly microglia and astrocytes, key cells for the
immune response within CNS, triggering the secretion of
inflammatory mediators by those cells [5, 6].

Inflammatory molecules are important in healthy ner-
vous tissue and their expression is promptly upregulated
when an injury occurs [3]. Cytokines are the main molecules
in neuroinflammatory response and are critical for its
regulation, exerting a variety of activities [7, 8]. Microglia

and astrocytes release several cytokines, such as IL-1α, IL-1β,
IL-6, TNF-α, and TGF-β, chemokines, and prostaglandins,
which increase the blood brain barrier permeability and
facilitate the invasion of peripheral immune cells, inducing
the secretion of toxic molecules [3, 7].

In the adult brain, chemoattractants, including the
chemokine CXCL12 produced at the injury site induce neu-
roblasts originated by neural stem cells (NSC) at neurogenic
niches, such as the subventricular zone (SVZ), to migrate
towards the injury in order to regenerate the nervous tissue
[9–11]. Although neuroblasts leave the neurogenic niche
arrive at the injury site, only a few survive due to the
injury inflammatory microenvironment that is thought to
be unfavorable to neuroblast survival and differentiation
into mature neurons [12]. The limited CNS capacity of
regeneration and the complex environment created by TBI,
starting at the acute phase, followed by a secondary phase
that continues for weeks after the primary insult [13]
lead researchers to try to find potential therapies using
neuroprotective and anti-inflammatory drugs [14–18].
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Cell-based therapy using adult-derived mesenchymal
stem cells (MSC) have been tested in several disease models
[19–24]. It is well accepted that transplantation of MSC,
particularly those derived from bone marrow, promotes
tissue repair via secreted soluble factors that enhance tissue
regeneration, stimulate proliferation, migration, and dif-
ferentiation of endogenous stem-like progenitors found in
most tissues, as well as by decreasing inflammatory and
immune reactions and apoptosis [25, 26]. The ability of
such cells to modify tissue microenvironment through its
trophic influence may contribute more significantly than
their capacity for transdifferentiation in effecting tissue
repair.

In order to better understand the paracrine effects of
MSC transplanted into an experimental brain injury site on
local cytokine production we have used a TBI model in mice,
transplanted bone marrow-derived MSC into the lesion, and
analyzed the production of cytokines. We also investigated
the effects of soluble factors secreted by MSC on neural stem
cells survival, proliferation, and differentiation in vitro. Our
results show a decrease in the production of inflammatory
cytokines 24 hours after MSC transplantation. We also show
that soluble factors secreted by MSC increase proliferation
and modulate gene expression of neural stem cells in vitro,
increasing the expression of GFAP, a marker of glial cells.

2. Material and Methods

2.1. Animals. Adult (6-week-old for MSC and NSC isolation,
12-week-old for TBI model) C57BL/6 male mice were
used in this study. The animals were maintained under
standard conditions (light/dark cycle 12 h/12 h, constant
room temperature at 22 ± 2◦C, food, and water ad libitum).
All the experimental procedures were conducted according
to international regulation and were approved by the Com-
mittee for Ethics in Research of Universidade Federal de São
Paulo (approval no. 1367/08).

2.2. Isolation, Expansion, and Characterization of MSC. After
euthanasia in CO2 chamber, bone marrow was obtained
from femur of adult mice. The femora were removed,
cleaned, and placed in DMEM low glucose (Dulbecco’s
Modified Eagle’s Medium, GibcoBRL, San Francisco, USA).
Inside the laminar flow, the epiphyses were cut and bone
marrow was flushed by DMEM into a culture dish using a
syringe. The volume obtained from each femur was treated
separately. Bone marrow was suspended and centrifuged for
5 minutes at 400× g. The supernatant was discarded and the
cell pellet derived from each femur was suspended in DMEM
low glucose containing 10% fetal bovine serum (FBS, Culti-
lab, Campinas, SP, Brazil), 1% glutamine (Sigma Chemical
Co., St. Louis, MO, USA), and 1% penicillin/streptomycin
(GibcoBRL) and cultured in six-well culture dishes (Corning
Incorporated, NY, USA) at a volume of 3.5 mL/well. Cultures
were kept in a humidified 5% CO2 incubator at 37◦C for 72
hours, when nonadherent cells were removed by changing
the medium. Culture medium was changed every 3 days
until adherent cells (MSC) reached 70–80% confluence, then

cells were washed with 0.03% PBS/EDTA, detached with
0.1% trypsin (Cultilab), and replated in a 1 : 2 split ratio.
Differentiation potential was checked by culturing the MSC
under favorable conditions for adipogenic and osteogenic
differentiation, as previously described [27]. To obtain the
MSC conditioned medium (MSC-CM), confluent cultures
(passages 5–10) were kept in DMEM low glucose containing
0.5% FBS for 96 hours. After this period, conditioned
medium was centrifuged for 5 minutes at 400× g, the
supernatant was collected, immediately frozen and kept at
−80◦C until its use.

2.3. Isolation of Adult NSC and Neurosphere Formation.
Adult NSC were obtained from adult C57BL/6 male mice
SVZ. After euthanasia by cervical dislocation, brain was
removed, the SVZ dissected under a microscope, and the
cells maintained in DMEM high glucose (GibcoBRL). After
sedimentation, supernatant was discarded, and cells were
dissociated by incubation with 0.1% trypsin/EDTA during
5 minutes at 37◦C. FBS was added to stop trypsin action,
cells were centrifuged for 5 minutes at 400× g, and super-
natant was removed. Isolated cells were then suspended in
DMEM/F12 7 : 3 (v/v) (GibcoBRL), supplemented with 2%
B27 (GibcoBRL), 20 ng/mL EGF (Sigma), 20 ng/mL FGF2
(R&D, Minneapolis, MN, USA), 1% penicillin/streptomycin
(GibcoBRL), and 5 μg/mL heparin (Sigma). After mechanical
dissociation, cells were plated on a polyHEMA (Sigma)
precoated 75 cm2 flask at a density of 2.4 × 107 cells/flask
or on a 24-well plate at a density of 2 × 106 cells/well.
Neurosphere formation takes up to 14–21 days to occur, and
during that time culture medium was changed every 4-5 days
by centrifugation for 5 minutes at 400× g. Half volume of the
medium was replaced by fresh medium. Neurospheres were
cultured with or without MSC-CM for 2 days to evaluate
NSC viability and for 4 days to evaluate NSC survival and
differentiation.

2.4. MTT Assay. The MTT (3-(4,5-dimethylthiazol-yl)2,5-
diphenyltetrazolium bromide, Sigma) assay was performed
to evaluate NSC viability cultured for 48 hours in MSC-CM.
At the end of this period, neurospheres were centrifuged for
5 minutes at 400× g, supernatant was discarded, and 270 μL
of culture medium and 30 μL of MTT solution (5 mg/L) were
added to each well and incubated for 3 hours at 37◦C. After
this period, MTT solution was aspirated and the formazan
reaction products were dissolved by the addition of 180 μl of
dimethyl sulfoxide (DMSO, MP Biomedicals, Solon, Ohio,
USA) to each well. The plate was shaken for 15 minutes,
the content was transferred to a 96-well plate, and the
optical density was read at 540 nm on an ELISA plate reader
(Labsystems Multiskan MS, Helsinki, Finland).

2.5. Proliferation Assay. In vitro adult NSC proliferation
was measured by flow cytometry (FACSCalibur System, BD
Biosciences, San Jose, CA, USA, using the software Windows
Multiple Document Interface Flow Cytometry Application,
WinMDI Version 2.9, The Scripps Research Institute, San
Diego, CA, USA), after BrdU incorporation. Adult NSC
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were cultured as neurospheres and maintained for 4 days
in MSC-CM or in control medium (DMEM/F12 7 : 3 v/v,
supplemented with 2% B27, 20 ng/mL EGF, 20 ng/mL FGF2,
1% penicillin/streptomycin, and 5 μg/mL heparin) at 37◦C.
BrdU was added during the last 24 hours before analysis.
Neurospheres were dissociated with 0.1% trypsin for 5
minutes at 37◦C, fixed by 1% paraformaldehyde (PFA) in
0.1 M PBS, incubated in 2 M HCl for 1 hour at 37◦C, washed
with 0.1 M PBS, blocked, and permeabilized with 10% FBS
and 0.1% TritonX-100 in 0.1 M PBS. Cells were incubated
with anti-BrdU (rat IgG 1 : 300, Accurate Chemical and
Scientific Corporation, Westbury, NY, USA) for 1 hour and
washed with 0.1M PBS. Cells were then incubated with
secondary antibody (Alexa Fluor488-conjugated goat anti-
rat IgG, 1 : 300, Molecular Probes, Carlsbad, CA, USA) for
40 minutes.

2.6. Injury to Mice Primary Motor Cortex and MSC Trans-
plantation. Adult C57BL/6 male mice were submitted to
surgery under anesthesia with intraperitoneal administra-
tion of xilasine (32 mg/kg)/ketamine chloridrate (66 mg/kg)
(Dopalen, Vetbrands, São Paulo, Brazil). Traumatic injury to
mice motor cortex was performed according to previously
described protocol [28, 29]. Briefly, a metal needle was
chilled using isopentane on dry ice and was inserted 4 times,
during 30 seconds each, into the motor cortex (stereotaxic
coordinates from bregma: AP +0.198 mm; ML +0.175 mm;
DV −0.15 mm [30]). MSC (1 × 105 cells in 3 μL) were
injected at the injury site using a Hamilton syringe under
the same stereotaxic coordinates and the same anesthesia,
immediately after the injury. Control consisted of animals
without injury and animals that were submitted to the injury
but did not receive MSC (injury, no treatment). Brain tissue
was collected 24 hours (acute injury) or 30 days (chronic
injury) after MSC injection. Mice were anesthetized by i.p.
injection of sodium thiopental (Tiopentax, Cristália, São
Paulo, Brazil), brain was removed from skull, the motor
cortex was dissected and total RNA was extracted by Trizol
Reagent (Life Technologies, Carlsbad, CA, USA). Animal’s
blood was collected by cardiac puncture, centrifuged to
separate the serum, which was immediately frozen in dry ice
and kept at −80◦C until use.

2.7. qPCR. Total RNA was isolated from dissected motor
cortex or neurospheres using Trizol Reagent (Life Tech-
nologies), and RNA concentration was determined using
NanoDrop ND-1000 (Thermo Fisher Scientific, Wilmington,
MA, USA). Reverse transcriptase reactions were performed
with ImProm-II Reverse Transcription System (Promega,
Madison, WI, USA) using 2 μg of total RNA.

Brain tissue samples qPCR was performed using ABI
PRISM 7500 Sequence Detector, using Sequence Detection
Software 1.9 for analysis (Applied Biosystems, Foster City,
CA, USA), using TaqMan probes (Applied Biosystems)
for HPRT (Mm00446968 m1; endogenous control gene),
IL-4 (Mm00445259 m1), IL-6 (Mm00446190 m1), IL-10
(Mm00439614 m1), and TNFα (Mm00443258 m1) accord-
ing to the manufacturer’s recommendations. Values are

expressed relatively to control RNA obtained from motor
cortex from mice that were not submitted to surgery.

Neurosphere samples qPCR was performed using Bril-
liant II SYBR Green QPCR Master Mix (Stratagene, La
Jolla, CA, EUA) using Mx3000P QPCR System using
MxPro qPCR Software for analysis (Stratagene). Primers
sequences were GAPDH (endogenous control gene; sense
5′-AAGAAGGTGGTGAAGCAGGCATCT-3′; antisense 5′-
ACCCTGTTGCTGTAGCCGTATTCA-3′ ), GFAP (sense
5′-CTCAGTACGAGGCAGTGGCC-3′; antisense 5′-CGG-
GAAGCAACGTCTGTGA-3′), nestin (sense 5′-AGCAAC-
TGGCACACCTCAAG-3′; antisense 5′-GGTGTCTGCAAG-
CGAAAGTTC-3′), GAP-43 (sense 5′-AAGGAGGAGCCT-
AAACAAGCCGAT-3′ ; antisense 5′-TAGGTTTGGCTT-
CGTCTACAGCGT-3′), and SOX2 (sense 5′-ATCCCATCC-
AAATTAACGCA-3′; antisense 5′-GAAGCGCCTAACGTA-
CCACT-3′). Values are expressed relatively to RNA from
neurospheres cultured in regular medium (control).

The quantification of the target genes was normalized by
an endogenous control gene (HPRT for brain tissue samples
and GAPDH for neurosphere samples). The threshold cycle
(Ct) for the target gene and the Ct for the internal control
were determined for each sample, run in triplicates. The
relative expression of mRNA was calculated by 2−ΔΔCt

method [31].

2.8. Bio-Plex. In order to analyze alterations in cytokines
expression in mice serum after TBI, a Bio-Plex assay was
performed. Custom Bio-Rad (Bio-Rad laboratories, Her-
cules, CA, USA). Bio-Plex cytokine analysis kits were used
together with the Bio-Plex system array reader according
to the manufacturer’s directions. The following cytokines
were quantified: CCL2 (MCP-1), CCL3 (MIP-1α), CCL4
(MIP-1β), CCL5 (RANTES), eotaxin (CCL11), CXCL1 (KC),
CXCL2 (MIP-2), CXCL5 (LIX), CXCL9 (MIG), CXCL10 (IP-
10), G-CSF, GM-CSF, INF-γ, IL-1β, IL-4, IL-5, IL-6, IL-10,
IL-13, IL-17, LIF, TNF-α, and VEGF. Samples were run in
triplicate for each assay. The assay was read on the Bio-Plex
suspension array system, and the data were analyzed using
Bio-Plex Manager software version 4.0. Standard curves
ranged from 10,000 to 3,2 pg/mL.

2.9. Statistical Analysis. Data are expressed as mean ± SEM.
Differences between groups were evaluated by one-way
analysis of variance (ANOVA) followed by Tukey’s posttest by
the use of GraphPad Prism software version 4.0 (GraphPad
Software, La Jolla, CA, USA). Statistical significance was set
at P < .05.

3. Results

3.1. MSC Transplantation Modulates Cytokines Expression
after Acute Brain Injury. Acute TBI results in upregulation
of anti- and proinflammatory cytokines expression 24 hours
after the injury (Figure 1(a)). Thirty days after injury,
the expression levels of IL-10 and IL-4 are undetected
whereas the expression of TNF-α persists significantly higher
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Figure 1: Relative expression of IL-6, TNF-α, IL-10, and IL-4 in acute and chronic models of motor cortex injury. (a) 24 hours and (b) 30
days after injury and MSC injection, RNA was extracted from motor cortex of control, injury without treatment and MSC treated mice.
qPCR was performed to quantify the expression of inflammatory cytokines and relative expression was calculated in relation to HPRT. Data
are expressed as mean of 2−ΔΔCt ± SEM (control n = 3, injury no treatment n = 6, MSC treated n = 4). ∗P < .05, ∗∗P < .001, ∗∗∗P < .0001.

than in undamaged tissue and IL-6 expression decreases
(Figure 1(b)).

Our results show that immunomodulation by MSC
transplantation in the TBI acute model is indicated by down-
regulation of IL-6, and IL-10 mRNA levels (Figure 1(a)).
Thirty days after injury and injection of MSC, we observed
increased expression of IL-6 (Figure 1(b)).

3.2. Transplanted MSC also Modulate Serum Levels of
Cytokines. TBI induces an inflammatory reaction by the
release of proinflammatory cytokines IL-1β, IL-6, and IL-
8 that can be detected in the serum of patients that
have suffered severe TBI [32, 33]. There is very limited
information about serum levels of cytokines in TBI model we
used, especially regarding the levels of the pro-inflammatory
interleukins seen in patients. Similar to what is observed
for humans, the serum level of four pro-inflammatory
cytokines, IL-1β, IL-6, IL-17, and TNF-α was increased
by the injury (Figure 2(a)). We also observed increased
levels of two anti-inflammatory cytokines, IL-4 and IL-10
(Figure 2(b)). Interestingly, MSC transplantation into the
injury site decreased the serum levels of all cytokines in the
acute phase of the model (Figure 2).

We expanded the investigation of the levels of cytokines
to several chemokines, because of their important role in
the modulation of the activity of immune cells, as well as
of stem cells, especially regarding mobilization of stem cells
from tissue-specific stem cell niches [34, 35]. We observed a
variety of responses to injury and to MSC transplantation
in the acute (24 hours) and chronic (30 days) phases.
CCL5, CXCL9, and CXCL10 serum levels did not change in
response to injury or to MSC transplantation after injury,
in both acute and chronic phases (Figure 3). CCL2, CCL3,
CCL11, CXCL1, and G-CSF serum levels increased 24 hours
after injury in nontreated animals (Figure 3(a)) whereas only
CCL2 and CCL11 returned to control levels after 30 days,

even without MSC transplantation (Figure 3(b)). GM-CSF
level was lower 24 hours after injury when compared to
serum levels from control animals (Figure 3(a)), and was
undetected after 30 days (Figure 3(b)).

MSC transplantation decreased serum levels of CCL2,
CCL11, CXCL1, CXCL5, CXCL9, CXCL2, and GM-CSF to
normal, or even below normal values, 24 hours after injury.
On the other hand, analysis of serum of animals that received
MSCs 30 days after injury and transplantation showed that
the levels of CCL2, CCL11, and CXCL1 were higher than the
levels found in normal animals serum (Figure 3).

3.3. MSC-Conditioned Medium Stimulates Proliferation of
Neural Stem Cells and Modulates Gene Expression In Vitro.
Many reports describe that soluble factors secreted at brain
injury sites, including chemokines and cytokines, induce
neural stem cells to migrate towards the injury site [36–38]. A
recent study from our laboratory (unpublished data) showed
that peptides analogous to the chemokine CXCL12, known
to chemoattract cells that express the receptor CXCR4 such
as lymphocytes, progenitor cells, hematopoietic, neural, and
embryonic cells [39], stimulated chemotaxis of neuroblasts
towards a cortex injury site, and modulated gene expression
in vivo. Nevertheless, the hostile environment created by the
inflammatory mediators secreted by glial and immune cells
that infiltrate the injured brain reduces the survival of the
migrating neuroblasts.

The in vivo effects of MSC immunomodulation that
we observed in the TBI model lead us to ask whether
MSC secrete factors that could modulate neural stem cells
survival, proliferation, and differentiation. In vitro treatment
of neural stem cells derived from adult mice SVZ, cultured as
neurospheres, with MSC-conditioned medium (MSC-CM)
resulted in increased proliferation (Figure 4(a)) without
affecting survival of the cells (Figure 4(b)).
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Figure 2: Cytokine profile in serum in TBI acute phase. Serum from mice submitted to the TBI protocol was used to investigate for cytokines
content. Mice were transplanted (MSC treated) or not (injury not treated) with MSC immediately after the injury and blood was collected
after 24 hours. (a) Pro-inflammatory cytokines and (b) anti-inflammatory cytokines (control n = 3, injury no treatment n = 6, MSC treated
n = 4). ∗∗∗P < .001, ∗∗P < .01.

Soluble factors present in MSC-CM changed neural
stem cell gene expression, inducing upregulation of GFAP, a
marker of astrocytes intermediate filaments, and downregu-
lation of nestin, a marker of immature cells (Figure 5). The
expression levels of GAP43, an axonal growth marker, and
SOX2, a neural stemness marker, did not change (Figure 5).

4. Discussion

Recently, the immunomodulatory properties of MSC have
been investigated in a number of pathological situations.
Despite MSC multipotency and self-renewing characteristics,
studies suggest that the tissue regenerative potential exerted
by these cells are not due to transdifferentiation and substitu-
tion of dead cells, but is due to the secretion of soluble factors
which stimulate local progenitor cells to survive, proliferate,
and differentiate [40, 41]. Several studies have demonstrated
this effect in different pathologies, such as acute kidney
injury [42], chronic renal failure [43], renal fibrosis [44],
myocardium infarction [45], asthma [46], multiple sclerosis
and amyotrophic lateral sclerosis [47], and brain ischemia
[48]. In the present study, we used a murine TBI model
performed in the motor cortex of mice.

Our results show that 24 hours after the injury there
is a significant increase in the expression of the pro-
inflammatory cytokines IL-6, and TNF-α in the injury
site (Figure 1). The increase in pro- and anti-inflammatory

mediators, such as IL-6, and IL-10, have been described in
cerebrospinal fluid as well as in serum of patients with severe
TBI [49].

In the model we used, MSC transplantation significantly
decreased the expression of IL-6, and similar results were
observed regarding the anti-inflammatory cytokines IL-10
and IL-4, both locally and in serum (Figures 1 and 2).

IL-6 is a pleiotropic cytokine, involved in several patho-
logical situations and can play pro- or anti-inflammatory
effects depending on the microenvironment [50]. Our results
show that there was an increase in IL-6 expression at the
injury site and also in serum (Figure 2). IL-6 is secreted
mainly by microglia and astrocytes, and its neuroprotector
role is characterized by TNF-α inhibition and NGF stimula-
tion. IL-6 also promotes tissue revascularization and tissue
scar formation [4]. Our results show increased IL-6 levels
30 days after injury and MSC transplantation, contrary to
its decrease in the acute phase of the injury (24 hours
after injury). These results suggest the immunomodulatory
property of MSC in the TBI model where in a hostile
environment in the acute period, when IL-6 is deleterious to
the tissue, MSC downregulates IL-6, while after a few days,
MSC upregulates IL-6, in a period when this chemokine
would become beneficial to a possible tissue regeneration.
Besides the alterations in cytokines expressions in the site
of injury, MSC transplantation also influenced the levels
of chemokines systemically, both in the acute (24 hours)
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Figure 3: Chemokine profile in serum in TBI acute and chronic phase. Serum from mice submitted to the TBI protocol was used to
investigate for cytokines content. Mice were transplanted (MSC treated) or not (injury not treated) with MSC immediately after the injury
and blood was collected after 24 hours (acute phase) (a) or 30 days (chronic phase) (b). (control n = 3, injury no treatment n = 6, MSC
treated n = 4). ∗P < .005, ∗∗∗P < .001.

and chronic (30 days) phases of TBI (Figure 3). It has been
described that administration of IL-1β to the brain induces
hepatic CXC and CCL chemokine synthesis, which correlates
to elevation of circulating leukocytes in the blood [51].

CNS injury involves glial activation, leukocytes recruit-
ment, increase in the expression, and secretion of inflam-
matory mediators as cytokines, and chemokines [6]. Recent
studies have described molecular signals regulating NSC
migration in the injured brain, including angiogenic factors,
chemokines, cytokines and extracellular matrix components
[52]. Brain injury induces proliferation of NSC in the SVZ
and migration of neuroblasts from the SVZ towards the site
of the insult [53]. Nevertheless few neuroblasts arrive at the
injury site and survive to the injury microenvironment [12].

Our aim was to verify if the immunomodulatory prop-
erties observed in the in vivo experiments by the secretion
of soluble factors by MSC could have any direct effect on
NSC survival, proliferation, and/or differentiation. In our
experiments, exposing NSC to soluble factors present in
MSC-CM did not influence NSC apoptosis (data not shown)
and survival, but increased proliferation, indicating that the
factors secreted by MSC may contribute to enhancing the
number of NSC without affecting survival (Figure 4).

On the other hand, MSC-CM soluble factors modu-
lated NSC gene expression, upregulating GFAP expression,
downregulation of nestin, and no alterations in GAP43
and SOX2 expression (Figure 5). SOX2 is a transcription
factor expressed by NSC present in neurogenic niches and
maintains pluripotency or stemness state [54]. Constitutive
expression of SOX2 inhibits neuronal differentiation, so this
could explain nestin downregulation.

5. Conclusion

In this study we observed that MSC are able to modulate
the inflammatory response in an acute TBI model by
changing the expression of pro- and anti-inflammatory
cytokines, along with modulation of serum levels of several
chemokines. In addition, MSC secreted soluble factors are
capable of stimulating proliferation of NSC in vitro, as well as
increasing the expression of GFAP, a gene related to mature
astrocytes, indicating that factors expressed by MSC could
induce differentiation of NSC in vivo. Altogether these results
indicate that there are still open possibilities of new regener-
ation therapies to treat nervous tissue injuries, highlighting
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Figure 4: MSC secreted factors stimulate adult NSC proliferation. (a) Survival of NSC measured by MTT assay. (b) Proliferation of NSC
measured by BrdU incorporation using flow cytometry. Data are mean ± SEM of two independent experiments performed in triplicates.
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by adult NSC. RNA was extracted from neurospheres cultured
in control medium or MSC-CM, and qPCR was performed to
evaluate the expression of GFAP, nestin, GAP43, and SOX2. Relative
expression was calculated in relation to GAPDH. Data expressed as
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the importance of immunomodulatory properties of MSC
and its potential to allow NSC survival and proliferation.
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