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Abstract
Assessing the role of biophysical parameter variations in neuronal activity is critical to the understanding of
modulation, robustness, and homeostasis of neuronal signalling. The paper proposes that this question can be
addressed through the analysis of dynamic input conductances. Those voltage-dependent curves aggregate the
concomitant activity of all ion channels in distinct timescales. They are shown to shape the current�voltage
dynamical relationships that determine neuronal spiking. We propose an experimental protocol to measure
dynamic input conductances in neurons. In addition, we provide a computational method to extract dynamic input
conductances from arbitrary conductance-based models and to analyze their sensitivity to arbitrary parameters.
We illustrate the relevance of the proposed approach for modulation, compensation, and robustness studies in
a published neuron model based on data of the stomatogastric ganglion of the crab Cancer borealis.
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Introduction
Neuron membrane potential and spiking result from the
dynamical interplay of many different ion channels, whose
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Significance Statement

Reliable neuron activity is ensured by a tight regulation of the ion channels that resides in the neuron’s
membrane. Understanding the causal mechanisms that relate this regulation to physiological and patho-
logical neuronal activity is a necessary step for developing efficient therapies for neurological diseases
associated with abnormal nervous system activity. Our paper provides a novel methodological framework
to quantify the sensitivity of neuronal activity to changes in ion channel densities. This framework, which is
general and can be applied to any neuron type, has the potential to improve our understanding of the
regulation of brain functions and to help in the design of new pharmacological treatments.
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gating kinetics span a broad spectrum of voltage ranges
and timescales (Hille, 1984). From this complexity arises
the specificity of each neuronal type as well as an abun-
dance of modulation possibilities. These underlie the rich-
ness of signaling in the nervous system (Harris-Warrick
and Marder, 1991; Bargmann, 2012; Marder, 2012; Nus-
baum and Blitz, 2012; Nadim and Bucher, 2014). At the
same time, neuronal activity is highly robust and adapt-
able to changing environments (Swensen and Bean,
2005; Beverly et al., 2011). Moreover, it is increasingly
clear that the same neuronal activity can be produced in
spite of large variability in biophysical parameters such as
ion channel densities or half-activation potentials (Gold-
man et al., 2001; Prinz et al., 2004; Schultz et al., 2006;
Taylor et al., 2009; Marder 2011; Amendola et al., 2012;
Marder et al., 2014). This robustness underlies the amaz-
ing stability and adaptability of the nervous system. Un-
derstanding the ionic mechanisms that can
simultaneously support modulation and robustness of
neuron activity has been, and remains, an important focus
of contemporary neurophysiology.

The mechanisms underlying ion channel interplay in
generating different firing patterns are of particular inter-
est for understanding neuromodulation and compensa-
tion. Deepening our understanding of those mechanisms
through methodological tools could lead to the develop-
ment of more effective treatments for neurological disor-
ders associated with abnormal brain activity (Goaillard
and Dufour, 2014). Although great advances in this area
have been achieved by influential experimental and com-
putational studies over the last decades (Goldman et al.,
2001; Grashow et al., 2009; Marder, 2011; O’Leary et al.,
2013; O’Leary et al., 2014; Prinz et al., 2004; Schultz et al.,
2006; Swensen and Bean, 2005; Taylor et al., 2009), some
important questions still remain unsettled. Specifically,
our intuition concerning firing pattern sensitivity to
changes in ion channel densities or the ability of some
channels to compensate for the loss of others remains
empirical and qualitative rather than systematic and quan-
titative, and expensive and numerous experiments are
usually required to answer such challenging inquiries
(Achard and De Schutter, 2006; Prinz, 2007; Prinz, 2010;
Doloc-Mihu and Calabrese, 2014).

The present paper proposes an innovative avenue of
attack to investigate the mechanisms of ion channel in-
terplay in shaping neuronal spiking. It shows that the
dynamical gating of the different ion channels is linked to
neuron firing activity through rigorous quantities: the dy-
namic input conductances. Dynamic input conductances
are voltage-dependent curves that aggregate the role of
all ion channels in the generation of each distinct temporal
event that characterizes firing activity (three in a bursting
neuron: fast for spike upstroke, slow for spike downstroke
and interspike period, and ultraslow for spike adaptation
and interburst period). These curves shape the current-
�voltage dynamical relationships that determine neuronal
spiking.

We show that the sensitivity of neuronal activity with
respect to a particular biophysical parameter such as ion
channel density correlates with the ability of this param-

eter to shape one or several dynamic input conductances
in specific voltage ranges. From a modulation viewpoint,
these data are directly relevant to interpreting and pre-
dicting the conductance targets of neuromodulators from
how they affect the neuronal activity, and vice versa. From
a robustness viewpoint, we show that the colocalization
of the sensitivity ranges of different ion channels into
specific timescales is necessary and sufficient to allow for
large parameter variability nonetheless producing fixed
neuronal activity due to simple compensation mecha-
nism, regardless of other ion channel particulars.

We provide a computational method to extract dynamic
input conductances from an arbitrary conductance-based
model and perform a sensitivity analysis of neuronal ac-
tivity to arbitrary parameter variations on those dynamic
input conductances. Throughout this paper, we illustrate
its predictive value in a specific conductance-based
model that has served many previous experimental and
computational studies (Turrigiano et al., 1995; Liu et al.,
1998; Goldman et al., 2001). These data show the gener-
ality of the proposed approach and suggest it has rele-
vance to assist experimental studies of neuronal
modulation and robustness. The proposed computational
tool is appealing in its mathematical simplicity, which
facilitates the interpretation of the results and allows for a
systematic sensitivity analysis even in high-dimensional
models. In addition, we provide a voltage-clamp protocol
to directly measure dynamic input conductances in real
neurons. Simulated experiments show that both methods
give very similar results.

Materials and Methods
STG neuron model

Membrane currents are described in Goldman et al.
(2001). The kinetics and voltage dependence of the con-
ductances contributing to the currents are based on mea-
surements of crustacean STG neurons (Turrigiano et al.,
1995). All parameters are similar to the ones given in
Goldman et al. (2001), except for the calcium reversal
potential, which is fixed here to �120 mV. The model is
composed of six different ionic currents: INa, ICa,T, ICa,S,
IK,A, IK,d, and IK,Ca.

Computation of the static and dynamic input
conductances

Static and dynamic input conductances of a neuron
model composed of variables Xi are computed as follows

gf �
� If
�V

� �
i

wfs
Xi� � V̇

�Xi

�Xi, �

�V �,
gs �

� Is
�V

� �
i

�wsu
Xi � wfs

Xi�� � V̇
�Xi

�Xi, �

�V �,
gu �

� Iu
�V

� �
i

�1 � wsu
Xi �� � V̇

�Xi

�Xi, �

�V �,
g � gf � gs � gu � �

i
� � V̇

�Xi

�Xi, �

�V �,
where wfs

Xi and wsu
Xi are voltage-dependent weighting fac-

tors that determine the contribution of the variable Xi in
the fast (f), slow (s) and ultraslow (u) timescales. They are
defined as logarithmic distances between the variable

New Research 2 of 15

January/February 2015, 2(1) e0031-14.2015 eNeuro.sfn.org



time constant �Xi
and the fast, slow, and ultraslow time

constants. Note that static and dynamic input conduc-
tances are voltage-dependent, which is not explicitly writ-
ten in the equations for clarity purposes. We do not
include the passive properties of the membrane, i.e. the
term �V̇ / �V , in the computation of the static and dynamic
input conductances, as those variations are almost in-
stantaneous compared to those induced by ion channel
kinetics.

The fast, slow, and ultraslow time constants are ex-
tracted as follows: the fast time constant �f (Vm) corre-
sponds to the activation time constant of the fastest
depolarizing current (INa in the STG neuron model,
�f�Vm� � �mNa

�Vm�). The slow time constant �s(Vm) corre-
sponds to the activation time constant of the fastest
repolarizing current (IK,d in the STG neuron model,
�s�Vm� � �mK, d

�Vm�), the kinetics of this current giving the
upper frequency limit of fast spiking. The ultraslow time
constant �u(Vm) corresponds to the time constant of the
slowest variable (which is the inactivation of ICa,S in the STG
neuron model, �u�Vm� � �hCa, S

�Vm�). The two voltage-
dependent weighting factors wfs

Xi and wsu
Xi are assigned

to all other variables Xi, as follows:

forall Vm � �Vmin , Vmax � do
if �xi �Vm� � �f�Vm� then

wfs �Vm� � 1;
wsu �Vm� � 1;

else if �f �Vm� 	 �xi�Vm� � �s�Vm� then

wfs (Vm) �
log ��s�Vm�� � log ��xi�Vm��
log ��s�Vm�� � log ��f�Vm��

;

wsu �Vm� � 1;
else if �s �Vm� 	 �xi�Vm� � �u�Vm� then

wfs �Vm� � 0;

wsu (Vm) �
log ��u�Vm�� � log ��xi�Vm��
log ��u�Vm�� � log ��s�Vm��

;

else if �xi �Vm� 
 �u�Vm� then
wfs �Vm� � 0;
wsu �Vm� � 0;

Values of STG model maximal conductances used to
generate the dynamic input conductances shown in Figs.
1 and 3 are g� Na � 700 mS/cm2, g� Ca,T � 2 mS/cm2, g� Ca,S

� 4 mS/cm2, g� A � 50 mS/cm2, g� K,d � 70 mS/cm2, and
g� K,Ca � 40 mS/cm2. Note that intracellular calcium plays a
dynamical role in the ultraslow timescale only (intracellular
calcium concentration is an ultraslow integrator of cal-
cium entry, which itself depends on the slow activation of
the voltage-gated calcium channels).

Sensitivity analysis of the dynamic input
conductances

The sensitivity curves are computed by taking the de-
rivative between the input conductances and each ion
channel maximal conductance g� i. For an arbitrary ionic
current of the form Ii � g� imi

phi
q �Vm � Vi�, it gives

�gf

�g� i
� wfs

mipmi
p�1hi

q�Vm � Vi�
�mi,�

�V

� wfs
himi

pqhi
q�1�Vm � Vi�

�hi,�

�V
,

�gs

�g� i
� (wsu

mi � wfs
mi)pmi

p�1hi
q�Vm � Vi�

�mi,�

�V

� (wsu
hi � wfs

hi)mi
pqhi

q�1�Vm � Vi�
�hi,�

�V
,

�gu

�g� i
� (1 � wsu

mi)pmi
p�1hi

q�Vm � Vi�
�mi,�

�V

� (1 � wsu
hi )mi

pqhi
q�1�Vm � Vi�

�hi,�

�V
.

Again, these sensitivity curves depend on the membrane
potential, which is not explicitly written in the equations
for clarity purposes.

Once these sensitivity functions are computed, we ex-
tract their value at spike threshold (Vth) and up-state (Vosc).
To rigorously extract spike threshold, we apply the
algorithm described in Franci et al. (2013). This algorithm
detects a transcritical bifurcation in arbitrary
conductance-based models. This bifurcation point is the
point of maximum sensitivity, where the steady-state po-
tential of the model neuron is exactly at spike threshold.
We choose to vary the maximal conductance of one of the
calcium channels to detect this bifurcation in the STG
neuron model. Spike threshold potential is around –50 mV
in the model. To extract up-state, we simply compute the
I/V curve and take the more depolarized zero of the curve.
This zero corresponds to the unstable steady-state po-
tential around which oscillations occur. Up-state potential
is approximately –16 mV in the model STG neuron. Finally,
we sketch the localization of the different sensitivity func-
tions on the Vm axis by normalizing them. This permits
comparing these localizations one to one regardless of
the amplitude differences.

Construction of the compensation mechanism based
on the sensitivity analysis

For illustration purposes, we derive here the compen-
sation mechanism for changes in only one calcium con-
ductance at a time. This procedure is general and can be
extended to perturbations of any conductance or other
parameter.
1. First, a set of maximal conductances is chosen to

generate the reference firing pattern.
2. Dynamic input conductances gf (Vm), gs (Vm), gu (Vm)

and the I/V curve Istatic(Vm) are computed for this set
of maximal conductances following the procedure
described above.

3. Maximal conductances (or other parameters) that will
be involved in the compensation mechanism are cho-
sen. It is important that this set of parameters is
sufficient to cover all the timescales that will be af-
fected by a change in the perturbed conductance.
This can be determined via the sensitivity analysis
described in the previous section. In this manuscript,
we use g� A, g� K,d, g� K,Ca and Iapp in the compensation
mechanism. We did not use g� Na because none of the
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calcium channels significantly affect the fast time-
scale in their range of variation.

4. The values of the dynamic input conductances (and
I/V curve) that will be maintained must be defined.
The number of different values cannot exceed the
number of parameters that are involved in the com-
pensation mechanism. We choose to maintain the
following values:gs

*�Vth�, gs
*�Vosc�, gu

* �Vth�, and Istatic
* �Vth�.

Vth and Vosc are computed as described above.
5. Finally, the set of g� A, g� K,d, g� K,Ca, and Iapp that main-

tains gs
*�Vth�,gs

*�Vosc�,gu
* �Vth�, and Istatic

* �Vth� unchanged
for each variation of a calcium channel maximal con-
ductance gCa

� are computed by solving the linear
system Ax � b with (example given for g� Ca

� � g� Ca,S
� )

A � 	
0

�gs

�g� K,d
�Vth�

�gs

�g� A
�Vth�

�gs

�g� K,Ca
�Vth�

0
�gs

�g� K,d
�Vosc�

�gs

�g� A
�Vosc�

�gs

�g� K,Ca
�Vosc�

0
�gu

�g� K,d
�Vth�

�gu

�g� A
�Vth�

�gu

�g� K,Ca
�Vth�

1
� Istatic

�g� K,d
�Vth�

� Istatic

�g� A
�Vth�

� Istatic

�g� K,Ca
�Vth�


x � 	
Iapp

g� K,d

g� A

g� K,Ca




b � 	
gs

*�Vth� � �g� Na

�gs
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�Vth� � g� Ca,S

�
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Voltage-clamp measurement of the static and
dynamic input conductances

Static and dynamic input conductances can be mea-
sured in a voltage-clamp experiment, as shown in Fig. 1b.
Neuron membrane potential is initially held at a specific
value V�. A small step of membrane potential �V is applied
and the temporal variation of the transmembrane currents
is recorded and normalized around its initial value (�V � 1
mV in our simulated voltage-clamp experiments). Three
specific values are extracted from transmembrane current
variations: the amplitude of the local minimum that occurs
within 2 ms after the onset of the step (If), the amplitude of
the local minimum that occurs between 10 and 100 ms
after the onset of the step (Is) (if no local minimum is
found, the amplitude at 10 ms is taken), and the minimal
amplitude of current from 1 s until the end of the stimu-
lation (Iu).The dynamic currents are measured as follows:
the fast dynamic current �If corresponds to the difference
between the amplitude of the initial current I0 and If, the
slow dynamic current �Is corresponds to the difference
between Is and If, and the ultraslow dynamic current �Iu
corresponds to the difference between Iu and Is. The static
current �I is derived as usual (difference between the
current at steady-state, Iu in our case, and the initial
current I0).The values of the dynamic input conductances
are given by gj�V* � �V / 2� � � �Ij / �V , where j � f, s,
u.

The protocol is reproduced using different holding po-
tentials.

Results
Dynamic input conductances shape dynamic
sensitivity
In static conditions, the membrane potential of a neuronal
model is determined from Kirchhoff’s law. This static
equation of the form I(V) � 0 is the mathematical basis for
a static analysis of the local sensitivity of the resting
potential to a current variation �I via the well-known
formula

�V � � � I
�V��1

�I

This formula indicates that the (static) input conduc-
tance g�V� � � �I / �V shapes the sensitivity to current
variations. This shaping is voltage-dependent and the
sensitivity is maximal in voltage ranges where g(V) van-
ishes or changes sign. The classical voltage-clamp exper-
iment is an experimental method to determine the
voltage-dependence of the static input conductance g(V).

Owing to its dynamical nature, a dynamic analog of
Equation 1 is needed to study the sensitivity of neuronal
spiking. Dynamical sensitivity analysis normally requires
solving a set of linearized differential equations, the sen-
sitivity equations (Khalil, 2002), which is computationally
impractical in a high-dimensional conductance-based
model. This complexity can be circumvented by exploiting
the property that neuronal activity is made of a temporal
sequence of events with different timescales. For exam-
ple, an action potential, or spike, exhibits two distinct
timescales: a fast timescale for the spike upstroke, deter-
mined by the fastest gating kinetics (i.e., sodium activa-
tion), and a slow timescale for the membrane
repolarization, determined by the potassium-rectifier ac-
tivation. Likewise, slow spiking, or bursting, has three
timescales: in addition to the two timescales of the action
potential, it exhibits a third ultraslow timescale deter-
mined by the slowest gating kinetics of the participating
ionic currents.

Each spiking event is shaped by the relationship be-
tween membrane potential variations and transmembrane
current variations in the corresponding timescale. Follow-
ing Equation 1, the �I – �V relationship can be quantified
in each timescale j by a voltage-dependent conductance
gj(V). This conductance aggregates the role of all ion
channels acting in this timescale. A key message of this
paper is that these voltage-dependent conductances,
that we call dynamic input conductances, provide key
information about the dynamic sensitivity of neuronal ac-
tivity in their corresponding timescale. Together with the
static information contained in the classical I/V curve, they
shape the nature of excitability.

The value of the dynamic input conductances can be
measured experimentally without any a priori knowledge
of neuron dynamical properties (Fig. 1a1). In a voltage-
clamp experiment, any current variation �I generated by a
step of membrane potential �V can be decomposed into
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three distinct contributions (Fig. 1a1; see Materials and
Methods for further details)

��I�f � ��I�s � ��I�u � �I,

where (�I)f, (�I)s, and (�I)u are the fast, slow, and ultraslow
dynamical components, respectively. Each current com-
ponent obeys the sensitivity relationship (Eq. 1), leading to
the decomposition

�gf�V��V � gs�V��V � gu�V��V � �g�V��V

and in turn

gf�V� � gs�V� � gu�V� � g�V� .

Each of the three conductances appearing in the left
hand sides of Equations 2 and 3 is the quasi-static quan-
tity � �I / �V in one distinct timescale, that is, assuming
that the current variations that are fast in that timescale
have reached their quasi-steady state, and that current
variations that are slow in that timescale can be ne-

glected. This simplification, which permits us to determine
the different points where the currents are measured in
the experiment (see Materials and Methods), is justified
mathematically by singular perturbation theory (Fenichel,
1977). It should be stressed that this analysis is fully
consistent with the classical voltage-clamp experiment of
Hodgkin-Huxley (1952a, 1952b) when modeling the action
potential as a two-timescale phenomenon, with the so-
dium activation accounting for the fast current variations
and potassium activation and sodium inactivation ac-
counting for the slow current variations. In the Hodgkin-
Huxley model, the static conductance g(V) can be
decomposed as g(V) � gf(V) � gs(V), where gf(V) is deter-
mined by considering the sodium activation to be at
steady-state and regarding the other gating variables as
quasi-constant parameters.

Dynamic input conductances can also be computed for
an arbitrarily detailed conductance-based model without
any simulation/measurement of its temporal evolution. In
a realistic conductance-based model such as those de-
veloped today for a number of neurons, the numerous

a1 a2

b

Fig. 1 Dynamic input conductances shape neuron dynamic sensitivity. a1, Example of an experimental measurement of dynamic input
conductances in voltage-clamp. A step of potential �V (top) induces a variation in the transmembrane current �I (bottom). The values of
the currents playing a role in the different timescales are extracted as shown on the figure. a2, Sketch of the mathematical derivation of the
dynamic input conductances from an arbitrary conductance-based model. The dynamic input conductances are computed by aggregating
the role of the different ionic conductances in each timescale. b, Dynamic input conductances of a STG neuron model for a particular set
of parameters either measured in a simulated voltage-clamp experiment (blue bars) or computed following the described mathematical
procedure (red lines).
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gating variables exhibit a continuum of voltage-
dependent timescales. This means that a given physio-
logical gating variable can, in principle, contribute to each
of the three representative timescales of the overall activ-
ity. For this reason, the dynamic input conductance in
each representative timescale is expressed as a (voltage-
dependent) linear combination of all ionic conductances
(Figs. 1a2, 2; see Materials and Methods for further de-
tails). The three dynamic input conductance gf(V), gs(V),
and gu(V) can then be interpreted as aggregate conduc-
tances in each of the three timescales defining neuronal
activity. It should be stressed that the few timescales of
the dynamic input conductances are a characteristic of
the neuronal activity only, not of ion channel kinetics.

As an illustration, Fig. 1b shows the dynamic input
conductances of a STG neuron model (Turrigiano et al.,
1995; Liu et al., 1998; Goldman et al., 2001) for a partic-

ular set of parameters either measured in a simulated
voltage-clamp experiment (blue bars) or computed fol-
lowing the described computational procedure (red lines).
It is apparent that both methods provide fully consistent
results.

Voltage-dependent input conductances determine
neuron spiking activity
The three dynamic input conductances computed in Fig.
1 for the particular STG model and reproduced in greater
detail in Fig. 3 are typical of a bursting neuron and can be
obtained through a great variety of channel combinations.
They aggregate the detailed biological information of ionic
currents into voltage-dependent curves that shape the
dynamical activity of the neuron.

Each curve shapes the voltage-dependent gain of a
feedback loop in the associated timescale. In particular,

Cm

g1

g2

g3

gn

g1 (gNa)

g2  (gKd)

g3  (gCaS)

Vm Fast Slow Ultraslow

Cm

g1,f

g2,f

g3,f

g1,s

g2,s

g3,s

g1,u

g2,u

g3,u

SUM

g1,f g2,f g3,f

gf

gn,f gn,s
gn,ugn  (gKCa)

SUM SUM

gn,f g1,s g2,s g3,s

gs

gn,s g1,u g2,u g3,u

gu

gn,u

Fig. 2 Any ion channel potentially contributes to each of the representative timescales of the membrane potential activity. Top left,
Scheme of an arbitrary high-dimensional conductance-based model. Top center, Variations of the membrane potential Vm and the
different voltage-gated conductances gi over time for a specific set of ion channel densities. Top right, Decomposition of the temporal
traces in three different timescales: fast, slow, and ultraslow. Bottom, Reconstruction of the conductance-based model where the
contributions of each variable conductance are grouped by timescales, forming the three dynamic input conductances gf, gs, and gu
(see Materials and Methods for details about the rigorous construction).
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the sign of this feedback gain determines the qualitative
role of each feedback loop in a given voltage window. The
fast dynamic input conductance is mostly positive. It
determines the fast feedback loop of neuronal excitability,
which is an excitatory loop corresponding to the fast
autocatalytic feedback associated with the action poten-
tial regenerative upstroke. The slow dynamic input con-
ductance is mostly negative, with a peak close to the
depolarized voltage potential. It determines the slow neg-
ative feedback loop of repolarization. However, zooming
around the threshold potential shows a small area of
positive feedback in the slow timescale. This slow positive
feedback is the signature of regenerative excitability, an
essential component of the slow excitability that underlies
bursting (Franci et al., 2012, 2013, 2014). How ion chan-
nels shape the positive area of the slow dynamic input
conductance is therefore crucial for the regulation of
bursting. The onset of a positive area in the slow dynamic
input conductance has a precise mathematical character-
ization, because it is determined by a transcritical bifurcation
that can be easily computed in an arbitrary conductance-
based model (Franci et al., 2014). We use this point of
maximal sensitivity to determine the excitability threshold of
an arbitrary neuronal model. Finally, the ultraslow dynamic
input conductance is mostly negative. It shapes the negative
feedback loop in the ultraslow timescale and subthreshold
voltage potential area where spike adaptation is regulated.
The reader will notice that, in this particular model, the
ultraslow dynamic input conductance shows an unexpected
region of positive feedback at suprathreshold potentials
(marked by a � in Fig. 3, right). This positive feedback comes
from the interaction between calcium channel inactivations
and the dynamical role of intracellular calcium concentration
in the ultraslow timescale. However, for the ultraslow time-
scale (and any slower timescale), the shape of the dynamic
input conductance in the suprathreshold region does not
influence the neuronal activity because voltage excursions in
this region are too fast to recruit the ultraslow feedback.

The simplicity of the dynamic input conductances at a
qualitative level explains the ability of simplified dynamical
models to reproduce the qualitative properties of neuronal
bursting. Two-state models that capture the fast positive
feedback and the slow negative feedback each with one-
state variable are the essence of excitable models, such

as the FitzHugh-Nagumo model or two-variable reduc-
tions of the Hodgkin-Huxley model (FitzHugh, 1961; Hind-
marsh and Rose, 1984; Rinzel, 1985; Izhikevich, 2007). A
three-state dynamical model that captures the qualitative
features of the dynamic input conductances shown in
Figure 3 has also been recently introduced (Franci et al.,
2014): positive feedback in the fast timescale, non-
monotone feedback (positive at hyperpolarized potentials
and negative at depolarized potentials) in the slow time-
scale, and negative feedback in the ultraslow timescale.
This paper shows why such a dynamical motif organizes
the excitability of a bursting neuron and how a restricted
number of parameters control the resulting temporal ac-
tivity. Those parameters only shape the location and am-
plitudes of the four peaks exhibited in Figure 3.

Figure 4 illustrates how variations in the dynamic input
conductances significantly affect the temporal activity.
Not surprisingly, Figure 4a shows that the fast dynamic
input conductance shapes the spike. Increasing the am-
plitude of the fast positive feedback gain near spike
threshold leads to a gradual switch from small oscillatory
potentials to tonic spiking. Figure 4b, top, illustrates the
role of the positive area in the slow dynamic input con-
ductance curve near spike threshold: this area controls
the switch from slow restorative to slow regenerative
excitability (Franci et al., 2013), that is, the transition from
tonic spiking to bursting (Franci et al., 2014). Figure 4b,
bottom, illustrates the qualitative role of the slow negative
feedback at depolarized potentials: reducing the ampli-
tude of the negative peak of the slow dynamic input
conductance reduces the negative feedback necessary
for spike repolarization, eventually leading to a depolar-
ization block. Finally, burst frequency is mostly controlled
by the negative feedback in the ultraslow timescale in the
subthreshold region (Fig. 4c). In particular, increasing the
ultraslow negative feedback concomitantly decreases the
length of the bursts and increases the interburst period.

This analysis shows the ability of a qualitative analysis
of the dynamic input conductances and their variation to
capture nontrivial variations in neuron temporal activity. It
is important to note that, although the examples shown in
Figure 4 are very simple and straightforward in linking one
current to its effect in one timescale, most ion channels
contribute to several timescales, and therefore shape sev-

-80 60Vm (mV) -80 60Vm (mV) -80 60Vm (mV)

gf gs gu

0

0 0
Fast positive feedback 
(spike upstroke)
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*

Fig. 3 Dynamic input conductances shape neuronal activity. From left to right: fast (gf), slow (gs), and ultraslow (gu) input conductances
as a function of the membrane potential Vm. These curves shape the feedback gain of the neuronal circuit in distinct timescales,
thereby determining the dynamical activity.
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eral properties of neuronal spiking, as illustrated in the
next section. In addition, physiologically relevant neuro-
modulation often requires the concomitant modulation of
dynamics in several timescales. For instance, it is clear
from Figure 4 that decreasing burst frequency while main-
taining constant duty cycle requires actions on both the
slow and ultraslow timescales at least. This supports the
fact that most neuromodulators need to target many dif-
ferent ion channel types in order to generate a reliable

qualitative change in neuron spiking activity and high-
lights the relevance of the proposed approach for the
identification of such targets.

Sensitivity analysis of dynamic input conductances
predicts how ion channels shape spiking activity
A fundamental property of the voltage-dependent dy-
namic input conductances analyzed in the preceding sec-
tion is that they can be quantitatively and algorithmically
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Fig. 4 Variations of fast, slow, and ultraslow dynamic input conductances near the threshold potential and peak amplitudes shape spiking
activity. a, Fast dynamic input conductance for different values of sodium channel density (left) and associated firing activity in the
associated conductance-based model (right). Increased sodium channel density induces an increase in the fast dynamic conductance,
which results in an increase in action potential amplitude (up to the saturated value VNa). b, Top, Slow input dynamic conductance for
different values of A-type potassium channel density (left) and associated firing activity (right). Changes in A-type potassium channel density
affect the value of the slow dynamic conductance at spike threshold, which mainly alters neuron burstiness. Bottom, Slow dynamic input
conductance for different values of delayed-rectifier potassium channel density (left) and associated firing activity (right). Changes in
delayed-rectifier channel density affects the value of the slow dynamic conductance at up-state, which mainly alters spike repolarization
capability. c, Ultraslow dynamic input conductance for different values of calcium-activated potassium channel density (left) and associated
firing activity (right). Increased potassium channel density increases the negative peak of the ultraslow dynamic conductance in the
subthreshold region, resulting in a decrease in the intraburst frequency.
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computed from an arbitrary conductance-based model.
As a consequence, they provide a bridge between the
quantitative electrophysiology of a given neuron and the
control of the few aggregate quantities that shape its
dynamical activity. In this section, we illustrate the predic-
tive value of a classical sensitivity analysis of the dynamic
input conductances with respect to maximal conductance
parameters (i.e., density of a particular channel). Our illus-
trations are made on the same STG model as in the
previous section, but the method is general and elemen-
tary from a computational viewpoint, and therefore appli-
cable to any other quantitative neuronal model. All
predictions are based on computing sensitivity curves of
the type �gf, s, u / �g� x �V�, which evaluates at each mem-
brane potential the derivative of a given dynamic input
conductance gf,s,u with respect to a given maximal con-
ductance parameter g� x. The analysis thus provides one
sensitivity curve per channel type and per timescale. The
sign and amplitude of this nondimensional quantity in a
given voltage range determines how much a given chan-
nel can shape the dynamical activity of the neuron in the
timescale of the dynamic input conductance g(V). Below

we illustrate the type of predictions that can be made in
each of the three timescales of neuronal activity.

Figure 5 provides the six sensitivity curves of the model
STG neuron in the fast and ultraslow timescales (left and
right panels, respectively). Only two ion channel types
significantly contribute to the fast conductance: sodium
channels and T-type calcium channels (Fig. 5a1). The role
of sodium channels as the main source of fast positive
feedback for spike generation is of course no surprise. Its
sensitivity predominates over all other channels at the
threshold potential. But the sensitivity analysis in the fast
timescale is also instructive regarding the distinctive role
of T-type calcium channels with respect to other calcium
channels. The sensitivity curves predict that T-type cal-
cium channels participate in the fast excitability properties
of the neuron, in contrast to slow calcium channels. The
temporal traces in Figure 5a2 illustrate that in the absence
of sodium channels, spikes can be generated with T-type
calcium channels only (bottom left panel), due to their
contribution in the fast timescale. In contrast, only slow
oscillatory potentials can be obtained through slow cal-
cium channels in the absence of sodium and T-type cal-
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Fig. 5 Sensitivity analysis of model STG neuron spiking activity in the fast (left) and ultraslow (right) timescales. The figure illustrates
the six sensitivity curves of the STG model in the fast timescale (a1) and in the ultraslow timescale (b1). The values of the ultraslow
sensitivity curves are also plotted at the specific threshold potential, which is a key potential value for excitability properties. a2,
Neuronal activity in the absence of sodium and calcium channels (top left), in the presence of sodium channels only (top right), in the
presence of T-type calcium channels only (bottom left) and in the presence of slow calcium channels only (bottom right). b2, Neuronal
activity (left) and values of the ISIs within each burst (right) of bursters expressing a low (top) and a high (bottom) slow calcium channel
density. gu–, Ultraslow negative feedback; gu� ultraslow positive feedback.
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cium channels. This is because the slow calcium channels
make no contribution in the fast timescale.

The six sensitivity curves in the ultraslow timescale
show the dominant contribution of three distinct ion chan-
nel types: T-type calcium channels, slow calcium chan-
nels, and calcium-activated potassium channels (Fig. 5b1,
left). Those channels mostly cooperate in providing the
ultraslow negative feedback necessary for spiking adap-
tation, through the ultraslow inactivation of calcium chan-
nels and the ultraslow activation of potassium channels.
This negative feedback is among other things critical for
bursting termination. But closer scrutiny of the sensitivi-
ties at the threshold potential shows that the slow calcium
channels also generate a localized positive feedback,
which indicates that their activation also contributes to the
ultraslow timescale (Fig. 5b1, right). This localized positive
feedback in the ultraslow timescale is a source of excit-
ability in the ultraslow timescale, which translates into an
increased frequency of spikes during bursts.

Figure 5b2 confirms this prediction through the com-
parison of two bursters that differ only in their slow cal-
cium channel density. The burster expressing a low
density of slow calcium channels exhibits a monotonically
decreasing intraburst frequency [i.e., an increase in the
value of the interspike intervals (ISIs); Fig. 5b2, top], which
indicates that the dynamic input conductance is only
negative in the ultraslow timescale. In contrast, the
burster expressing a high density of slow calcium chan-
nels exhibits a biphasic activity: a period of increasing
frequency (i.e., decreasing ISIs) at the beginning of the

burst, a consequence of the localized positive feedback
brought by the calcium channels in the ultraslow time-
scale, followed by a period of decreasing frequency (Fig.
5b2, bottom). This bursting type is generally referred to as
parabolic bursting (Rinzel and Lee, 1987). Its signature in
the sensitivity curves is a sufficiently large source of pos-
itive feedback in the ultraslow timescale around spike
threshold. This signature is quantified by the proposed
sensitivity analysis.

Figure 6a shows the six sensitivity curves of the model
STG neuron in the slow timescale. It is readily observed
that the negative feedback brought by delayed-rectifier
potassium channels (green curve) completely dominates
the role of any other channel at depolarized potential (Fig.
6a, left). This ensures robustness of the action potential
downstroke, a key property for robust spiking.

Further scrutiny of the sensitivity values around spike
threshold and up-state (Fig. 6a, center) allows for finer
predictions. Around spike threshold, where small changes
in the balance between positive and negative feedback
has a strong effect on neuronal spiking (see above), the
positive contribution of calcium channels is many-fold
higher than the negative contribution of potassium chan-
nels. This explains why a tiny calcium current (many-fold
weaker than sodium and potassium currents) is sufficient
to control excitability in the slow timescale. The simula-
tions in Figure 6b confirm that slight changes in calcium
conductance control burstiness.

The sensitivity plot at high potential (Fig. 6a, center,
right) predicts another important difference between
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Fig. 6 Sensitivity analysis of model STG neuron spiking activity in the slow timescale. The figure shows sensitivity curves that extract
the effect of conductance variations on the dynamic input conductances (top) and example of predictions that can be made from
these sensitivity curves (bottom). a, Sensitivity of the slow dynamic input conductance for each Vm (left), at spike threshold (Vth), and
at up-state (Vosc) (center) as well as their localization in Vm (right). b, Model membrane potential variations over time for different value
of g�Ca,T, g�Ca,S, and g�K,d. An increase in both slow and T-type calcium channel densities increases neuron burstiness due to their
positive effect at spike threshold. However, an increase in T-type calcium channel density quickly results in depolarization block, due
to their positive effect in the up state.
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T-type calcium channels, whose high sensitivity persists
at high potential, and slow calcium channels, whose sen-
sitivity is concentrated near threshold potential. The local-
ized sensitivity of slow calcium channels allows them to
control burstiness without affecting spike termination. In
contrast, increasing the density of T-type channels con-
comitantly increases the positive feedback at high poten-
tial, conflicting with the negative feedback of delayed-
rectifier potassium channels necessary for spike
downstroke. Figure 6b, center, confirms this prediction of
sensitivity analysis: increasing the density of T-type cal-
cium channels quickly leads to depolarization block,
which indicates that slow positive feedback has over-
come the slow negative feedback at high potential, lead-
ing to bistability between the down and up states.
Obtaining the same phenomenon with slow calcium chan-
nels requires a much larger variation of channel density
because of their low sensitivity at high potential.

Not surprisingly, the depolarization block can be elimi-
nated by simultaneously increasing the density of
delayed-rectifier potassium channels, which restores the
negative feedback at up-state without affecting the bal-
ance at spike threshold (Fig. 6b, right). A larger conduc-
tance for the delayed-rectifier potassium thus increases
spiking robustness, protecting the neuron from depolar-
ization block while permitting a broader modulation of
intraburst frequency via variations in calcium channel
density.

The illustrations in this section stress that a particular
ion channel can contribute in more than one timescale
and that its effect in different timescales can be studied
through different sensitivity curves. For the STG model,
slow calcium channels provide an example of current that
has no contribution in the fast timescale but contributes a
source of excitability concomitantly in the slow timescale
(increasing burstiness) and in the ultraslow timescale (par-
abolic bursting).

Our analysis also illustrates the importance of sensitivity
range as well as sensitivity amplitude. Different ion chan-
nel types can affect sensitivity in very different ranges,
mainly due to different half-activation and inactivation
potentials and different ion resting potentials. For the STG
model, the sensitivity range is an important source of
differentiation between the role of T-type and slow cal-
cium channels in the slow timescale.

Sensitivity analysis predicts possible compensation
mechanisms for robustness and homeostasis
Sensitivity curves accurately predict how varying the den-
sity of a given ion channel type affects the dynamic input
conductances and how this voltage-dependent shaping
affects neuronal activity. At the same time, they predict
how other channels can compensate for a parameter
variation in order to minimize the change in dynamic input
conductances. This insight is important for the quantifi-
cation of robustness and homeostatic mechanisms that
govern neuronal spiking.

We tested this prediction in the STG model by studying
how variations in the two calcium maximal conductances
(g� Ca,T and g� Ca,S) could be compensated for by variations in

the potassium channel conductances (g� A, g� K,d, and g� K,Ca).
Our elementary compensation mechanism determines the
necessary parameter variations to maintain three distinct
values of the dynamic input conductances: the slow input
conductance at spike threshold and up-state, and the
ultraslow input conductance at spike threshold. In addi-
tion to the conductance parameter variations, the external
applied current was adjusted to maintain a constant value
of the static I/V curve at spike threshold. Physiological
compensation for the static current would possibly re-
quire additional ionic currents not present in the STG
model. It should also be noted that the absence of static
current compensation does not significantly affect the
robustness of the dynamic compensation mechanism
(simulations not shown).

Figure 7 illustrates the neuronal spiking robustness that
arises from this simple compensation mechanism. In Fig-
ure 7a, the density of slow calcium channels is increased
fivefold (top red trace). Without any compensation mech-
anism, this variation strongly affects neuronal activity,
which shows that the model is sensitive to this increase in
calcium conductance (middle trace). In the presence of a
compensation mechanism, the effect of the slow calcium
channel variation is robustly silenced by changes in the
maximal conductance of the potassium channels (bottom
traces). The variations are consistent with the individual
channel contributions illustrated in Figures 5 and 6. In
particular, g� K,Ca increases to compensate for the positive
contribution of g� Ca,S in the ultraslow timescale at spike
threshold, whereas the increase of g� A compensates for
the positive contribution of g� Ca,S as well as the negative
contribution of g� K,Ca in the slow timescale at spike thresh-
old. Finally, g� K,d decreases to correct the pathological
negative effect of g� K,Ca in the slow timescale at up-state.
Note that correlations in ion channel densities arising from
our compensation mechanism are strictly linear (see Ma-
terials and Methods). This is a consequence of the linear
dependence in conductance parameters of conductance-
based models and agrees with many experimental and
computational observations (Schulz et al., 2007; Zhao and
Golowasch, 2012; O’Leary et al., 2013; O’Leary et al.,
2014)

Figure 7b illustrates the effects of a fourfold decrease of
the density of slow calcium channels. Here again, the
model shows the sensitivity of the neuronal activity to this
variation in the absence of compensation mechanisms
(center trace). The initial neuronal activity, alternatively, is
robustly maintained with the compensation mechanism
(bottom traces). In this example, however, the A-type
potassium conductance becomes negative (gray zone in
the bottom of Fig. 7), which is a nonphysiological sce-
nario. This illustration highlights that the dynamical activ-
ity is determined by the dynamic input conductances,
regardless of how they are shaped by the individual ion
channel conductances. It also points to a physiological
limitation of the compensation mechanism. In this exam-
ple, the slow positive feedback contribution of slow cal-
cium channels is an essential component of the firing
pattern and the neuron lacks an alternative current to
generate the positive feedback that is necessary to com-
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pensate for the lack of slow calcium channels. Mathemat-
ically, the required positive feedback is eventually
provided by changing the sign of the A-type potassium,
thereby reversing the negative sign of the physiological
feedback. This scenario indicates that a physiological
compensation mechanism is limited by the availability of
ion channels that can shape the dynamic input conduc-
tances similarly to the missing channel.

Another limitation of the proposed compensation
mechanism is that it focuses on a few points in the
dynamic input conductances. Significant differences in
the dynamic input conductances away from those partic-
ular points can affect the performance of the compensa-
tion. More fundamentally, compensation for changes in
one channel by changes in only one other channel is never
perfect because each channel curve is localized around
particular potentials. The robustness of the compensation
mechanism is therefore conditioned by the overlap of the
different sensitivity curves. This is particularly true in the
slow timescale where the sensitivity of several channels is
highly localized.

Figure 8 illustrates the important role of the colocal-
ization of the sensitivity functions in compensation
mechanisms. Figure 8a2, top trace, illustrates that
A-type potassium channels more easily compensate for
changes in slow calcium channel density than in T-type
calcium channel density, which has also been observed
previously in a similar model (O’Leary et al., 2014). This

is because the sensitivity ranges are much better colo-
calized in the first case. In fact, the sensitivity curves of
slow calcium channels and A-type potassium channels
almost overlap, allowing for almost exact mutual com-
pensation (Fig. 8a1, right). It should be stressed that it
is the colocalization of sensitivity functions, not of ac-
tivation functions, that matters for the compensation.
Figure 8a1, left, illustrates the better overlap of activa-
tion functions of A-type and T-type calcium channels
compared to slow calcium channels, but this overlap is
less relevant for compensation.

To further substantiate that it is the colocalization of
sensitivity functions that matters for compensation mech-
anisms, we shifted the activation function of A-type po-
tassium channels 4.5 mV towards more depolarized
potentials (Fig. 8b1, left). As a result, the sensitivity curve
of A-type potassium channels now roughly colocalizes
with the one of T-type calcium channels, whereas the
colocalization with slow calcium channels is lost (Fig. 8b1,
right). The consequence of this adjustment on neuronal
activity is that the compensation mechanism is now much
more efficient against density variations in T-type calcium
channels than against density variations in slow calcium
channels (Fig. 8b2). Here again, the prediction cannot be
made from the activation curves, which highlights the
specific role of the sensitivity curves in the analysis of
robustness and homeostatic mechanisms.
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Fig. 7 Compensation mechanism derived from the sensitivity analysis. a, b, Variation of the slow calcium channel density (top trace)
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Discussion
Dynamic input conductances link ion channel
distribution and neuronal activity
This paper introduces the concept of dynamic input con-
ductances. These dynamic input conductances are
shown to contain all the necessary information to link
changes in ion channel density to their effect on neuronal
spiking. Although these quantities are conceptual, they
have the potential to provide new intuitions on how ion
channels organize to modulate or maintain a target firing
pattern.

We propose a method to either measure dynamic input
conductances in a voltage-clamp experiment or extract
them from an arbitrary conductance-based model. Dy-
namic input conductances provide a dynamic analog of
the classical static input conductance, the basic tool to
study the sensitivity of stable steady-states. Dynamical
sensitivity analysis of arbitrary activity described by a set
of nonlinear differential equations is computationally im-
practical. Dynamic input conductances circumvent this
difficulty by taking advantage of the property that neuro-
nal activity is a succession of well-defined temporal
events such as spikes and bursts of spikes. The underly-
ing timescale separation allows us to reduce the dynamic
sensitivity analysis of the neuronal model to the sensitivity
analysis of few quasi-static input conductances, one per
timescale. Three timescales (and therefore a decomposi-
tion of the static input conductance into three distinct
dynamic input conductances) were selected in the pres-

ent paper to study separately the sensitivity of the fast
upstroke of action potentials (fast timescale), the sensi-
tivity of the slow downstroke of action potentials (slow
timescale), and the sensitivity of the ultraslow adaptation
of spiking (ultraslow timescale). A simple computational
algorithm was proposed to distribute the contributions of
a given ion channel in the three timescales and to com-
pute the corresponding three dynamic input conduc-
tances from an arbitrary conductance-based model.
Illustrations of the method on the STG model (Turrigiano
et al., 1995; Liu et al., 1998; Goldman et al., 2001), a
model that has served many previous studies of modula-
tion and robustness of neuronal spiking, showed that the
three dynamic input conductances are highly prototypical
curves determined by a few parameters and that those
few parameters shape important temporal properties of
the neuronal activity.

Dynamic input conductances as model reduction for
sensitivity analysis
The parameterization of the dynamic input conductances
by a few key parameters (such as their values near spike
threshold and peak amplitudes) that control the dynamic
activity can be thought of as an analog of reduced mod-
eling of neuronal activity, but with the objective of sensi-
tivity analysis rather than simulation. The conventional
objective of neuronal reduced modeling is to extract a
low-dimensional dynamical model (with few abstract state
variables) that approximates the time activity of the cor-
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responding high-dimensional quantitatively detailed
conductance-based model with all the gating variables
accurately modeled. In the present paper, the objective is
not simulation but sensitivity analysis. As a consequence,
the proposed method aims to extract a few meta-
parameters not for simulation but to concentrate the para-
metric sensitivity analysis onto a few scalar quantities.
The main advantage of the reduction process is the sim-
plicity and robustness of the resulting analysis: the sen-
sitivity analysis of the meta-parameters amounts to
computing their derivatives (i.e., infinitesimal sensitivity)
with respect to arbitrary parameters of the original model,
an elementary mathematical operation that is robust be-
cause it is about qualitative shaping properties of the
dynamic input conductances and does not suffer from the
curse of dimensionality of high-dimensional models.

This is to be contrasted with more generic and non-
local methods of sensitivity analysis such as extensive
Monte-Carlo simulations of the high-dimensional quanti-
tative model (Achard and De Schutter, 2006; Prinz, 2007;
Prinz, 2010; Doloc-Mihu and Calabrese, 2014). Another
key advantage of the reduction process is that the pro-
posed meta-parameters provide a precise bridge be-
tween the quantitative biophysical parameters of the
conductance-based model and qualitative properties that
have a clear dynamical interpretation as local sources of
positive or negative feedback in a given timescale. The
importance of the physiological interpretation of the meta-
parameters should not be underestimated. It facilitates
the detection of aberrant results due to, for instance,
modeling errors, and it readily allows for physiological
predictions from the mathematical results, in contrast to
the results of a general but somewhat blind high-
dimensional sensitivity analysis.

Sensitivity analysis of dynamic input conductances
predicts robustness of neuronal spiking
For all its computational advantages, the inherent funda-
mental limitation of local sensitivity analysis (through de-
rivatives, i.e., infinitesimal parameter variations) is that it
might fail to predict the consequences of possibly large
parameter variations encountered in practice. Although a
classical and highly successful analysis tool in engineer-
ing, the success of local sensitivity analysis depends on
the mathematical object under study, and its practical
significance must be assessed empirically. The illustra-
tions on the STG model here are encouraging in that
regard. They suggest that local sensitivity analysis of
dynamic input conductances has high predictive value
regarding the distinct role of distinct channels in regula-
tion and robustness of neuronal spiking, even for channel
density variations exceeding those observed in experi-
ments.

This success is perhaps not accidental in that the se-
lected meta-parameters have a clear physiological inter-
pretation and are supported by a rigorous mathematical
analysis in previous work of the theoretical modulation
and robustness capabilities of an arbitrary conductance-
based model. For this reason, we believe that the meth-
odology of the proposed method has general value

beyond the specific illustrations chosen for the present
paper. There is much room for further tailoring of the
proposed computational algorithms to specific sensitivity
analysis applications that could, for instance, include
more than three timescales, different meta-parameters
extracted from the dynamic input conductances, and net-
work rather than single-cell neuronal activity. Also, the
present paper focuses on variations of maximal conduc-
tances, i.e., channel density variations, as a primary
source of modulation and robustness, but the sensitivity
analysis can be applied to any parameter. At its core, it
only rests on the fundamental assumption that the ana-
lyzed temporal activity can be decomposed as a succes-
sion of temporal events in distinct timescales.

Sensitivity analysis provides mathematical insight on
the richness and robustness of neuron excitability
The physiological relevance of our sensitivity analysis was
assessed on a particular model of a specific organism that
has served many earlier computational and experimental
studies of neuronal modulation and robustness. We illus-
trated how the proposed sensitivity analysis provides in-
sight on an apparent paradox between neuron sensitivity
and robustness: a tiny variation in the conductance of a
specific ionic channel, through the action of a specific
neuromodulator, can, for instance, drastically affect the
neuronal activity while large variability of the same param-
eter can be almost perfectly compensated for by covari-
ation of other ion channel densities, provided that they
have an overlapping sensitivity range in the affected time-
scales. Such predictions are relevant for experimental
studies of neuromodulation and could assist the design or
interpretation of novel experiments. The discussion con-
trasting the role of colocalization of activation ranges
versus sensitivity ranges in compensation mechanisms is
an example of prediction that is very much in line with
recent experimental observations in mammalian dopa-
mine neurons (Amendola et al., 2012): half-activation po-
tentials of A-type potassium channels and HCN channels
significantly vary from cell to cell but the covariation of the
two channels is very stable across populations. Because
the proposed analysis is computationally elementary and
versatile, it can serve as a useful computational tool in
resolving significant neurophysiological problems.
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