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Abstract

Detecting gene-gene interaction in complex diseases is a major challenge for common disease genetics. Most interaction
detection approaches use disease-marker associations and such methods have low power and unknown reliability in real
data. We developed and tested a powerful linkage-analysis-based gene-gene interaction detection strategy based on
conditioning the family data on a known disease-causing allele or disease-associated marker allele. We computer-generated
multipoint linkage data for a disease caused by two epistatically interacting loci (A and B). We examined several two-locus
epistatic inheritance models: dominant-dominant, dominant-recessive, recessive-dominant, recessive-recessive. At one of
the loci (A), there was a known disease-related allele. We stratified the family data on the presence of this allele, eliminating
family members who were without it. This elimination step has the effect of raising the ‘‘penetrance’’ at the second locus (B).
We then calculated the lod score at the second locus (B) and compared the pre- and post-stratification lod scores at B. A
positive difference indicated interaction. We also examined if it was possible to detect interaction with locus B based on a
disease-marker association (instead of an identified disease allele) at locus A. We also tested whether the presence of
genetic heterogeneity would generate false positive evidence of interaction. The power to detect interaction for a known
disease allele was 60–90%. The probability of false positives, based on heterogeneity, was low. Decreasing linkage
disequilibrium between the disease and marker at locus A decreased the likelihood of detecting interaction. The allele
frequency of the associated marker made little difference to the power.
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Introduction

It is clear that the expression of common disease depends on the

interaction of multiple loci. Over the past decade, the technique of

choice for identifying disease loci has been association analysis,

particularly Genome Wide Association Studies (GWAS). These

studies, which usually involve thousands, if not tens of thousands of

subjects, assume that finding highly significant statistical differ-

ences between marker allele frequencies in case and control

populations would guarantee that a gene strongly influencing

disease expression would be discovered. However, the disease

relative risk seen for most of these associated genes was so low as to

call into question the utility of further pursuing these genes.

Furthermore, although gene-gene interaction is viewed as critical

for understanding common disease expression, the statistical tests

used to detect gene-gene interaction from association data are

weak.

There are several current techniques to detect interaction from

association data. One chooses two known (or hypothesized) alleles

or genotypes at two loci and applies a regression model that

includes main effects and interaction terms and then tests if the

interaction terms are zero. There are variations that use logistical

regression or multinomial regression on case-control data, case-

only data, or family-based association data. One could conceivably

do a pair-wise test of all SNPs in a GWAS to search for an

association but achieving a result with enough statistical signifi-

cance to survive a correction for the number of tests would be

difficult. The rational alternative is to choose loci that show

association by themselves and test for interaction. There are also

data-mining approaches and methods that look for all combina-

tions of alleles that appear to influence disease expression [1].

However, there are disadvantages to all these approaches.

1. The power to detect association is reduced in the face of allelic

heterogeneity. Thus, the existence of multiple alleles at a locus

with differing influences on disease, affect association detection.

If one adds to that varying amounts of linkage disequilibrium

between disease allele and marker SNP [2] and differing

interactions with alleles at other loci, interaction detection

becomes more difficult.

2. Some approaches would require an enormous sample size and

overwhelming statistical significance to correct for the number

of tests [1].
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3. The biological significance of a positive result is not

immediately clear. Given that most GWAS-discovered associ-

ations have low relative risks, it is unclear how much more

evidence for risk could be detected by looking for interaction. If

an exhaustive pair-wise search approach is used, is unclear

what detecting an interaction involving two alleles at different

loci would mean in the absence of evidence of association

between the disease and each allele independently.

Combined with the low relative risks, the association analysis-

based approach to detecting gene-gene interaction has disadvan-

tages. Given the enormous investment necessary to determine if

there is a biological basis for the statistical observation, a more

robust approach that is more likely to ensure biological

significance is needed.

Linkage analysis identifies gene locations based on family data.

It has the advantage of using inheritance information rather than

gene frequency differences between case versus control popula-

tions. Linkage analysis can best detect loci that have a major effect

on disease expression, a characteristic that can be viewed as either

an advantage or a disadvantage, but, given the state of our

knowledge about common disease, we consider this as a distinct

advantage.

We recently showed how linkage analysis could be used to both

prove the existence of gene-gene interaction and uncover

additional loci that contribute to disease [3]. We successfully

showed evidence for a second locus that interacts with BMPR2

locus mutations to contribute to the expression of Familial

Pulmonary Arterial Hypertension (FPAH). The BMPR2 muta-

tions, although unequivocally involved in FPAH expression, have

a low penetrance, an observation that, in the absence of any

identifiable environmental influence, can only be explained by

gene-gene interaction [3].

Our approach to detecting interaction stratifies the linkage data

on alleles at a locus known to cause, or be associated with, the

disease. In this work, we use extensive computer simulation to

explore the statistical characteristics of using linkage stratification

to learn the strengths and the limitations, power and efficiency of

the method so that it can be a useful and a well-understood tool to

identify gene-gene interaction.

The linkage-based method we present appears quite robust.

Linkage is insensitive to allelic heterogeneity, so the presence of

multiple alleles at a locus does not affect power. The finding of a

causative or associated allele under a linkage peak can be used to

enhance the detection of other linked loci that interact with that

allele.

Methods

Epistatic Genetic Models
In an epistatically interacting two-locus disease inheritance

model, both loci are necessary for disease expression, i.e., the

disease genotype at both loci must be present in order for a subject

to be affected. Depending on the gene frequencies of the disease

alleles at the two loci, the ‘‘apparent’’ penetrance of the disease will

vary, viewed as a single locus model based on either one of the loci

alone, as will the expected proportion of affected siblings (the

ascertainment-corrected segregation ratio) [4]. What has tradi-

tionally been interpreted as ‘‘reduced penetrance’’ is based on the

assumption of a single-locus model. In a two-locus epistatic model,

the so-called reduced penetrance at a locus, which is a

characteristic ascribed to the disease when assuming a single-

locus model of inheritance, is caused by the second locus, even

though the penetrance of the disease genotype, which by definition

includes both loci, is full. The basis of our approach is, in effect, to

make the model a one-locus model by ensuring almost everyone in

the dataset has the disease genotype at the first (known) locus.

Then, the presence of the disease alleles at the other locus will

determine affectedness status, creating a single-locus model.

The model we studied is an epistatic two-locus system requiring

disease genotypes at both loci. At one locus (locus A), a known

disease-causing allele is segregating. We first linkage analyze the

data at locus B (the test locus) assuming the correct parameters,

including penetrance (the reduced penetrance being caused by the

effect of locus A), and record the lod score. We then stratify the

data by including only carriers of the disease allele or genotype at

the known locus A. Then, we perform a second linkage analysis at

locus B (which, in an analysis using real data, might include all

markers in the rest of the genome). By stratifying the data so that

subjects without the disease allele at locus A are excluded,

everyone remaining (except necessary connecting subjects) is a

carrier of the disease allele or genotype at A. Thus, we effectively

raise the penetrance at the second, interacting locus (B) because

non-carriers of the disease allele at A cannot be affected and, by

eliminating them, we are excluding ‘‘non-penetrant’’ carriers of

the disease allele at locus B. Thus, after stratification, all subjects

will have the disease genotype at locus A (except perhaps parents)

and only those who are affected will have the disease genotype at

B.

The nature of the interaction we studied was always a two-locus

epistatic model, in which both loci together are causative.

However, we also examined the case where the allele leading to

exclusion of subjects was not the causative allele at locus A but an

allele in linkage disequilibrium (LD) with the causative allele and

thus was associated with the disease (see below). In that case, also,

we include in the stratified (or pruned) analysis only those offspring

carrying the associated allele and who are thus more likely to carry

the disease allele at a known locus (and their parents) by dint of

that association.

The test statistic we devised compared the evidence for linkage

at B after pruning with the evidence for linkage at B using the

unpruned data. We tested some variation from the above ideal

epistatic condition that may model other realistic situations.

Simulation parameters
We generated multipoint linkage data for a disease

caused by two unlinked, epistatically-interacting loci (A and B)

using a modification of the program Caleb (http://potato.

nationwidechildrens.org/caleb) [5] called Xcaleb. Caleb generates

multipoint family data in which two disease loci interact to

produce the disease and for which the details of the interaction can

be specified. In addition to the two disease loci, the program lets

the user specify up to 18 single nucleotide polymorphism (SNP)

marker loci of arbitrary gene frequency and also allows

specification of pair-wise linkage disequilibrium (LD) between

loci. In all our simulations, we fixed the first disease locus (locus A)

at position 5 and the second disease locus (locus B) at position 13

on the simulated ‘‘chromosome’’ (see Figure 1). These loci were

not linked to each other (recombination fraction (h) = 0.5). We

then calculated the multipoint lod scores and specifically focused

on the lod score at the test locus B.

The genetic distances between loci (h) used to generate the

linkage data are shown in Figure 1. Some of the loci between

disease locus A and disease locus B were separated by

recombination fractions that ensured A and B were unlinked.

Recombination fractions between the other markers surrounding

the disease loci were fixed at 0.001.
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The LD measure, D’, between the disease allele at locus A and

marker allele 1 at locus 4 was set to 1. The gene frequency of the

disease allele matched that of allele 1 (e.g., r2 = 1); thus, allele 1 at

the marker always occurred together with the disease allele at locus

A and never with the normal allele. The recombination fraction

between locus A and the locus 4 marker was set to 0 (see Figure 1).

There was no LD, and thus no disease-marker association,

between other marker alleles.

Each experiment consisted of 500 datasets of 50 families each.

The ascertainment criteria were set as follows: all simulated

families were two-generation pedigrees and were required to have

at least 1 affected offspring and a minimum of 4 members in the

pedigree (i.e., a two-child nuclear family). The maximum family

size consisted of two parents and 10 offspring. The family size

distribution was based on Cavalli-Sforza and Bodmer [6].

We tested four different fully penetrant epistatic two-locus

disease models (‘‘fully penetrant’’ meaning that the disease

genotype at both loci must be present for disease expression).

The models were: a dominant-dominant model (DD), a dominant-

recessive model (DR), a recessive-dominant model (RD) and a

recessive-recessive model (RR) [4,7]. The disease-causing geno-

types are (capital letters designate disease alleles):

DD model: AABB, AABb, AaBB, AaBb;

DR model: AABB, AaBB;

RD model: AABB, AABb;

RR model: AABB.

When the disease model at a locus was dominant, the disease

allele frequency was fixed at 0.1; when the model was recessive,

the frequency was set to 0.2. The marker loci allele frequencies

were all set to 0.5.

Pruning/Stratification
Each simulated family was analyzed twice. In the first analysis,

evidence for linkage at locus B was calculated using all families and

family members. We refer to this as the ‘‘unstratified’’ analysis. For

the second analysis only the offspring carrying the disease allele at

locus A were included. (Parents were also included, irrespective of

their genotype.) We refer to this as the ‘‘stratified’’ (or ‘‘pruned’’)

analysis.

We illustrate the system with a example using the DD model:

Figure 2 shows one of the simulated families when a DD model

was specified. The letters under each pedigree member are the

genotypes at the two epistatic loci. (Capital letters designate disease

alleles.) There are three affected subjects: the mother (id 2) and two

children (id 4 and id 6). In the first analysis, all subjects were

included in the linkage computation. In the second analysis we

eliminated offspring 5, 7 and 8, and re-calculated the lod score.

This procedure means that there were fewer subjects in the

‘‘stratified’’ analysis than in the ‘‘unstratified’’ analysis. Also, the

number of families in the ‘‘stratified’’ analysis could be lower than

the number of families in the ‘‘unstratified’’ analysis because

removal of non-carrier offspring can turn families with two

offspring into uninformative trios.

Analysis parameters
The correct (generating) map (see Figure 1) was used in the

analysis. The analysis penetrance was set to 0.5 for each analyzed

model [8]. The GENEHUNTER program [9,10], was used to

compute the multipoint lod scores.

In the analysis, the assumed disease allele frequencies and mode

of inheritance were always matched to the generating values for

locus B.

Test statistic
In order to devise a test to determine if we can detect interaction

between loci A and B and define its reliability, we compared the

lod score at locus B calculated under the unstratified analysis to the

one obtained after pruning (recall, pruning occurs at locus A). For

both unstratified and stratified analyses, we calculated the

maximum lod score in the linkage interval containing locus B

for each dataset. We then calculated the lod score difference

between the stratified and unstratified analysis for each dataset.

We also determined the means over all data sets for a given model.

The test statistic is based on these differences and can be written

as

INT~ maxlodscorejstratifiedanalysisð Þ

� maxlodscorejunstratifiedanalysisð Þ:

The INT statistic can be interpreted as follows:

N If the stratified and the unstratified lod scores are both positive:

A positive INT occurs when the lod score at locus B is found to be

higher after pruning (i.e. when non-carriers of the disease allele at

locus A are removed) and indicates evidence of interaction. The

lod score can increase only if locus A and B interact (which we

show below when we observe how the INT behaves when

heterogeneity, rather than epistasis, is simulated). By including

only carriers of the disease allele at locus A, we are effectively

raising the penetrance at locus B by eliminating those subjects who

do not have the disease genotype at locus A and therefore cannot

be affected with the disease if it arises from an interaction between

A and B. If a negative or null INT is obtained, it suggests that there is

no interaction between the loci because the apparent penetrance

at locus B remains the same or decreases, indicating that

eliminating non-disease genotypes at locus A has no effect on

the linkage signal (or a negative effect) at locus B.

N Similarly, if the unstratified lod score is negative and the

stratified lod score is positive:

Figure 1. Simulation map. All recombination fractions, except those labeled, were set to 0.001.
doi:10.1371/journal.pone.0093398.g001
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This would mean that conditioning on carriers of the disease

genotype at locus A increases the evidence for linkage at locus B.

Thus, raising the penetrance at locus B (by eliminating family

members incapables of being affected because they do not have

the disease genotype at locus A, but who have the disease genotype

at locus B) increases locus B’s detectability. This happened in

Rodriguez-Murillo et al. [3].

N If the unstratified lod score is positive and the stratified lod

score is negative:

This would yield only negative values for the INT statistics,

indicating that conditioning on carriers of the locus A disease allele

gives us evidence against linkage while the unstratified analysis

produces evidence in favor of linkage. This suggests that the

stratification process has eliminated evidence in favor of linkage at

locus B, suggesting there is no relationship between the loci.

Heterogeneity
A linkage analysis can produce evidence of multiple loci. These

signals, if not occurring by chance, can be due either to

epistatically interacting loci or to loci that independently produce

the phenotype, i.e., genetic heterogeneity. To test whether the

mere existence of multiple, but non-interacting loci could lead to

false indications of interaction, we tested stratification when the

disease phenotype is independently caused by two different loci.

For this scenario, we also simulated and analyzed heterogeneity

models analogous to the epistatic models, designated: D+D, D+R,

R+D and R+R with the same parameters as described above. The

simulated and analysis penetrances for the two independent loci

were both set to 0.5.

Associated allele
Above, we illustrated the situation in which there is a known

disease allele at locus A, i.e., the ideal case. We now ask: can the

existence of a disease-marker association, rather than an actual

disease-causing mutation at locus A, be used to identify

interaction? We explored how strong the association between

the disease allele and the associated marker allele needs to be in

order to demonstrate interaction between the loci using the

stratification approach. We tested three scenarios:

1. We observed the effect of changing the strength of the

association between the disease-associated allele (at locus A)

and the marker allele at marker locus 4 (see Figure 1) by

changing the LD between those two alleles. We varied the LD,

examining the D’ values: 0, 0.2, 0.4, 0.6, 0.8 and 0.9.

2. We tested the situation in which the D’ is fixed at a value of 1

but the allele frequency of the associated marker allele is varied.

We tested allele frequencies of 0.1, 0.2, 0.3, 0.4 and 0.5.

3. We varied both D’ and the associated marker allele frequency

simultaneously.

The above disease-marker association scenarios weaken the

association between the associated allele and the locus A disease

allele compared to the first analysis in which the LD between the

marker and the disease allele was unity. Consequently, the

presence of the associated allele would not always signal the

presence of the disease allele at locus A. Accordingly, when the

data are stratified, the evidence for interaction would be weakened

because in some carriers of the locus 4 marker, that allele would

not be syntenic with the disease allele at A. Thus, the non-carriers

of disease locus at A would be less likely to be eliminated.

Results

1. Pruning based on the presence of the disease allele
a) Effect of pruning on sample size. When the inheritance

model at locus A is dominant, the reduction in the number of

families was approximately 27% (29% for the DD model and 24%

for the DR model) and the reduction in the number of subjects was

approximately 18% (20% for DD model and 16% for DR model).

When locus A was recessive, the number of families after

stratification was only 53% of the number in the unstratified

analysis (55% for the RD model and 51% for the RR model). The

number of subjects reduced to about 37% of the original number

when locus A was recessive (34% for RD model and 39% for RR

model) (Table 1).

When larger datasets with fewer replicates were simulated (100

dataset/100 families), we observed the same percentage reduction

in both the numbers of families and subjects (data not shown).

b) Effect of pruning on lod scores. Although stratification

decreases dataset size both in families and subjects, if interaction

exists, the lod scores generally increase after stratification, making

the INT positive. Figure 3 shows the distribution of the INT for

the four inheritance models when the unstratified lod score

reached a value of at least 1.5. We chose a cutoff of 1.5 after we

observed that the average increase in lod score with pruning was

about 1.0. Thus, after pruning, the lod score for the dataset would,

on the average, be 2.5 and thus usually be highly suggestive of

linkage at a genome-wide level [11]. In almost 80% of the cases,

the lod score at locus B increased after pruning (i.e., INT.0)

(Table 2).

Figure 2. Example of simulated family under a DD model. Capital letters designate disease alleles.
doi:10.1371/journal.pone.0093398.g002
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c) INT statistic. The INT statistic was positive in almost

82% of the cases when locus A was dominant and 84% when it

was recessive (when the unstratified lod score was equal or greater

than 1.5). The most power to detect interaction was obtained

under the RR model: 89% of the datasets produced a positive INT

statistic.

The mean increases in the lod score for the different models

after pruning when the unstratified lod score at locus B was greater

or equal than 1.5 units were: DD: 0.9; DR: 1.0; RD: 0.7; RR: 1.3.

d) Choosing data sets based on the unstratified lod

score. If we consider datasets that showed any positive value

of the unstratified lod score at locus B (as opposed to only

considering unstratified lod score values $1.5), the mean increases

in the lod scores after pruning were: DD: 0.9; DR: 1.0; RD: 1.1;

RR: 1.5. (Table 2). We emphasize that this increase in information

for linkage occurred despite the stratification-caused decrease in

both the number of families included in the analysis and in the

total number of family members.

e) Increased linkage evidence using pruning. If we look

only at datasets that had an unstratified lod score between 1.5 and

3 at locus B (i.e., positive but not statistically significant linkage

evidence), whether the lod score rose to statistical significance

depended on the underlying model. For the DD model, 95% of

such datasets achieved a lod score greater than 3 after

stratification. The percentages for the others models were: 100%

of the DR datasets, 65% of the RD datasets and 87% of the RR

datasets. Thus, pruning can also aid in confirming linkage in cases

where the lod score is positive but not statistically significant (data

not shown).

Pruning also could reveal evidence in favor of linkage at locus B

that could not be seen otherwise. 71 (14%) of the RD datasets and

35 (7%) of the RR datasets showed a negative lod score at locus B

under the unstratified analysis. After stratification, only 1 dataset

(for both models) continued to show a negative lod score, while the

mean lod score was 1.8 for the RD model and 2.4 for the RR

model. Furthermore most of those datasets showing evidence

against linkage at locus B increased the lod score to at least 1.5

after stratification (45 of the RD datasets (out of the 71 showing

negative lod scores) and 25 (out of 35) of the RR datasets). For the

DD and DR models, no dataset produced a negative unstratified

lod score (Table 1).

2. There was no false evidence for interaction under
heterogeneity

We tested whether there could be evidence for interaction (a

positive INT) when interaction is not present, i.e., when the same

phenotype can be caused independently by two different loci

(genetic heterogeneity).

The reduction in the number of families and the number of

subjects after stratification was much greater under heterogeneity

than under epistasis. The number of families declined by 52%–

88% and the number of subjects by about 47%–90%, with

decreases in sample size when locus A was recessively inherited

more pronounced than under dominant models (Table 1).

Under heterogeneity, a positive unstratified lod score might be

anticipated (the loci are, in fact, linked to markers), but the

presence of heterogeneous data will diminish the lod score. (These

calculations did not use the heterogeneity lod score (HLOD).)

Figure 3. Distribution of INT statistic when unstratified lod score was at least 1.5 units. Vertical dotted lines emphasize the boundary
between negative and positive INT values.
doi:10.1371/journal.pone.0093398.g003
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When we looked at datasets under the D+R model, the lod score

at locus B (the recessive locus under this model), was never positive

before stratification and never became positive when stratified.

Under the other models, 3% of the datasets had positive INT

values (Table 2). When the unstratified D+D model lod score at

locus B was positive, the mean unstratified locus B lod score was

1.5. After stratification that value decreased to -0.5. For the R+D

model, the mean locus B lod score decreased from 2.9 to -0.3 after

stratification and for the R+R model from 1.8 to -1.4. When the

unstratified lod score at locus B was greater than 1.5, the INT

statistic was never positive when heterogeneity existed (Table 2).

Thus, when heterogeneity exists, not only does stratification not

increase the evidence for linkage at locus B, as it does when there is

interaction, it causes a loss of linkage evidence.

3. Interaction with an associated marker allele rather than
the locus A disease allele

a) The effect of D’ between the associated allele and the

locus A disease allele. We examined how the strength of

association affects the INT statistic by varying the value of D’

between the associated marker 4 allele and the disease allele at

locus A.

We tested D’ values of 0, 0.2, 0.4, 0.6, 0.8 and 0.9. In all these

simulations, the associated allele frequency was matched to the

locus A disease allele frequencies (0.1 for dominant and 0.2 for

recessive).

Figure 4 shows each model’s mean lod score values for the

unstratified analysis (solid line) and the stratified analysis (dashed

line) at locus B, plotted against the D’ values. When D’,0.8, there

was no increase in the lod score after stratification for the RR and

Figure 4. Lod score values varying the D’ value between marker 4 and disease locus A. Unstratified lod score is represented by solid line
and stratified lod score by dashed line. Horizontal dotted line identifies the threshold for significant evidence of linkage.
doi:10.1371/journal.pone.0093398.g004

Table 3. Percentage of datasets in which INT statistic is positive when unstratified lod score was positive.

Model

D’ value DD DR RD RR

0.8 41.60 31.20 50.58 49.68

0.9 58.00 53.00 57.83 67.05

1 82.20 82.60 86.25 90.32

doi:10.1371/journal.pone.0093398.t003
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RD models. There was no increase for the DD and DR models,

when D’ is less than about 0.85.

Table 3 shows the percentage of datasets in which the INT

statistic was positive when the unstratified lod score was positive.

For the RD and RR models, a D’ of at least 0.8 is needed in order

to have 50% power to detect interaction (INT .0). For the DD

and DR models the D’ value needed to be at least 0.9 to reach

50% power.

The findings when D’ is unity (i.e., the associated allele is the

disease allele at locus A) (part 2, above) showed there is greater

than 80% power to detect gene-gene interaction. As D’ decreases,

the power drops precipitously. With a D’ of 0.9, the power is 59%

if the unstratified lod score is positive (Table 3).

Similar to the lack of any false positives when heterogeneity,

rather than epistasis, existed, here were also no false positives

under any D’ values, although much more testing is necessary to

arrive at a reliable type 1 error probability. We conclude that

testing for gene-gene interaction using the proposed stratification

procedure is unlikely to produce a false positive indication of gene-

gene interaction.
b) The effect of varying the associated marker allele

frequency. We also explored the effect on lod score varying the

associated allele gene frequency together with D’. We tested

marker allele frequencies of 0.1, 0.2, 0.3, 0.4 and 0.5. (Recall the

associated allele frequency was 0.1 when locus A was dominant

and was 0.2 when locus A was recessive.)

We found little dependence of the INT on the allele frequency

at D’ values of 0.8–1.0 (data not shown).

Discussion

We have demonstrated that stratification is a useful strategy to

detect epistatic gene-gene interaction in complex disorders. It is

necessary to have identified a disease-causing or a disease-

associated allele at a locus linked to the disease in order to test a

possible interaction of that locus with another. While many

disease-causing or -associated alleles are known, to our knowledge,

there has been no linkage-based method to test for interactions of

that known disease locus with other loci. In the current work, we

have thoroughly explored the behavior of the stratification

approach when applied to certain epistatic inheritance models.

We have shown through extensive computer simulation tests that

conditioning on a known disease-causing or disease-associated

allele can demonstrate the existence of gene-gene interaction or

confirm the existence of a second epistatically-interacting locus.

The proposed INT statistic indicated evidence of interaction up

to 89% of the time (considering a starting lod score of 1.5 units)

when interaction did exist, depending on the modes of inheritance

of the two loci, among other factors. We anticipated that a major

confounder in applying this method, as it is in all genetic analysis,

was likely to be heterogeneity because multiple loci could be

detected using linkage but for which no interaction would exist.

We used the existence of heterogeneity as a basis for estimating the

frequency of false positive evidence of interaction. To our surprise,

we could detect essentially no false positives under heterogeneity.

Nonetheless, heterogeneity is likely to be a confounder in real data

because a locus that independently causes disease could mask the

signal for two epistatically-interacting loci. However, the HLOD

score allows us to detect loci even in the presence of heterogeneity

[12]. The utility of the HLOD for the stratification approach to

detecting interaction in the presence of heterogeneity is a question

we are now investigating.

We estimated how much the lod score would increase at locus B

by stratifying on the interacting locus to anticipate the question:

Can stratification increase the evidence for linkage to the point

that it becomes statistically significant when taking interaction into

account? The increase in the lod score for the RR model was,

maximally, 1.5 at the dataset size (50 families/dataset) that we

examined. Those data sets that had a pre-pruning lod score value

of 1.5, produced an average increase of at least 1 lod score unit

after stratification, irrespective of the inheritance model. While as

many as 20% of datasets showed false negatives (in which

stratification caused a decrease in the lod score at locus B), we

observed no false positive INT; no heterogeneity scenario

produced any false positive results. This suggests that detecting a

positive INT can be interpreted as strong evidence of gene-gene

interaction, at least under the conditions of our tests.

In exploring the stratification approach using a disease-

associated marker allele instead of a proven disease-causing allele,

it was disappointing that the utility of the pruning approach was

diminished when the LD between the associated allele and the

disease allele (at locus A) needed be as high as 0.8–1.0. Such a

requirement means that the marker allele either must be the

disease allele or that the disease allele must almost always found in

synteny with the marker allele in the population. It may be

possible to increase the power to detect interaction by including

other alleles at the marker locus besides the associated one.

In the work presented here, the correct model for the second

disease locus (locus B) was always used in the analysis. Because lod

score maximization will yield the correct mode of inheritance at a

locus even under epistasis [12], the mode of inheritance for locus A

is knowable. Interestingly, our simulations suggest that the INT

will correctly indicate the presence of an interaction whatever the

true inheritance model the second unknown interacting locus.

Our future simulations will explore the stratification procedure

when linkage analyses are calculated under the wrong model in

respect to the second unknown disease and examine the efficacy of

using HLOD value instead of lod score value when heterogeneity

exists. We will also take into consideration the scenario in which

the disease is caused by three interacting loci.
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