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Ubiquitin modification is the most common protein post-translational modification
(PTM) process in organisms, and 1332 ubiquitin regulators have been identified in
humans. Ubiquitin regulators, especially E3 ligases and deubiquitinases, are widely
involved in immune processes. This study aims to explore the ubiquitin modification
features of clear cell renal cell carcinoma (ccRCC) and to elucidate the role of
such ubiquitin modifications in shaping anti-tumor immunity and individual benefits
from immune checkpoint blockade (ICB). A comprehensive analysis was performed
in the TCGA cohort (n = 530) and GEO cohort (n = 682). RNA sequencing data
of 758 differentially expressed regulators, which was validated by the proteomics
data, was used for k-means unsupervised consensus clustering and three ubiquitin
patterns of ccRCC were identified. Then, we focused on the ubiquitin modification
and tumor progression signatures, immune infiltration characteristics, and prognostic
value. The three patterns with different ubiquitin modification signatures correspond
to “immune desert phenotype,” “immune resistance phenotype,” and “immune-
inflammatory phenotype,” respectively. To facilitate clinical application, we constructed
a ubiquitin score to evaluate individual patients’ ubiquitination outcome, and it was
demonstrated to be an independent risk factor for overall survival (OS) in multivariate
Cox analysis. It was found that the high score group was correlated to higher immune
cells infiltrating level and PD-1/PD-L1/CTLA-4 expression. More importantly, we found
that the high score group was predicted to be sensitive to anti-PD-1 treatment, while
the low-score group showed lower predicted IC50 values in treatment with Pazopanib
and Axitinib. In summary, this study elucidated the potential link between ubiquitin
modification and immune infiltration landscape of ccRCC for the first time and provided
a new assessment protocol for the precise selection of treatment strategies for patients
with advanced ccRCC.

Keywords: ubiquitin code, unsupervised consensus clustering, clear-cell renal-cell carcinoma, immune signature,
immune checkpoint blockade, targeted therapy
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INTRODUCTION

Ubiquitin is a 76-amino acid small molecule protein that is
highly conserved in sequence. The most common ubiquitination
modification is sequentially catalyzed by ubiquitin-activating
enzymes (E1s), ubiquitin-conjugating enzymes (E2s), and
ubiquitin protein-ligases (E3s) (Kerscher et al., 2006). Ubiquitin
itself can continue to bind ubiquitin molecules at multiple
residues (i.e., K6, K11, K27, K29, K33, K48, K63, and Met1), thus
forming complex structured ubiquitin chains on the substrates,
known as the “ubiquitin code.” Besides, the ubiquitin-binding
domain-containing protein (UBD) (Husnjak and Dikic, 2012),
proteins containing ubiquitin-like domains (ULDs) (Upadhya
and Hegde, 2003), and deubiquitinases (DUBs) (Nijman et al.,
2005; Reyes-Turcu et al., 2009) act as “deciphers” of the “ubiquitin
code” and negative regulators of this process. Accelerating
evidence has shown that the dysregulation of the ubiquitin system
plays a critical role in a variety of diseases, such as DNA repair
damage, cellular autophagy, neurodegenerative pathologies,
autoimmune diseases, and malignancies (Schwertman et al.,
2016; Seeler and Dejean, 2017; Grumati and Dikic, 2018; Rape,
2018).

The expression of immune checkpoint molecules and
the maturation of immune cells were regulated by the
ubiquitin system. Meng et al. (2018) identified Lys48-linked
polyubiquitination as the first post-translational modification
(PTM) process of PD-1 and FBX038 as the mediator of the
process. Lim et al. (2016) identified CSN5 as a DUB that
inhibits the PD-L1 degradation. Blocking CSN5 with curcumin
attenuated this inhibition and sensitized the cells to anti-
CTLA4 treatment. Another study on triple-negative breast cancer
(TNBC) identified β-TrCP as an E3 ligase participating in the
poly-ubiquitination modification of PD-L1 (Li et al., 2016).
Zhang et al. (2018) demonstrated that CDK4/6 degrades PD-L1
via Cullin3-SPOP E3 ligase in prostate cancer and the nonsense
mutations of SPOP resulted in elevated PD-L1 expression level.
Similar ubiquitin modification regulation was also found in the
PTM process of LAG-3, CTLA4, and CD80/CD86 (Yao and
Xu, 2020). Moreover, ubiquitin modifications also profoundly
affected the maturation of immune cells and shaped the tumor
microenvironment (TME) (Zhu et al., 2020). Alix et al. (2020)
found that WWP2 blocked DC cell-induced T cell activation
by targeting and degrading MHC-II expression in DC cells.
A recent study showed that the deubiquitination enzyme Trabid
can also affect DC cell-induced Th1 and Th17 cell differentiation

Abbreviations: PTM, post-translational modification; ccRCC, clear cell renal cell
carcinoma; ICB, immune checkpoint blockade; OS, overall survival; E1s, ubiquitin-
activating enzymes; E2s, ubiquitin-conjugating enzymes; E3s, ubiquitin protein-
ligases; UBD, ubiquitin-binding domain-containing protein; ULDs, ubiquitin-like
domains; TNBC, triple-negative breast cancer; DC, dendritic cell; PCA, principal
components analysis; DFS, disease-free survival; CC, cellular components;
MF, molecular functions; TME, tumor microenvironment; WES, whole exon
sequencing; SUMOs, Small ubiquitin-like modifiers; ORR, overall response rate;
TMB, tumor mutational load; APAP, antigen processing and presenting; NLR,
NOD-like receptor signaling pathway; TLR, toll-like receptor signaling pathway;
TCR, T-cell receptor signaling pathway; CPTAC, Clinical Proteomic Tumor
Analysis Consortium; GSVA, Gene Set Variation Analysis; ssGSEA, single sample
gene set enrichment analysis.

by targeting the epigenetic regulation of IL-12/IL-23 (Jin et al.,
2016). These studies indicated that ubiquitin modifications
profoundly affected the fates of immune cells and the formation
of an anti- or pro-tumorigenic microenvironment.

Renal cancer is a malignancy with a moderate mutation
burden, but it dramatically responds to immune checkpoint
blockade (ICB) therapy (Braun et al., 2020). Results from
several clinical trials have shown that anti-PD-1/CTLA-4
combination therapy has a superior clinical effect over VEGFR-
targeted therapy, marking a new era of immunotherapy for
renal cell carcinoma (Grimm et al., 2020). Although there
were abundant infiltrating T cells in clear cell renal cell
carcinoma (ccRCC), the anti-tumor response was suppressed
by Tregs and myeloid cells, resulting in inadequate durable
benefit from ICB (Díaz-Montero et al., 2020). Indicated by
the available evidence that ubiquitin system involving in the
regulation of immune checkpoints (Hsu et al., 2018), an in-
depth investigation of the ubiquitin patterns in ccRCC would
further clarify the mechanism of immune resistance and help
to identify reliable biomarkers of ICB responsiveness. The large
number of ubiquitin regulators makes it difficult to depict
the macroscopic immune landscape shaped by ubiquitination
modifications of individual tumors using traditional research
methods. Moreover, tumorigenesis is an interaction of multiple
regulators in a highly coordinated manner, thus a more
comprehensive and efficient analysis is needed to characterize
the ubiquitin modifications in ccRCC. Based on this, we
explored the ubiquitin patterns of ccRCC and comprehensively
evaluated the underlying role in shaping immune maturation
by analyzing the genomic information from a total of 1212
ccRCC samples. Herein, we identified three ubiquitin patterns in
ccRCC, which correspond to three distinct immune phenotypes.
Besides, we proposed a new ubiquitin score to evaluate samples’
ubiquitination modification outcomes and initially demonstrated
its potentiality in predicting immunotherapy and targeted
therapy responsiveness in this study.

MATERIALS AND METHODS

ccRCC Datasets Collecting and
Pre-processing
The datasets for this study were collected from the TCGA,
GEO, and the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) databases. As discovery cohort, we downloaded the
RNA sequencing data (read counts and FPKM values) and
phenotype information of the TCGA-KIRC dataset1. Somatic
mutation data of the TCGA dataset (N = 451) was downloaded
from the cBioPortal website2. FPKM values were converted
to TPM values for subsequent analysis, as it is identical
to the microarray values (Wagner et al., 2012). To reduce
noise, ubiquitin regulators with median absolute deviation
values ≤ 0.5 were excluded. The testing cohort is composed
of 5 Affymetrix GPL570 platform-based microarray datasets:

1https://portal.gdc.cancer.gov/repository
2http://www.cbioportal.org/study/summary?id=kirc_tcga
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GSE73731 (N = 265), GSE53757 (N = 144), GSE46699 (N = 130),
GSE66272 (N = 54), and GSE36895 (N = 76). GPL10558
platform-based microarray datasets GSE65615 (N = 138) and
GSE40435 (N = 202) were compiled as the external validating
cohorts. We downloaded the original “CEL” files from the GEO
database3, adjusted the background and quantile normalized the
data sets using “RMA” algorithm of the “affy” package, and
then removed the batch effect using the “ComBat” algorithm
of the “sva” package to merge these datasets into one for
validation (Johnson et al., 2007). For GSE29609 (N = 39),
the expression matrix (normalized log10 values) and clinical
information were directly downloaded and used to validate the
prognostic value. Log ratio transformed proteomics data and the
biospecimen features of ccRCC were download from the CPTAC
website4 to validate the protein level of the ubiquitin regulators
(Clark et al., 2019).

Different Expressed Ubiquitin Regulators
Analysis and Survival Analysis
Twenty-seven E1s, 109 E2s, 1153 E3s, 164 DUBs, 396 UBDs, and
183 ULDs were collected from the iUUCD 2.0 database (Gao
et al., 2013), and there were 1332 regulators after duplication
removal. DEG of ubiquitin regulators was performed in the
discovery and testing datasets using “DESeq2” and “Limma”
methods, respectively. DEGs of the discovery cohort were filtered
at adjusted p-value < 0.01, and results of the testing cohort
were screened at adjusted p-value < 0.05. Finally, 758 overlapped
regulators were identified as the hub regulators in ccRCC.
Significantly mutated regulators (q < 0.05) were inferred using
the MutSigCV algorithm as described before (Lawrence et al.,
2013). Prognostic values were assessed using univariate and
multivariate-cox regression, and the survival differences were
visualized using Kaplan-Meier curves.

Identification of Ubiquitin Pattern and
Molecular Characterization
Unsupervised consensus clustering of the 758 ubiquitin
regulators was performed using the k-means algorithm, the
cluster algorithm was set as “km,” and the similarity of samples
was determined by “Euclidean” distance. This step was repeated
1000 times in the “ConsensusClusterPlus” package to ensure the
stability of the classification (Wilkerson and Hayes, 2010). The
127 ubiquitin and proteasome-related biological processes were
collected from the “c2.cp.kegg.v7.2.symbols” gene set (MSigDB
database)5. “Gene Set Variation Analysis (GSVA)” method
and “Limma” difference analysis were used for subsequent
molecular characterization (Hanzelmann: 2013ga). Meanwhile,
the “ClusterProfiler” package was used to annotate the function
of each subgroup.

Estimating the Immune Cell Infiltrating
Single sample gene set enrichment analysis (ssGSEA) is a method
developed to estimate the relative abundance of immune cells

3http://www.ncbi.nlm.nih.gov/geo/
4https://cptac-data-portal.georgetown.edu/study-summary/S044
5https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#C5

based on the expression profile of a single sample. We obtained
the gene set signatures of 28 immune cells (18 adaptive and 10
innate immune cell types) from the study of Charoentong et al.
(2017), and the estimated score was calculated to represent the
abundance of each cell type. CIBERSORT is an algorithm that
deconvolves the expression matrix of bulk sequencing data based
on the principle of linear support vector regression, and the sum
of the percentages of each immune cell in the estimation result is
100% (Yoshihara et al., 2013; Newman et al., 2015). We used the
“cibersort” package to analyze the discovery dataset, and samples
with p < 0.05 in the results were included for comparison.

Dimensional Reduction and Ubiquitin
Score Generation
Here, we proposed to quantitatively assess the ubiquitin
modification degree of ccRCC samples using the “ubiquitin
score.” The ubiquitin score was derived as follows: Firstly,
the Pearson correlation coefficients of 758 ubiquitin regulators
with the identified ubiquitin patterns were calculated. Then
the positively and negatively correlated genes were downscaled
using the Boruta algorithm, respectively. Thus we obtained the
signature genes A and signature genes B. Finally, the principal
components analysis (PCA) was used to calculate the first
principal components of signature genes A and B in each sample
(Zhang X. et al., 2020). The ubiquitin scores of each sample were
extracted as:

Ubiquitin score = 6PC1A −6PC1B

Predicting the Benefits of Ubiquitin
Score for Immunotherapy and Targeted
Therapy
The Tumor Immune Dysfunction and Exclusion (TIDE) is
developed by Jiang et al. (2018) to predict the responsiveness
to immunotherapy based on simulating tumor immune evasion
mechanism. Due to the lack of open-access data of ccRCC
cohorts accepting immunotherapy, we used the TIDE algorithm
to preliminarily explore the responsiveness of the discovery
cohort to ICB. Besides, we also used subclass mapping (Submap)
to compare the similarity of gene expression profiles with 47
melanoma patients receiving anti-CTLA-4/PD-1 treatment to
validate the results of TIDE prediction (Roh et al., 2017; Lu et al.,
2019). Considering that VEGFR-targeted therapy remains the
first-line treatment option for metastatic ccRCC (cc-mRCC), we
explored the sensitivity of each subgroup to Sorafenib, Sunitinib,
Pazopanib, and Axitinib. The tumor cell line genomic data and
the corresponding IC50 of drug treatment from GDSC database6

were used as training dataset to estimate the IC50 values of tumor
samples by ridge regression using the “pRRophetic” package, and
the accuracy of the prediction results was assessed by 10-fold
cross-validation (Geeleher et al., 2014).

Statistical Analysis
All calculation and statistical analyses were performed in RStudio
3.6.3. Student’s t-test and Wilcoxon test were used for two-group

6https://www.cancerrxgene.org/
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comparison of normally or skewed distribution data, respectively.
For multiple groups, Kruskal–Wallis test and one-way ANNOVA
were used for parametric or non-parametric comparisons.
Component differences in subgroups were compared by Fisher’s
exact test. All statistical tests were two-sided, and p < 0.05 was
considered statistically significant.

RESULTS

Identification of the Differentially
Expressed Ubiquitin Regulators and the
Ubiquitin Patterns
The analysis flowchart of this study was shown in Figure 1A.
There were 947 differentially expressed ubiquitin regulators in the
discovery dataset, and 1032 regulators differentially expressed in
the testing cohort. 758 overlapped regulators shared by the two
datasets were shown in Supplementary Figure 1A and detailed
in Supplementary Table 1. To clarify that these regulators were
similarly differentially expressed at the protein level, we checked
the CPTAC dataset. In total, 562 regulators were involved in
the proteomic data, 459 of which were statistically significant
(p < 0.05), with a compliance rate of 81.68% (Supplementary
Table 2). Subsequently, we explored the prognostic value of the
758 regulators for overall survival (OS) and disease-free survival
(DFS) using univariate cox method (Supplementary Table 3).

To explore the ubiquitin patterns of ccRCC, unsupervised
consensus clustering of the 758 regulators was performed. After
comprehensive consideration of CDF curves and Delta area,
we chose k = 3 as the number of subgroups (Figures 1B,C
and Supplementary Figures 1B–F). In the discovery cohort,
123 patients were classified into Pattern A, 246 patients were
classified into Pattern B, and 161 patients were classified into
Pattern C. To verify the robustness of this classification, we
used the t-SNE method for dimensional reduction and observed
the discrimination of subgroups. As shown in Figure 1D, there
was only individual cross-over, indicating good discrimination
among subgroups. We also performed unsupervised consensus
clustering in the testing cohort (Supplementary Figures 1G–
N), and the results also showed three patterns of ubiquitin
regulator expression in ccRCC samples. Regulators that were
significantly higher expressed in each pattern (logFC > 0,
adjusted p-value < 0.05) were identified as hub regulators of
each pattern (Supplementary Figure 3A and Supplementary
Table 4). In detail, there were 82 hub regulators for pattern A, 166
hub regulators for pattern B, and 264 hub regulators for pattern
C. Besides, we found that these hub regulators were mainly
composed of E3 ligases and UBD (Supplementary Table 5).

Then we compared the prognosis of the subgroups. The results
showed that pattern B had a significant survival advantage with
a median DFS time (123.7 months), while pattern A had the
shortest median DFS time of 84.5 months (Figure 1F, log-rank
test, p = 0.075). In pattern C we observed the shortest median
OS of 65.7 months (log-rank test, p = 0.0045), while pattern
A and B did not reach 50% median OS (Figure 1E). These
results showed that the ubiquitin regulators in ccRCC exhibited

three types of expression patterns, with each pattern possessing a
different prognosis.

Molecular Characteristics of the Distinct
Ubiquitin Patterns
Considering that the classification is based on ubiquitin
regulators, here we characterized the “ubiquitination code”
signatures of each pattern. We calculated the enrichment scores
of 127 ubiquitin and proteasome system-related biological
processes using the GSVA algorithm, and ubiquitination relevant
signatures of each pattern were defined as processes with higher
enrichment scores in the limma analysis (log FC > 0.15, adjusted
p-value < 0.05). The results showed the leading role of Culling-
4b Ring E3 and proteasome complex β components and negative
regulation of the ubiquitination process in pattern A. Pattern B is
characterized by a deubiquitination process mediated by the K29
amino acid site. However, we did not find the ubiquitin-relevant
signatures of pattern C under the criterion (Figure 2A).

Corresponding to the biological effects of distinct ubiquitin
patterns, we further evaluated 14 renal cell cancer progression-
relevant signatures. Patients in pattern A had higher DNA repair,
p53, hypoxia, and EMT signaling pathway enrichment scores
(Figures 2B,C), and activation of HIF-1 and Notch signaling
were observed in GSEA analysis (Supplementary Figure 2A and
Supplementary Table 6), suggesting greater tumor proliferation
activity in pattern A, which explained the reason of shorter
median DFS in pattern A (Figure 1F). Interestingly, key
biological processes promoting kidney cancer progression such
as angiogenesis, WNT, PI3K/Akt/mTOR signaling were more
enriched in pattern B. On the other side, immune response-
related signals such as pan-TNF and pan-IFN signaling were
enriched in pattern B. GSVA analysis showed that pattern B
exhibited both stromal activation and active immune response
activity, suggesting a complex immune homeostatic mechanism
in pattern B. We found that immune activation-related signals,
such as antigen processing and presenting (APAP), NOD-like
receptor (NLR), toll-like receptor (TLR), T-cell receptor (TCR),
TNF were activated in pattern B (Supplementary Figures 2B,C).
The GO enrichment results further characterized the leading
role of neutrophil-mediated innate immunity in pattern B, At
the same time, stroma-associated cellular components (CC) and
molecular functions (MF) were also enriched in pattern B, which
verified our speculation (Figure 3D).

Tumor Microenvironment (TME)
Infiltration Characteristics of the Distinct
Expression Patterns
The imbalance of immune-related signatures among subtypes
prompted further exploration of the immune infiltration profile.
We firstly compared the tumor purity of the subtypes. By
the ESTIMATE algorithm, we found a higher tumor purity of
pattern A over pattern B and C, while no difference was found
between pattern B and C. The immune scores of pattern B
and pattern C were both higher than pattern A, indicating that
the two groups had similar immune activation characteristics.
In contrast, the stromal scores of pattern B were higher than
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FIGURE 1 | Identification of ubiquitin patterns using unsupervised consensus clustering and prognosis analysis in the discovery cohort. (A) The workflow of this
study. (B) K-means clustering using 758 differentially expressed ubiquitin regulators. (C) CDF curve of the clustering result. (D) Validating the discrimination of k = 3
using t-SNE analysis. (E,F) Overall Survival (OS) and Disease-Free Survival (DFS) of the ubiquitin patterns in the TCGA-KIRC dataset. Statistical difference was
compared using the log-rank test.

pattern A and C, agreeing with the significant stromal activation
of pattern B (Figure 3A). We then compare the proportion
of immune cells among the three patterns (Supplementary
Figure 2F). The results showed no statistical differences in the
composition of immune cell types, suggesting that ubiquitin
modification did not alter the overall TME infiltrating pattern
(Fisher’s exact test, p = 0.924). Subsequently, we estimated the
abundance of 18 adaptive immune cells and 10 innate immune
cells in the samples using ssGSEA (Figures 3B,C). In general,
pattern A showed a low abundance of almost all immune cell
types in contrast to patterns B and C, and we termed it as
“immune desert pattern.” Pattern B had more B cells, Treg,
Th1, Th2, memory CD4+/CD8+ T cells, memory DC cells,
and more neutrophils, NK cells, and other innate immune
cells along with stromal activation, thus, corresponded to the
“immune resistance phenotype.” Meanwhile, pattern C possessed

more abundant Th17, activated CD4+/CD8+ T cells, DC cells,
CD56+ NK cells, MDSC, and macrophages, corresponding
to “immune-inflammatory phenotype.” However, patients in
pattern C survived worst, which was inconsistent with the
immune features of this subgroup (Figure 1E). One possible
reason is that the anti-tumor response in pattern C was blocked
by the simultaneous high expressed immune checkpoints. As
we speculated, PD-1, CTLA4, GZMA, GZMB, IFNG, LAG3,
TBX2, and TNF were higher expressed in pattern C (Figure 3E).
The pair-wise comparison results revealed that these genes were
significantly higher in group C compared with group A, while no
significant difference existed when compared with group B except
for TBX2 (Supplementary Table 7).

VHL mutation has been demonstrated to play an important
role in ccRCC, but it is not clear whether it affects the immune
landscape. MutSig results showed that the overall mutation rate
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FIGURE 2 | Molecular characteristics of the ubiquitin pattern. (A) Heatmap of the ubiquitin-relevant signature of the subclasses. (B) Boxplot of the GSVA enrichment
score of ccRCC progression-relevant signatures. (C) Relative expression of VEGF family distinguished by ubiquitin patterns. The median values of the enrichment
scores were compared using the Kruskal–Wallis test. Statistical significance levels were indicated with asterisks above the boxplot (ns, no statistical difference, *
p < 0.05, ** p < 0.01, *** p < 0.001).

of VHL was 50% in all samples, much higher than the other
significantly mutated regulators (Supplementary Figure 3B).
Therefore, we focused on exploring the potential role of VHL in
the patterns we identified. There was no significant differences in
VHL mutation rates among the three patterns (Supplementary
Figure 3D, Fischer’s exact test, p = 0.448), but VHL expression
levels were significantly lower in pattern A than in pattern B and
C (Supplementary Figure 2C, Wilcoxon test, p = 1.1e-10, 9.6e-
08, respectively). Furthermore, we found no significant difference
in immune cell abundance between the mut/wild subtypes
except for CD56bright NK cells. For PD-1, PD-L1, CTLA4,
no statistical difference was found between the mut/wild VHL
subtypes (Supplementary Figure 3H), which is in consistent with
the findings of Hong et al. (2019).

Correlation of the Ubiquitin Patterns
With the Immunotherapy Benefits
The abundance of infiltrating immune cells and expression of
immune checkpoint molecules in pattern C suggest the need to
further explore the responsiveness of pattern C to ICB therapy.
Based on the TIDE algorithm, we found significantly higher
predicted response rates of pattern C (50.93%) in contrast to

pattern A and B (38.21, 35.77%, respectively) (Figure 4A and
Supplementary Table 10, Fisher exact test, p = 0.008). The testing
cohort resulted similarly with a 54.46% predicted response rate of
pattern A (Figure 4C and Supplementary Table 11, Fisher exact
test, p < 0.0001). The expression profiles of each pattern were
subsequently applied to Submap analysis. However, no definite
similarity to ICB responders was found. None of the subgroups
in the discovery cohort exhibited similarity to ICB responders,
whereas pattern A in the testing cohort showed strong similarity
to ICB responders (Figures 4B,D). This indicated the limitation
and instability of population-based classification in predicting
ICB treatment benefit.

Ubiquitin Scores of Individual ccRCC
Sample and the Prognostic Value
Previous studies demonstrated the close relationship between
ubiquitin modification and anti-tumor immune activity.
However, this patient population-based classification cannot
accurately describe the ubiquitination outcome of the individual
patients, which greatly limited its clinical application. Therefore,
we continued to construct a ubiquitin score to quantify the
ubiquitination outcome of single tumor sample. As the methods

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 May 2021 | Volume 9 | Article 659294

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-659294 May 13, 2021 Time: 12:50 # 7

Zhou et al. Ubiquitin Score for Immunotherapy

FIGURE 3 | TME features of distinct ubiquitin patterns. (A) Tumor purity, immune score, and the stromal score of the subclasses generated by the “ESTIMATE”
algorithm. The comparison was performed by Student’s t-test. (B,C) Estimated abundance of 18 adaptive and 10 innate immune cells using ssGSEA.
Inter-subgroup comparison was performed by one-way ANOVA. (D) GO enrichment results of pattern B. The Top 20 of biological process (BP), cellular component
(CC), and molecular function (MF) were displayed. (E) Association of ubiquitin patterns with immune checkpoint molecules. Kruskal–Wallis test, ns, no statistical
difference, * p < 0.05, ** p < 0.01, *** p < 0.001.

described, we downscaled the 758 regulators and obtained 51
and 94 genes that were positively and negatively associated with
the ubiquitin patterns, which were termed as signature genes A
and B, respectively (Supplementary Table 8). Supplementary
Figure 4A displayed the expression landscape of 758 genes in
each pattern. GO enrichment analysis showed that signature
genes A were enriched in Culling3-Ring ligase, which was
involved in protein poly-ubiquitination and phosphorylation
modifications (Supplementary Figure 4B), while signature
genes B were predominated in Culling-4 Ring E3 ligases, which
was participating in proteasome-dependent protein degradation
and deubiquitination process (Supplementary Figure 4C). The
ubiquitin score was obtained by applying PCA performance to
each signature gene (Supplementary Table 9). We compared
the ubiquitin scores of the three patterns and found significant
differences among the subgroups (Supplementary Figure 4D),
with mode C having the highest ubiquitin score (median value
of 5.079), mode A having the lowest score (median value of
−3.931), and group B having an intermediate score (median
value of −2.079). discovery cohort patients were classified
into two groups using the best separation method, with 309

samples sorted into the high score group and 221 samples
into the low score group. Prognosis analysis showed that the
high score group had a significantly shorter median OS time
(Figure 5E, p < 0.0001). To validate, the higher score group
in the GSE29609 cohort also showed a significantly shorter
median OS (Figure 5G, p = 0.031). Inclusion of the ubiquitin
score along with the clinicopathological factors in multivariate
analysis revealed that the ubiquitin score was an independent
risk factor for OS (Figure 5F, HR = 1.47, p < 0.001). These
results demonstrated the prognostic value of the ubiquitination
score.

As shown in the heatmap (Figure 5A), IL6/JAK/STAT3,
IFNγ, and K-ras signaling were upregulated in high score
groups, while TGFβ signaling was downregulated (logFC > 0.1,
adjusted p-value < 0.05). The majority of key signatures
for renal cancer progression were enriched in the low score
group, including EMT, WNT, mTORC1, Angiogenesis, Myc,
and Hedgehog signaling. The high score group exhibited an
advantage of activated CD4+/CD8+ T, MDSC, macrophages,
and various types of DC cell infiltration (Figure 5B). Recent
studies have shown that ubiquitinases (including E3 ubiquitinases
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FIGURE 4 | Correlation of ubiquitin patterns with immunotherapy benefit. (A,C) The predicted response rate in TIDE analysis of discovery and testing cohorts.
Fisher’s exact test, p = 0.008, p < 0.0001, respectively. (B,D) The similarity of gene expression profiles between ubiquitin patterns and melanoma patients treated
with ICB (n = 47). CTLA4-noR, patients no respond to anti-CTLA4 treatment, CTLA4-R, patients respond to anti-CTLA4 treatment, PD1-noR, patients no respond to
anti-PD1 treatment, PD1-R, patients respond to anti-PD1 treatment.

and DUB) are key regulators of DC function (Jin et al., 2016).
Activation of DC cells depends on the high expression of
MHC molecules, co-stimulatory molecules, and adhesion factors
(Qian and Cao, 2018). And we noted that high ubiquitin
scores were accompanied by an overall elevation of MHC,
adhesion molecules, and co-stimulatory molecules (Figure 5C).
Subsequent comparison of immune activation-related pathways
(including APAP, NFKB, NLR, TLR, and TCR) revealed a
significant enhancement of APAP and TCR signaling in the high
group (Figure 5D). These results demonstrated that ubiquitin
modifications in ccRCC ultimately promote DC maturation and
antigen presentation process.

Correlation of the Ubiquitin Score With
ICB Treatment Responsiveness and
Targeted Therapy Sensitivity
Finally, we explored the predictive value of the ubiquitin score to
immunotherapy and targeted therapy. The TIDE results showed
a higher predicted response rate in the high score group (46.28%

vs. 33.48%, Figure 6A, p = 0.0032). In addition, we were delighted
to see the consistent results with TIDE results in Submap analysis
that the high score group was more likely to respond to anti-
PD-1 treatment (Figure 6B, p = 0.032, 0.004, respectively). To
validate, we generated the ubiquitin score for patients in the
testing cohort. In the testing cohort, Pattern C had the highest
ubiquitin score, while pattern A had the lowest ubiquitin score,
with significant statistical differences in the pair-wise comparison
(Supplementary Figure 4E). After dividing all patients into
high/low score groups based on median ubiquitin score, the
response rate was 42.61% in the high score group, while 32.61%in
the low score group (Figure 6D, Fisher’s exact test, p = 0.034).
The Submap analysis yielded positive results with high similarity
in expression profiles between the high score group and the
anti-PD-1 responders (Figure 6E, p = 0.001, 0.008, respectively).
Because of the differential distribution of pattern A and B in
high and low score groups, we performed subgroup analysis. For
pattern A and B, there was no significant difference in responsive
rates to ICB between the high and low subgroups (Fischer’s exact
test, p = 1, p = 0.083, respectively). And there was no significant
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FIGURE 5 | Characterization the ubiquitin score groups and prognosis analysis. (A) Hallmark pathways of ubiquitin score group determined by GSVA enrichment, |
logFC| > 0.1. (B) Immune infiltration landscape, Wilcoxon test. (C) Relative expression of MHC molecules, co-stimulatory molecules, and adhesion factors,
Wilcoxon test. (D) Enrichment scores of immune activation-related signatures, Wilcoxon test. APAP, antigen processing and presenting, NLR, NOD-like receptor
signaling pathway, TLR, Toll-like receptor signaling pathway, TCR, T-cell receptor signaling pathway. (E,G) Kaplan-Meier curves of overall survival (OS) in TCGA (E)
and GSE29609 (G) cohorts, Log-rank test. (F) Multivariate cox analysis adjusted by age, gender, tumor stage, T-stage, and tumor grade showed that ubiquitin score
was an independent risk factor for OS. *p < 0.05, **p < 0.01, ***p < 0.001.

difference in response rate among the three patterns within the
high score group (Fischer’s exact test, p = 0.151). For VHL
subtypes, no significant difference in the ubiquitin scores between
the mut/wild subtypes was found (Supplementary Figure 3E,
Wilcoxon test, p = 0.12). Accordingly, TIDE results showed
no significant difference in responsiveness to ICB between the
VHL subtypes (Supplementary Figure 3F, Fischer’s exact test,
p = 0.146).

Considering that targeted therapy remains the first-line
treatment option for advanced renal cell cancer, we evaluated
the sensitivity to Sorafenib, Sunitinib, Pazopanib, and Axitinib in
both groups. Prediction models were trained on the GDSC cell
line dataset by ridge regression and validated by 10-fold crossover

to make the prediction results stable. IC50 values were estimated
for each sample and the differences were compared. In the
discovery cohort, we found that the high score group was more
likely to be sensitive to Sunitinib (p < 8.1e-15), while the low
score group more sensitive to Pazopanib and Axitinib (Figure 6C,
p < 4.4e-11, p = 0.25, respectively). In the testing cohort, the
low score group showed a lower predicted IC50 value in treating
with the four candidate drugs (Figure 6F). Since mTOR signaling,
VEGFR family, PDGFR family, and KIT expressed higher in
the low score group (Supplementary Figure 3G), the above
prediction results were reasonable.

Lastly, these findings were all validated in an external
independent cohort. The results of the TIDE and Submap
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FIGURE 6 | Predictive value of ubiquitin score for immunotherapy and targeted therapies. (A,D,G) The predicted response rate in TIDE analysis of the discovery,
testing, and external validating datasets. Fisher exact test, p = 0.003, p = 0.034, p = 3.71e-08, respectively. (B,E,H) Subclass mapping results indicated that the
high score group was more likely to respond to anti-PD-1 treatment (Bonferroni corrected p-value = 0.004, 0.008, 0.001, respectively). (C,F,I) Boxplots of the
estimated IC50 values for Sorafenib, Sunitinib, Pazopanib, and Axitinib in the three cohorts, Wilcoxon test.

analysis again demonstrated that the high ubiquitin score group
may respond to ICB treatment, while the low score group is more
sensitive to Sunitinib, Pazopanib, and Axitinib (Figures 6G–I and
Supplementary Table 12). All in all, these results firmly proposed
that ubiquitin scores to be used to predict patient benefits from
ICB and targeted therapy.

DISCUSSION

The role of ubiquitin regulators in ccRCC has been of
interest to researchers since the E3 ubiquitin ligase pVHL
deficiency was identified as an essential feature of ccRCC

(Gossage et al., 2015). Recently, Guo et al. (2012) identified 12
novel high-frequency mutated genes that were enriched in the
ubiquitin-mediated protein hydrolysis pathway by whole exon
sequencing (WES) assay, and these genes were closely associated
with overexpression of HIF factors. In addition, ubiquitin factors
involved in key signaling of renal cell cancer, such as p53,
PI3K/Akt, and Angiogenesis, are being increasingly identified
(Ma et al., 2015; Guo et al., 2019; Hao et al., 2019; Yu et al.,
2019; Zhang E. et al., 2020). However, there was a small number
of studies investigating the role of ubiquitin regulators on the
immune system of ccRCC. To our knowledge, this is the first time
to comprehensively assess the ubiquitin modification pattern
of renal cell carcinoma and to characterize their biological
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outcomes, especially the ubiquitin regulator-mediated immune
features using bioinformatics method. The newly published
proteomics data provide important supporting evidence for
our study (Clark et al., 2019). Due to the limitations of
detection technology and rapid protein degradation, proteomic
data usually have a large disparity with the transcriptomic data.
In the CPTAC ccRCC dataset, only 9964 proteins were detected
in total, which is half amount of the coding genes. However, 562
of the 758 ubiquitin regulators used in our study were detected,
with a detection rate of 74.14% and a compliance rate of 81.68%.
Based on this, we suggest that it is meaningful to use RNA seq
data for subsequent analysis.

In contrast to the conventional perception of immunology,
highly infiltrative macrophages, Treg, and CD8+ T cells in
ccRCC tend to be associated with worse oncologic outcomes (OS
and PFS) (Bruni et al., 2020). The study by Braun et al. (2020)
further showed that although about 73% of advanced ccRCC was
infiltrated by CD8+ T cells, this high infiltration status was not
associated with anti-PD-1 treatment benefit. It was demonstrated
that the presence of pro-angiogenic, pro-inflammatory TME in
ccRCC induced upregulation of multiple immune checkpoint
expression on CD8+ toxic T cells, which present an “immune
depleted phenotype” (Nakano et al., 2001; Giraldo et al., 2015;
Granier et al., 2017). On the contrary, CD8+ T cells were more
active in patients with a lower level of vascular factors, and these
patients had a better oncology outcome (Giraldo et al., 2015). This
suggests that renal cell carcinoma progression-relevant signatures
were negatively associated with immune activation signatures. In
our study, both the ubiquitin pattern C and the high score group
had an immune infiltration advantage but worse OS and PFS,
which is in line with the previously described phenomenon. In
the comparison of the VEGF superfamily, pattern C was found
to have a significantly higher expression of VEGFB and VEGFD
(Figure 2C). Thus, high level of vascular factors and immune
checkpoints blocked its anti-tumor immune response, ultimately
lead to the worst prognosis of pattern C. Interestingly, however,
these patients with the worst prognosis were most likely to benefit
from ICB. The TIDE results showed a predicted response rate of
50.93% in pattern C, which was higher than 35.77% in pattern B
and 38.21% in pattern A. Among the three patterns, pattern A
lacked infiltrating immune cells, immune cells of pattern B were
trapped in the stroma and cannot actually reach the tumor cells,
and only the immune cells in pattern C infiltrated into the tumor
nest, therefore anti-tumor immunity was restored the best when
drugs unlocked the immune checkpoint.

In advantage of the “Boruta” algorithm and PCA analysis, we
generated the ubiquitin score of single patients and demonstrated
its prognostic value. Analysis of the signature genes revealed the
prominent role of Culling-Ring ubiquitin ligase (E3), ubiquitin-
protein transferase (E2), and ubiquitin-like protein protease
(ULD) in the ubiquitin system of ccRCC (Supplementary
Figures 3B,C). Besides, we found that signature gene A was
enriched to protein phosphorylation modification process in
ccRCC, and the oxidative phosphorylation pathway was down-
regulated in the high ubiquitin score group, suggesting that
the phosphorylation process may be involved in the ubiquitin
modification process of ccRCC (Supplementary Figures 3B

and Figure 5A). Small ubiquitin-like modifiers (SUMOs),
including SUMO1/SUMO2/SUMO3/SUMO4/WDR48, are intra-
nuclear PTM regulators well-studied in recent years. The
results of a recent proteomics study showed that the intra-
nuclear modification sites of SUMOs are mainly determined by
pre-existing phosphorylation events, and these co-modification
processes are regulated by cell cycle protein-dependent kinases
(Hendriks et al., 2017). In the difference analysis of the
GSVA enrichment scores, we found that signals related to
immune shaping and cytokine responses, such as IL6/JAK/STAT3
and IFN-γ signaling, were more enriched in the high score
group while signaling related to proliferation and epithelial-
mesenchymal transition were downregulated. Notably, TGFβ

signaling was negatively correlated to ubiquitination signaling
(Figure 5A), and Fukasawa et al. (2010) showed that the
ubiquitination degradation process of TGFβ-RII mediated by
Smurf2 was significantly enhanced in renal cell cancer, which
might be the reason for the TGFβ signaling attenuation in ccRCC.

In the latest edition of EAU guidelines, the anti-PD-
1/CTLA4 combination treatment is recommended as the
first-line treatment option for high-risk cc-mRCC patients
(Ljungberg et al., 2020). In Phase 3 clinical trial of CheckMate-
214 (NCT02231749), anti-PD-1 antibody Nivolumab combined
with anti-CTLA-4 antibody Ipilimumab resulted in an overall
response rate (ORR) of 41.6% (OS in 18 months was 75%) in
the treatment of advanced renal cancer (Motzer et al., 2018).
Despite these advances, reliable biomarkers of ICB therapeutic
efficacy remain for further discussion. The instability of a single
biomarker to predict benefit from immunotherapy strategies is
now recognized. In our study, almost all patients in pattern
C and part of patients from pattern B and A with high
ubiquitin scores were categorized into high score group, which
had both an anti-tumor immune infiltration advantage and
high expression of immune checkpoints (Figures 5B–D and
Supplementary Figure 3F). Therefore, it is reasonable that the
high score group has a higher response rate to ICB treatment.
The predicted response rates of 46.28, 42.61, and 36.96% in
the three cohorts were close to the result of CheckMate-214,
which strengthened our confidence in the predictive value of
ubiquitin score. Meanwhile, we observed consistent trends of
PD-1/PD-L1/CTLA-4 expression in the high score group, so we
suggest it more appropriate to be used to assess the patients’
benefit from the anti-CTLA-4/PD-1 combination therapeutic
strategy. In regard to this, further validation of the veracity should
be performed in a ccRCC dataset receiving immunotherapy.
The latest guidelines raise the recommendation grade (1b) of
Pembrolizumab and Axitinib for the first-line treatment option
for low- and intermediate-risk cc-mRCC patients, while Sunitinib
(1b) and Cabozantinib (2a) were recommended as an alternative
for patients who cannot tolerate or receive ICB treatment,
and Pazopanib (1b) only recommended for intermediate-risk
patients (Ljungberg et al., 2020). In particular, the combination of
Pembrolizumab and Axitinib, approved for m-ccRCC treatment
in 2019, may bring an exciting shift to the therapeutic field
(Rini et al., 2019). For Sunitinib, the discovery cohort showed an
opposite result with testing and validation cohorts. Analysis of
the target molecules revealed that the predicted IC50 values in
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the TCGA dataset contradicted the expression level of VEGFR
and PDGFR (Supplementary Figure 3G). Considering the fact
that tumor proliferation and mTOR signaling were more active in
the low score group, it was more reasonable than the high score
group to be more sensitive to Sunitinib. Limited by the types of
candidate drugs currently available in the algorithm, we could not
estimate the IC50 values of Pembrolizumab and Cabozantinib in
this study. In a recent study including 91 patients with cc-mRCC
(treated with Nivolumab or Sunitinib), neither transcriptome nor
exome sequencing data showed a correlation between VHL and
clinical benefit, and our predicted results were consistent with
that fact (Dizman et al., 2020).

CONCLUSION

In conclusion, we identified three ubiquitin patterns in ccRCC
with different oncological outcomes, which had distinctly
different immune characteristics and prognostic outcomes. In
clinical application, the “ubiquitin score” could be used to predict
patients’ responsiveness to immunotherapy (high score group)
and sensitivity to Pazopanib and Axitinib (low score group). Our
study illustrated the key role of ubiquitin regulators in the TME
of ccRCC and immunotherapy outcome, and provided a new
reference for the management strategies of advanced ccRCC.
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Supplementary Figure 1 | Unsupervised consensus clustering in GEO-KIRC
datasets. (A) The 758 overlapped differentially expressed ubiquitin regulators in
the Venn diagram. (B–F) Consensus clustering results when k = 2, 4, 5, 6 in the
discovery cohort and delta area plot. (G–M) Consensus clustering result when
k = 2, 3, 4, 5, 6 in the testing cohort. (N) t-SNE result of the testing cohorts.

Supplementary Figure 2 | GSEA of ubiquitin patterns. (A–E) The enrichment
results by GSEA for patterns A, B, and C. (F) Comparison of immune infiltration
difference among subgroups by CIBERSORT deconvolution, Fisher exact test,
p = 0.924.

Supplementary Figure 3 | Correlation of VHL mut/wild subtypes with ubiquitin
patterns and immunotherapy responsiveness. (A) Heatmap of the distinct
patterns’ hub regulators. 82 regulators for pattern A, 166 regulators for pattern B,
and 264 regulators for pattern C. (B) Significantly mutated ubiquitin regulators in
ccRCC inferred by MutSigCV method. The oncoplot showed that VHL was the
most frequently mutated ubiquitin regulators with a 50% mutation rate. (C) VHL
expression and (D) mutation status of the three patterns. There was no significant
difference in the proportion of VHL mutant phenotype among the three patterns,
p = 0.448, Fischer’s exact test. (E) No difference of ubiquitin score between the
VHL mut/wild subtypes, Wilcoxon test, p = 0.12. (F) No difference of
immunotherapy response rate between the VHL mut/wild subtypes was found by
TIDE method, p = 0.146, Fischer’s exact test. (G) Immune cell abundance
between the VHL mut/wild subtypes, Wilcoxon test. (H) PD-L1(CD274), CTLA4,
PD-1(PDCD1) expression level between the VHL mut/wild subtype, Wilcoxon test.

Supplementary Figure 4 | Generation of the ubiquitin score. (A) heatmap of the
positive and negatively correlated regulators in three ubiquitin patterns. (B,C) GO
enrichment of signature gene A and B. (D,E) ubiquitin scores of distinct ubiquitin
pattern in the discovery (D) and testing (E) cohorts, pair-wise comparison using
Wilcoxon test. (F,G) Drug targets of immunotherapy (F) and VEGFR-targeted
therapy (G) expression level, Wilcoxon test.
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