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Abstract
Small extracellular vesicles (sEVs) are extracellular nanovesicles that contain
bioactive proteins, lipids, RNA, and DNA. A variety of biological process is reg-
ulated with sEVs. sEVs are an intercellular messenger regulating recipient cell
function and play a role in disease initiation and progression. sEVs derived from
certain cells, such as mesenchymal stem cells and immune cells, have the poten-
tial for clinical therapy as they possess the characteristics of their parental cells.
With better understanding of sEVs biogenesis, their transportation properties,
extended circulatory capability, and exceptional biocompatibility, sEVs emerge
as a potential therapeutic tool in the clinic. Here, we summarize applications
of sEVs-based therapies in different diseases and current knowledge about the
strategies in bioengineered sEVs, as well as the challenges for their use in clini-
cal settings.
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1 INTRODUCTION

Small extracellular vesicles (sEVs) are 30–200 nm lipid
bilayer-enclosed extracellular vesicles. A heterogenous
mixture of sEV subsets, including exosomes, is derived
when commonly used “exosome” isolation techniques are
employed. Almost all cells generate sEVs and deliver to
the surrounding biological fluids.1,2 Briefly, the forma-
tion of sEVs is initiated from endosomal system. Early
endosomes mature into late endosomes or multivesicu-
lar bodies (MVB) by inward budding of the endosomal
membrane. Constitutively, the intraluminal vesicles (ILVs)
within large MVBs are formed during this process that the
endosomal membrane invaginates. When fusion with the
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plasma membrane, most ILVs are released into the extra-
cellular space, and turn to sEVs.3–5
Small EVswere initially regarded as cellular garbage dis-

posals as a result of cell damage, or by-products of cell
imbalance. Further studies found that those sEVs exhib-
ited biological function. The bioactive cargo contains lots
of information from their parental cell, including noncod-
ing RNAs and mRNA,6 free fatty acids,7 surface recep-
tors, and proteins8 inside and on the surface. Therefore,
sEVsmediate the short-range and distant communications
between cells. Various target cells can be stimulated by the
membranemolecules on sEVs or the contents inside sEVs.9
During tumor progression, sEVs from tumor cellsmay help
to form a premetastatic niche for tumor metastasis.10
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Over the past decades, many studies demonstrated that
sEVswere associatedwith various diseases, such as inflam-
matory diseases,11 diabetes,12 cardiovascular diseases,13
central nervous system diseases,14 tumors,15 and so on. We
recently showed that PD-L1 on sEVsmay be used to predict
melanoma patient response to anti-PD1 therapy.16

2 ADVANTAGES OF sEVs FOR
THERAPY

With better understanding of sEVs, its application in clin-
ical treatment attracts researchers’ attention. Compared
to traditional drug delivery system or cellular therapy,
sEVs possess some natural advantages such as they are
biocompatible and biodegradable, therefore are low cyto-
toxic and immunogenic.17 Because of their tiny size, sEVs
can be delivered to long-distance sites and are able to
escape from lung clearance and cross many biological bar-
riers such as pass through the blood–brain barrier.18 Con-
sidering the natural transportation feature and long-term
circulatory capability, sEVs are ideal for carrying drugs,
proteins, nucleic acids, and other objects for therapy.19–21
Another important characteristic of sEVs is the high speci-
ficity for target cells. It has been identified that sEVs
origin could determine cell targeting and the transfer of
chemicals toward target cells.22 In addition, sEVs are sim-
ple to produce as most cell types can produce sEVs and
they can be stored easily.23 Taken together, these char-
acteristics enable sEVs to be a promising candidate for
therapy.

3 THE CURRENT STATE-OF-THE-ART
METHODS IN ISOLATION OF sEVs

Isolation of sEVs is labor intensive and is the bottleneck
for using sEVs-based diagnosis or treatment clinically.
Ultracentrifugation is still the most common approach,
which sometimes is combined with density gradient cen-
trifugation. This is ideal for isolation of exosomes from
large volume media. However, the process takes a long
time and requires expensive instruments and good tech-
nical skill of researchers. The combination of ultracen-
trifugation with density gradient centrifugation helps to
achieve a higher purity of sEVs.24 Isolation kits based
on size and membrane-based affinity binding have been
launched by some companies.25 Precipitation of sEVs is
another popular way for isolating sEVs especially from
body fluids.26 These approaches provide a choice to iso-
late sEVs easily in lab. For research requiring downstream
analysis, magnetic bead-based isolation kit is a favorable
manner.27 With these options, investigators can choose one

of the methods to isolate sEVs according to their study
design.

4 MESENCHYMAL STEM
CELL-DERIVED sEVs IN REGENERATIVE
AND ANTI-INFLAMMATORY THERAPIES

Mesenchymal stem cells (MSCs) are multipotent cells
that reside in many adult tissues. It is well-recognized
that MSCs exert an anti-inflammatory and regenerative
function.28 Accordingly, it has been reported that MSC-
derived sEVs held similar therapeutic effects to MSCs as
some immune-modulating factors fromMSCs were highly
enriched in sEVs.29 Therefore, sEVs derived fromMSCs are
able to treat diseases related to dysfunctional immune reac-
tions, such as autoimmune diseases, graft-versus-host dis-
ease (GVHD), and inflammatory diseases theoretically.30
Compared to MSCs themselves, MSC-sEVs reduce the risk
for teratoma formation and embolization, which aremajor
concerns for stem cell-based therapy. As one of the most
promising sEVs in therapy, a standardized protocol for
MSC-sEVpreparationwas defined by International Society
for Extracellular Vesicles (ISEV) due to the heterogeneity
of MSCs.31
MSC-sEVs therapy reduced the pro-inflammatory

cytokine in patient’s PBMCs and improved the clinical
GVHD symptoms through interleukin-10 (IL-10), trans-
forming growth factor β (TGF-β), and human leukocyte
antigen (HLA-G).32 A majority of the literature demon-
strated that MSC-derived sEVs showed protective activity
in several diseases such as myocardial infarction,32
stroke,32 fibrosis,33 and ischemia.34,35 For instance,
MSC-sEVs reduced infarct size by pro-angiogenesis
and anti-inflammation as the mediator of tissue repair in
myocardial ischemia/reperfusion injurymousemodel.36,37
Intra-articular administration of MSC-sEVs improved the
repair of osteochondral defects in rat model.38 By sup-
pressing both the EMT of hepatocytes and collagen
production through TGF-β1/Smad pathway, sEVs derived
fromMSCs could ameliorate liver fibrosis in CCl4-induced
liver injury model.39 In addition, MSC-sEVs showed
capability in promoting tissue regeneration. sEVs from
MSCs could enhance cutaneous wound healing by induc-
ing epithelial cell proliferation through Wnt/β-catenin
signaling pathway.40 In addition, MSCs-sEVs promote
the angiogenesis in skin lesions by inducing growth
factors through activating AKT/ERK/STAT3 signaling
pathways.41 MSCs-sEVs also exhibited a therapeutic
potential in traumatic brain injury by protecting neurons
and promoting axonal growth via SNARE complex.42 In
general, these studies displayed the broad therapeutic
effects of MSC-derived sEVs (Figure 1).
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F IGURE 1 Application of MSC-derived sEVs in regenerative and anti-inflammatory therapies. MSC-derived sEVs target various organs
and cells such as astrocytes, myocytes, osteocytes, epithelial cells, smooth muscle cells, and hepatocytes

5 sEVs IN CANCER THERAPY

5.1 Cancer immunotherapy
by sEVs-based vaccines

Many evidences suggest that sEVs could be used as novel
cancer vaccines to initiate immune system to identify
and diminish cancer cells through antigen-presenting cells
(APCs)43 (Figure 2). Dendritic cells (DCs) are APCs that
can be activated upon stimulus. The crosstalk between
DCs and T cells triggers an immune response by specific
antigens.44 It has been proven that DCs-sEVs expressed
functional MHC-I, MHC-II, and T-cell costimulatory
molecules such as CD86. Tumor peptide-stimulated DCs-
sEVs initiated cytotoxic T cells (CTLs) in vivo and inhib-
ited tumor growth in a T cell-dependent approach in a
mouse model.45 Besides antigen presentation, DCs-sEVs
directly triggered natural killer cell proliferation and acti-
vation through surface proteins such asNKG2D ligand and
IL-15Rα.46
Inmany respects, sEVs derived from cancer cells are like

APCs because of the expression of the tumor-associated
antigen. Interestingly, cancer cells-sEVs not only have

antigen-presenting molecules (MHC class-I, HSP), but
are also enriched with various tumor antigens such as
HER2/neu, melan-A, TRP, gp100,47 CEA,48 and others.
Therefore, the uptake of cancer cells-sEVs by DCs induced
cross-presentation to CTLs as a source of an antigen or
antigens. Immunization ofmicewithDCs pulsedwith can-
cer cell-derived sEVs exerted CD8+ T cell-dependent anti-
tumor effects in mouse models.49 It is noteworthy that
sEVs may be better than other forms of antigen such as
whole-cell lysates or soluble antigen owing to the advan-
tageous delivery in the form of sEVs50 through molecules
such as Mfg-E8 (lactadherin),51 integrins,52 tetraspanins,
and others.53 In B16BL6 melanoma mouse model, investi-
gators established a sEVs-based tumor antigens-adjuvant
co-delivery system. B16BL6-sEVs containing tumor anti-
gens could induce B16BL6-specific T-cell response and
suppress tumor growth.54
Peritoneal cavity fluid-sEVs from cancer patients also

showed antitumor effects by inducing DCs to acti-
vate T cells in an MHC I-dependent manner there-
fore killing cancer cells. Besides, sEVs derived from
ascites triggered the increase of IFN-γ by peripheral blood
lymphocytes.47,55
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F IGURE 2 sEVs-based vaccines in cancer therapy. sEVs derived from dendritic cells express functional MHC-I, MHC-II, and T-cell cos-
timulatory molecules to present antigen and activate T cells as well as natural killer cells. Cancer cells-derived sEVs express tumor antigens
and can be uptake by APCs, such as dendritic cells, therefore initiating immune response

5.2 sEVs cargo loading for cancer
therapy

The natural characteristics of sEVs make them an ideal
cargo for delivering drugs, miRNAs, siRNAs, and pro-
teins in cancer therapy. Because of the protective struc-
ture of sEVs, certain chemicals and drugs can be loaded
on sEVs. In that case, the target biochemical could be
distributed to a broad range of biological fluids with a
longer circulating time and possibly better efficacy. Imma-
ture DCs-sEVs loaded with Doxorubicin (Dox) displayed
a high efficiency in targeting breast cancer cells and
delivering Dox, thus inhibiting tumor growth without
overt toxicity.56 In a zebrafish model, sEVs significantly
increased the absorption and cytotoxicity of doxorubicin
and paclitaxel, both of which are anticancer drugs, in brain
cancer.18
The small interfering RNAs (siRNAs) represented a

powerful strategy for inhibition of gene expression and
were applied to gene therapy.57 sEVs-delivered siRNA

caused effective posttranscriptional gene silencing in
recipient cells and also exhibited a therapeutic potential
in various cancers.58,59 Restore of the expression level of
tumor-inhibitory miRNAs in cancer cells are identified to
effectively suppress cancer progression.60 B cells infected
with Epstein-barr virus (EBV) that encodes miRNAs could
secrete sEVs containing miRNAs. Then sEVs were trans-
ferred to target cells and repressed the target immunoregu-
latory genes in EBV-associated lymphomas.61 sEVs derived
from miR-146a overexpressing HEK293 cells inhibited cell
growth in prostate cancer by suppressing target gene.62
Besides delivery of drugs and nucleic acids, proteins are

in great attention as they serve crucial functions in essen-
tially all biological processes. sEVs can not only deliver
tumor antigens63 as discussed above, but also apoptosis-
related proteins such as caspase-1,64 peptides,65 and other
cancer-associated proteins into target cells for cancer ther-
apy.When donor cells harbor a dominant-negativemutant
of Survivin (Survivin-T34A) that blocks the inhibition of
apoptosis, the sEVs increased the apoptotic cell death
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TABLE 1 Clinical trials of sEVs-based therapy

Year
(Completed/
Updated) Disease Phase sEVs source Status Reference
2005 Metastatic melanoma I DCs Completed 62

2005 NSCLC I DCs Completed 63

2008 Colorectal cancer I Autologous ascites Completed 49

2016 Advanced NSCLC II DCs Completed 65

2018 Malignant glioma I Glioma cells Completed NCT01550523
2019 Head and neck cancer I Grape Ongoing NCT01668849
2019 Colorectal cancer I Plant Ongoing NCT01294072
2020 Metastatic pancreas

cancer
I Mesenchymal

stromal cells
Ongoing NCT03608631

Abbreviation: NSCLC, nonsmall cell lung cancer.

and enhanced the Gemcitabine sensitivity in pancreatic
adenocarcinoma.66 More recently, sEVs from CAR-T cells
showed promising therapeutic efficacy with low toxicity.67

5.3 Clinical trials of sEVs-based therapy

In view of the promising results achieved both in vitro
and in vivo, sEVs-based therapy has been considered to
be an encouraging approach for cancer treatment. Quite
a few early phase clinical trials have already been per-
formed or are ongoing (Table 1). The first phase I sEVs-
based clinical trial was launched in metastatic melanoma
patients through vaccination with autologous DCs-sEVs
and loaded with the MAGE tumor antigens for 4 weeks.
The outcome confirmed the feasibility and safety of DC-
derived sEVs-based vaccination in melanoma patients for
the first time.68 Nearly the same time, another phase I trial
of DCs-derived sEVs immunotherapy was performed on
nonsmall cell lung cancer (NSCLC) patients. The vacci-
nation was also well-tolerated and exhibited an activated
immune response in some patients.69
Evidence suggested that sEVs isolated from melanoma

patients’ ascites delivered Mart-1 and tumor antigens
to DCs for cross-presentation to CTLs.47 Thus, ascites-
derived sEVs combined with GM-CSF treatment were
used in a phase I clinical trial for colorectal cancer. The
study indicated that ascites-derived sEVs in combination
with GM-CSF are safe, nontoxic, and could induce anti-
tumor CTLs response.55 It has been reported that sEVs
treated with IFN-γ induced immune activation and tumor
suppression.70 Based on these, a phase II trial of IFN-γ-DC-
derived sEVswas performed on advancedNSCLC patients.
The result showed that IFN-γ-DC-derived sEVs boosted
NK cell-mediated antitumor immunity.71

A recently completed phase I clinical trial was per-
formed in malignant glioma patients. Glioma cells-sEVs
were loaded with an antisense molecule drug and re-
implanted to patients. These sEVs were expected to stimu-
late the immune system and induce a T cell-mediated anti-
tumor response. The result has not been published yet and
is of great interest (NCT01550523).
Some other clinical trials concerning plant-origin sEVs

in cancer therapy are currently being investigated. One
clinical trial is designed to determine the effects of grape-
derived sEVs-like nanoparticles on reliving oral mucosi-
tis and related pain in head and neck cancers patients
(NCT01668849). Another phase I clinical trial was using
plant-derived sEVs to deliver curcumin in colorectal can-
cer. The efficacy of curcumin-loaded sEVs in the treatment
of cancer patients is going to be detected (NCT01294072).
Recently, a group in M.D. Anderson Cancer Center found
that sEVs carrying siRNA specific to oncogenic KrasG12D, a
commonmutation in pancreatic cancer, suppressed cancer
progression in pancreatic cancermousemodels and signif-
icantly increased overall survival.72 Based on this, they are
conducting a phase I clinical trial regarding the sEVs-based
therapy inmetastatic pancreas cancerwithKrasG12D Muta-
tion (NCT03608631).
All the above studies (both completed and ongoing) sug-

gested the fact that sEVs-based therapies are safe in a clini-
cal setting, whereas their therapeutic efficacy is still under
evaluation.

6 STRATEGIES FOR ENGINEERING
sEVs

To better translate sEVs-based treatments to clinical set-
ting, there are still many obstacles needed to be overcame.



22 GUO et al.

Such as how to increase the carrying capacity of drugs,
RNAs, and proteins on sEVs and how to improve the speci-
ficity of sEVs to target cells. Therefore, various strategies
were designed to bioengineer sEVs.

6.1 Origins of sEVs and factors
promoting the production

The origin of sEVs determines its natural character-
istics. Immature DCs-derived sEVs are low immuno-
genic because of the lack of surface markers such as
MHC-I, MHC-II, CD40, and CD86. sEVs from MSCs are
able to mediate the immunosuppressive effect.73 CD8+
T lymphocytes-derived sEVs express cytotoxic molecules
such as granzyme B and perforin, therefore harboring the
cytotoxic potential.67 HEK293T cells and BJ cells are easy
to expand and stable for transfection. Therefore, they are
capable of large-scale production of sEVs. Besides cells,
agricultural products such as plants, fruits, and milk can
be used as other sources for isolating sEVs that are easy
to produce and safe to use by not activating host immune
response.23,74
Several factors are found to improve the production

of sEVs, such as increased intracellular calcium level75;
external stress including thermal stress,76 anoxia,77
radiation,78 and lower pH78; cytoskeletal blocking79; drugs
such as sitafloxacin, forskolin, fenoterol, nitrefazole,
and pentetrazol80; and expression of certain genes, for
instance, nSMase2,81 CD9,82 andHIF-1α.83 It is noteworthy
that immortalized cell line is more stable and convenient
than primary cells in preparing sEVs. A myc-mediated
immortalization of MSCs was developed to produce
sEVs and exhibited therapeutic effect in cardiovascular
diseases.84 Immortalized adipose-derived Mesenchymal
stem cell line (ATCC R© SCRC-4000) has currently been
used and proposed as one of the strategies for scale up and
mass production of sEVs in a reproducible manner.

6.2 Loading nucleic acids into sEVs

Electroporation is the most common way to load RNAs
into sEVs. TRPP2 siRNA was loaded into 293T-derived
sEVs by electroporation, and then the siRNA loaded sEVs-
targeted FaDu cells, a cell line of human pharyngeal squa-
mous cell carcinoma, leading to the inhibition of the
EMT.85
Some transfection reagents have also been used in RNA

loading. The purified sEVs could be incubated with siRNA
mixed with lipofectamine at room temperature for 30 min,
followed by three to five times wash and ultrafiltration.
When culturing the recipient cells with engineered sEVs,

the uptake of sEVs enabled exogenous siRNA transferring
to recipient cells.58
There are other novel ways to actively packaging nucleic

acids into sEVs. One is binding specific RNA sequences
to proteins and the RNA packaging device in sEVs pro-
ducing cells could package specific mRNAs into sEVs. By
using this system, the therapeuticmRNA that significantly
reduces the neuroinflammation and neurotoxicity could
be successfully delivered to the brain in the Parkinson’s
disease mouse models.86 The conserved sequence of sEVs-
enriched RNAs (eRNAs) carries a certain sequence that
targets RNAs into sEVs as a cis-element. Therefore, the use
of eRNAs is another approach to deliver RNA into sEVs.87
A couple of proteins such as MVP, GW182, AGO2, and
Myoferlin were reported to be associated with the deliv-
ery of nucleic acid sequences into the sEVs. However, the
specific ability for packaging remains to be explored in the
future.88

6.3 Loading proteins into sEVs

One practical method is to overexpress the proteins of
interest in donor cells by transfecting the vectors contain-
ing the specific gene. Then donor cells produce the pro-
teins encoded by the inserted genes and during the natural
packaging processes, the proteins are going to be secreted
into sEVs.89 However, the potential cytotoxicity to donor
cells, the complicated interactions in cells, and the low
loading efficiency are the main concerns to make that.
Hence, several efforts have beenmade to promote the load-
ing efficiency of target proteins into sEVs.
The fusion of target proteins with the constitutive pro-

tein in sEVs and the specificmodification of target proteins
are valuable ways to engineer sEVs. A group of proteins
that are constitutively expressed on sEVs, such as CD9,
CD63, and TSG101,90 can enhance the specificity of target
proteins. Other confirmed proteins including HIV-1 Nef
(mut),91 VSVG,92 lactadherin C1C2 domain,93 LAMP2B,94
and PDGFR TM domain95 are demonstrated to package
certain proteins into or on the surface of sEVs.
It has been demonstrated that specific modifications

of target protein contribute to protein transport. Ubiq-
uitination of target proteins at the C-terminus led to a
10-fold increase of expression in sEVs with biological
function.96 In addition, myristoylation or palmitoylation
tag or a transmembrane motif fusion on the N-terminus
of target proteins enabled the fusion proteins to target
the plasma membrane.97 A major concern of the modifi-
cations on proteins is the potential alteration of protein
function, especially the ubiquitination modification that
may result in the degradation of the target protein by the
proteasome.
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Several mechanical methods were tried to load proteins
to sEVs: sonication,mechanical extrusion, saponin perme-
abilization, incubation at room temperature, and repeated
freeze-thaw.19 Among these, the first three ways displayed
high efficiency in vitro. When using mechanical methods,
it requires high sEVs purification and careful maintenance
of the integrity of sEVs and biological activity.

7 CHALLENGES FOR DEVELOPING
sEVs-BASED THERAPY

Small EVs are an exceptionally qualified biological vehi-
cle for clinical therapies. However, there are still several
challenges and obstacles needed to be overcome. The first
problem to be solved is how to generate a sufficient number
of sEVs. Therefore, developing a scalable and reproducible
protocol is of great importance. In addition, the criteria
for purification and storage of sEVs, as well as the qual-
ity analysis, are necessary to attain compliance with good
manufacturing practice guidelines.98 sEVs from nucleated
cells present some level of risk for horizontal gene transfer
because it is unpredictable that which cells already harbor
dangerous DNA. Bioengineering of red blood cells that do
not have nuclei is a potential safer alternative. There are
several parameters require to be considered when treat-
ing a patient with therapeutic sEVs: dose of sEVs, dosage
regimen, and way to administration. These parameters are
hard to define as previous studies were mainly performed
by empiric therapy without a standard.99 In that case, an
appropriate way to assess the biological effect caused by
sEVs in vitro and in vivo is of the essence. Besides these,
optimizing approaches to enhance the sEVs loading effi-
ciency determine the therapeutic activity. Meanwhile, fur-
ther work still remains to be accomplished to elucidate the
exactmechanisms of the interaction between sEVs and tar-
geted cells.

8 CONCLUSION AND PERSPECTIVE

Small EVs have gained increasing attention in understand-
ing disease etiology. The robust biocompatibility enables
sEVs to be optimum vehicles for delivering chemicals and
other therapeutic molecules. Meanwhile, some natural
characteristics of sEVs obtained from parental cells make
it a promising novel approach for treating a diverse variety
of diseases. Because almost all the cells produce sEVs, the
donor cells could be selectively chosen based on the clini-
cal needs.
Even though sEVs-based therapy showed an extensive

application prospect, further studies are still needed for in
vivo studies and clinical trials. Besides the challenges we

discussed above, it is also urgent to investigate the exact
components from sEVs that may facilitate the progress
of diseases. In the future, more engineered methods are
needed to remove the disease-supporting content from
sEVs and enhance the cargo loading efficiency of sEVs.
Nanosized sEVs may have immense applications in future
clinical therapies.
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