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ABSTRACT: Metal exposure has been associated with risk of
various cardio-metabolic disorders, and investigation on the
association between exposure to multiple metals and metabolic
responses may reveal novel clues to the underlying mechanisms.
Based on a metabolome-wide association study of 17 plasma
metals with untargeted metabolomic profiling of 189 serum
metabolites among 1992 participants within the Dongfeng−Tongji
cohort, we replicated two metal-associated pathways, linoleic acid
metabolism and aminoacyl-tRNA biosynthesis, with novel metal
associations (false discovery rate, FDR < 0.05), and we also
identified two novel pathways, including biosynthesis of unsatu-
rated fatty acids and alpha-linolenic acid metabolism, as associated
with metal exposure (FDR < 0.05). Moreover, two-way orthogonal
partial least-squares analysis showed that five metabolites, including aspartylphenylalanine, free fatty acid 14:1, uridine, carnitine
C14:2, and LPC 18:2, contributed most to the joint covariation between the two data matrices (12.3%, 8.3%, 8.0%, 7.4%, and 7.3%,
respectively). Further BKMR analysis showed significant positive joint associations of plasma Al, As, Ba, and Zn with
aspartylphenylalanine and of plasma Ba, Co, Mn, and Pb with carnitine C14:2, when all the metals were at the 55th percentiles or
above, compared with the median. We also found significant interactions between As and Ba in the association with
aspartylphenylalanine (P for interaction = 0.048) and between Ba and Pb in the association with carnitine C14:2 (P for interaction <
0.001). Together, these findings may provide new insights into the mechanisms underlying the adverse health effects induced by
metal exposure.
KEYWORDS: Multiple plasma metals, Untargeted metabolomics, Metal−metal interaction, Metabolome-wide association study,
Environmental health

1. INTRODUCTION

Metals exist ubiquitously in the environment, and humans are
exposed to multiple metals continually on a daily basis through
ambient air and contaminated food or drinking water.1 Some
metals are essential to the human body, such as magnesium
(Mg), iron (Fe), manganese (Mn), molybdenum (Mo),
selenium (Se), copper (Cu), and zinc (Zn), playing important
roles in maintaining certain biological functions at the
homeostatic level,2 while other metals, such as arsenic (As),
cadmium (Cd), mercury (Hg), lead (Pb), and thallium (Tl), are
nonessential. It has been shown by accumulating evidence that
exposure to nonessential toxic metals, as well as an inadequate or
excessive intake of essential metals, are both associated with the
risk of various cardio-metabolic diseases, such as cardiovascular
disease (CVD) and type 2 diabetes (T2D), and also cancers,
apart from causing damages in their target organs or tissues.2−5

However, the mechanisms underlying these associations remain
unclear.
Metabolomics refers to the systematic profiling of small-

molecule metabolites in a biological sample, and metabolites
might be able to serve as intermediate biomarkers connecting
exposure and its adverse health effects, thus providing clues to
the underlying mechanisms.6 Such utility of the metabolomic
technology has been exemplified in a recent study which
revealed the mediating role of a lipid metabolite, sphingomyelin
(40:3), in the association between Zn exposure and lung cancer
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risk,7 while a systematic metabolome-wide association study of
mixed exposure to multiple metals could provide an even better
understanding of metal toxicology. A number of studies have
explored metabolic responses to exposure to one certain toxic
metal,8−15 such as As, Cd, or Pb, half of which were conducted
among residents living in heavily polluted areas.8,9,13,14 Several
other studies also reported associations between exposure to
multiple metals; with examination of mixed metal exposure
which better characterized real-life exposure scenarios, these
studies revealed various metal-associated metabolites which fell
on metabolic pathways mainly involved in amino acid, lipid, and
nucleotide metabolisms.16−21 However, most of these studies
were conducted among study populations with certain health
conditions or concerns, including pregnant women,16,17

mother−child pairs,18 and residents living near industrial
plants,19,20 plus one study among Native Americans,21 limiting
generalizability of these findings to other populations, and were
also limited in sample size (750 at most). Moreover, pathway
enrichment of metal-associated metabolites was underexplored
in previous studies.
In the present study, we conducted a metabolome-wide

association study of 17 plasma metals with untargeted
metabolomic profiling of 189 serum metabolites among 1992
participants within the Dongfeng−Tongji (DFTJ) cohort for
exploration for metal toxicity in terms of circulatory metabolic
responses, which could serve as a mechanistic link between
metal exposure and the development of systematic diseases.
Facilitated by novel statistical approaches such as two-way
orthogonal partial least-squares (O2PLS)22 and Bayesian kernel
machine regression (BKMR),23 we were able to evaluate the
joint metabolomic association of mixed exposure to multiple
metals and explore potential interactions between different
metals.

2. METHODS
2.1. Study Population. The study population of this cross-

sectional study was a subsample from the DFTJ cohort from two
previously conducted nested case-control studies aiming to
investigate risk factors for future risk of acute coronary
syndrome (ACS) and T2D, respectively, both with sample
sizes of 500 incident cases and 500 age- and sex-matched
controls, among whom profiling of plasma metals and
untargeted serum metabolomics were performed. In brief, the
DFTJ cohort recruited 27,009 retirees from Dongfeng Motor
Company (DMC) during September 2008 to June 2010. All
participants took a physical examination, completed an
interviewer-administered standardized questionnaire, and pro-
vided fasted blood samples at baseline.24 A total of 2000
participants were included in the two nested case-control
studies. The participants were all free of CVD, cancer, and
severely abnormal electrocardiogram at baseline and also free of
T2D for those within the nested case-control study for T2D risk.
After excluding those with incomplete data of metals
concentrations (n = 8), 1992 participants were finally included
in this study. Informed consent was obtained from each
participant, and the study was approved by the ethics committee
of Tongji Medical College, Huazhong University of Science and
Technology.
2.2. Plasma Metals Measurements. Plasma concentra-

tions of 23 metals, including aluminum (Al), antimony (Sb),
arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr),
cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese
(Mn), molybdenum (Mo), nickel (Ni), rubidium (Rb),

selenium (Se), strontium (Sr), thallium (Tl), tin (Sn), titanium
(Ti), tungsten (W), uranium (U), vanadium(V), and zinc (Zn),
were measured using inductively coupled plasma-mass spec-
trometry (ICP-MS) following a previously published protocol.25

We excluded three metals with detection rates less than 50% (tin
[Sn], tungsten [W], and uranium [U]), and three other metals
which were not well-represented by plasma level for exposure
assessment (cadmium [Cd], chromium [Cr], and iron
[Fe]).25−27 Finally, 17 plasma metals were included in
subsequent analysis. Table S1 shows the raw concentrations
and LODs of 17 plasma metals, and values below the LOD were
imputed with the LOD divided by 2.
2.3. Serum Untargeted Metabolomics. Serum metabo-

lites were measured using ultrahigh performance liquid
chromatography−mass spectroscopy (UPLC-MS) according
to previously described methods.28 Briefly, 50 μL serum samples
were treated with 200 μL of methanol, spiked with internal
standards, vortexed for 10 min, and centrifuged at 4 °C for 10
min at 500 g to remove the protein. Then, supernatant was
filtered and stored at−80 °C until liquid chromatography−mass
spectrometry (LC-MS) analysis. The sample was redissolved in
50 μL of methanol/water (1:4, v/v), vortexed for 10 min,
centrifuged at 10 °C for 15 min at 800 g, and injected into an
ACQUITY UPLC BEH C8 column (2.1 mm × 50 mm, 1.7 μm,
Waters Corp.) or an ACQUITY UPLC BEH T3 column (2.1
mm × 50 mm, 1.8 μm, Waters Corp.) for positive and negative
ion modes analyses, respectively. Meanwhile, a Waters
ACQUITY UPLC system (Waters Corp.) coupled to a
TripleTOF 5600 mass spectrometer (AB SCIEX) or a Q
ExactiveHFmass spectrometer (Thermo Fisher Scientific) were
used at positive and negative ion modes, respectively. All
samples were analyzed randomly and in batches of 10, and the
quality control (QC) samples prepared by spiking the pooled
serum samples with internal standards were analyzed at the
beginning of each batch to check instrument performance.
Detailed information on 11 internal standards is presented in
Table S2. Metabolite identification was performed by matching
mass-to-charge ratio (m/z), retention time (RT), and MS/MS
information to an established in-house database.29 After
excluding metabolites with relative standard deviation (RSD)
above 30% within QC samples28 and those with detection rates
below 50% within analytical samples, 189 annotated metabolites
were retained for subsequent analysis, and missing values were
imputed with the minimum normalized peak area value of the
corresponding metabolite divided by 2.
2.4. Assessment of Covariates. Sociodemographic (age,

sex, and education), lifestyle (smoking status, drinking status,
and exercise status), and medical history (hypertension,
hyperlipidemia, and diabetes status) information was obtained
through interviewer-administered standardized questionnaires.
Standing height, body weight, and blood pressure were
measured during health examinations by qualified staff. The
biochemical laboratory of Dongfeng General Hospital analyzed
the fasting blood samples for fasting glucose and serum lipids
following a standard procedure. Body mass index (BMI) was
calculated as weight in kilograms divided by height in meters
squared. Smoking status was categorized into current (smoking
at least one cigarette per day for more than half a year), former,
and never smoking groups. Drinking status was categorized into
current (drinking at least once per week for more than half a
year), former, and never drinking groups. Physical activity was
defined as those who regularly exercised for at least 30 min no
less than 5 days per week. Hypertension was defined if the
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participant had blood pressure ≥ 140/90 mmHg, self-reported
diagnosis of hypertension, or use of antihypertensive medi-
cation. Hyperlipidemia was defined if the participant had total
cholesterol > 5.72mmol/L or triglycerides > 1.70mmol/L at the
medical examination, self-reported diagnosis of hyperlipidemia,
or use of lipid-lowering medication. Diabetes was defined if the
participant had fasting glucose ≥ 7.0 mmol/L, self-reported
diagnosis of diabetes, or use of antidiabetic medication.
2.5. Statistical Analysis. Baseline characteristics of the

study participants were presented as mean ± standard deviation
(SD) and frequency (percentages), and plasma concentrations
of 17 metals were shown as median (interquartile range, IQR).
To rectify the skewed distribution, both plasma metal
concentrations and serum metabolite levels were natural log-
transformed prior to further analyses. Spearman rank correlation
analysis was performed to evaluate the correlations between
metals. Multivariable linear regression models were used to
investigate the associations of each individual metal−metabolite
pair, with adjustments for age, gender, BMI, smoking status,
drinking status, and physical activity. To account for multiple
testing, a false discovery rate (FDR) correction was performed
across 3213 association tests between 17 metals and 189
metabolites. Pathway analysis was conducted among significant
metabolites associated with each metal (FDR < 0.05) using
MetaboAnalyst 4.0.30

We applied O2PLS analysis22 using the OmicsPLS R package
to examine variation shared by all plasma metals and serum
metabolites. In this analysis, variations within levels of the 17
plasma metals and within 189 serum metabolites were
decomposed into three parts: joint part, orthogonal part, and
noise part. The components of the joint part (i.e., joint
components) represent the joint covariation between metal and
metabolite data, while those of the orthogonal part indicate the
unique systematic variations in each of the data matrices. The
third noise part captures the unsystematic variation. We
conducted 10-fold cross-validation to determine the number
of components in theO2PLSmodel and selected themodel with
minimal prediction errors as the final model. By plotting the
loadings of each metal/metabolite against the joint components,
we aimed to identify the metabolites contributing most to the
covariation between the two data matrices, indicated by the sum
of squared loadings on the joint components (SSjoint), which
might suggest the relative importance of the associations
between each metabolite and integrated metal exposure.
For the identified metabolites, we conducted two-stage

BKMR analysis31 using the bkmr R package to assess the joint
associations of mixed metal exposure with these metabolites and
also to search for the metals responsible for such joint
associations. In the first stage, we included all 17 metals in the
BKMR model and conducted a component-wise variable
selection method with 25,000 iterations by a Markov chain
Monte Carlo (MCMC) algorithm. Posterior inclusion proba-
bilities (PIPs) were calculated for indication of the relative
importance of each metal, and metals with PIPs > 0 were
included in the second stage BKMR analysis, with the same
settings of the Gaussian kernel function and tuning parameters
as in the first stage, and the second stage BKMR model was
considered as the final model. All BKMR models were adjusted
for age, gender, BMI, smoking status, drinking status, and
physical activity. Model convergence was achieved in all
analyses, as indicated by trace plots with a good mixing of
multiple MCMC chains and no discernible fluctuations in each
single chain. We further tested possible interactions between

metals suggested by the BKMR analysis through multivariable
linear regression models by incorporating multiplicative
interaction terms.
To scrutinize the robustness of the findings, we conducted

further sensitivity analyses of joint association between mixed
metal exposure and metabolites in the BKMR analysis. First, we
performed additional adjustment for potential confounding
factors, including disease status of hypertension, hyperlipidemia,
and diabetes at baseline, as well as future disease status which
was categorized into three groups (“control”, “ACS”, and
“T2D”). Second, considering that the study population was from
two nested case-control studies, thus being a biased sample from
the study cohort, we performed a sensitivity analysis within only
the control participants (N = 996).
Statistical analyses were performed with R (version 4.1.2) or

MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/). The
metabolic network of significantly metal-associated metabolic
pathways shown in the graphical abstract was visualized using
iPath 3.0 (https://pathways.embl.de/). A two-sided P-value <
0.05 was considered statistically significant.

3. RESULTS
3.1. Study Population Characteristics. Table 1 describes

the baseline characteristics of the study participants. The study
population had a mean age of 63.95 ± 7.25 years, 46.08% of
them were male, and the average BMI was 24.67 ± 3.27 kg/m2.
Among the subjects, 420 (21.08%) were current smokers, 445
(22.34%) current drinkers, and 590 (29.62%) had received

Table 1. Baseline Characteristics of the Study Participants (N
= 1992)

Characteristicsa Statistics

Age, years 63.95 ± 7.25
Male, n (%) 918 (46.08)
BMI, kg/m2 24.67 ± 3.27
High school or beyond, n (%) 590 (29.62)
Current smoker, n (%) 420 (21.08)
Current drinker, n (%) 445 (22.34)
Physical activity (yes), n (%) 1771 (88.91)

Metalsb (μg/L)
Al 48.24 (29.23, 96.01)
Sb 0.14 (0.09, 0.21)
As 2.03 (1.27, 3.74)
Ba 36.48 (23.24, 66.55)
Co 0.15 (0.12, 0.19)
Cu 959.34 (851.95, 1072.48)
Pb 13.10 (9.12, 21.19)
Mn 4.06 (2.97, 5.67)
Mo 1.34 (1.07, 1.73)
Ni 2.79 (2.03, 4.11)
Rb 351.14 (314.87, 391.80)
Se 64.22 (56.12, 74.75)
Sr 35.82 (30.33, 42.88)
Tl 0.14 (0.10, 0.18)
Ti 31.01 (25.01, 38.50)
V 0.69 (0.55, 0.99)
Zn 1191.05 (1000.32, 2903.34)

aContinuous variables are presented as mean ± SD, and categorical
variables are shown as frequency (percentages). bPlasma concen-
trations of 17 metals are presented as median (IQR).
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education in high school or beyond, while 1771 (88.91%) took
regular exercise. The median (IQR) of plasma metal
concentrations were 48.24 (29.23, 96.01) μg/L for Al, 0.14
(0.09, 0.21) μg/L for Sb, 2.03 (1.27, 3.74) μg/L for As, 36.48
(23.24, 66.55) μg/L for Ba, 48.24 0.15 (0.12, 0.19) μg/L for Co,
959.34 (851.95, 1072.48) μg/L for Cu, 13.10 (9.12, 21.19) μg/L
for Pb, 4.06 (2.97, 5.67) μg/L for Mn, 1.34 (1.07, 1.73) μg/L for
Mo, 2.79 (2.03, 4.11) μg/L for Ni, 351.14 (314.87, 391.80) μg/
L for Rb, 64.22 (56.12, 74.75) μg/L for Se, 35.82 (30.33, 42.88)
μg/L for Sr, 0.14 (0.10, 0.18) μg/L for Tl, 31.01 (25.01, 38.50)
μg/L for Ti, 0.69 (0.55, 0.99) μg/L for V, and 1191.05 (1000.32,
2903.34) μg/L for Zn. The pairwise correlation coefficients
within all 17 metals ranged from −0.06 to 0.74, and 10 pairs of
metals had correlation coefficients over 0.6, which were Al−Ba,

Al−Pb, Al−Mn, Al−V, Al−Zn, As−Ba, Ba−Pb, Ba−Zn, Pb−Zn,
and V−Zn (all P values < 0.01, Figure S1).
3.2. Associations of Each Individual Metal with

Metabolites. The 189 annotated metabolites were across 12
classes, including 22 amino acids and derivatives, 22 carnitine
and acyl carnitines, 37 fatty acids and derivatives, 4
carbohydrates and conjugates, 4 purines and derivatives, 8 bile
acids, 8 other organic acids, 4 benzene and derivatives, 38
lysophosphatidylcholines (LPC) and phosphatidylcholines
(PC), 19 lysophosphatidylethanolamines (LPE) and phospha-
tidylethanolamines (PE), 8 phosphosphingolipids, and 15 other
metabolites. Regression coefficients from multivariable linear
regression analyses to evaluate the associations between each
individual metal−metabolite pairs are provided in Table S3, and
FDR < 0.05 was considered statistically significant. The P values

Figure 1. Scatter plot demonstrating the associations between 17 metals and 189 metabolites. P values were derived from single-metal multivariable
linear regression models which adjusted for age, gender, BMI, smoking status, drinking status, and physical activity. False discovery rate (FDR)
correction was performed across 3213 association tests between 17 metals and 189 metabolites.

Figure 2.Metabolic pathways associated with plasmametals. Sizes of circles weremapped to the number of significant metabolites in the pathways, and
color was mapped to the FDR values (FDR < 0.05).
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and directions of associations between 17 metals and 189
metabolites are depicted in Figure 1. The numbers of
metabolites significantly associated with individual metal were
51 for Al, 2 for Sb, 39 for As, 54 for Ba, 12 for Co, 11 for Cu, 42
for Pb, 49 for Mn, 13 for Mo, 85 for Ni, 23 for Rb, 36 for Se, 21
for Sr, 16 for Tl, 37 for Ti, 55 for V, and 66 for Zn. Among these

associations, 34 of them achieved P values < 1.00 × 10−10, and
the strongest association was that between Se and FFA 22:5 with
a P value of 9.96 × 10−25. We conducted pathway analyses
among metabolites significantly associated with each metal
(FDR < 0.05), and results are shown in Figure 2 and Table S4.
Metal-associated metabolites were primarily enriched within

Figure 3. O2PLS modeling of metal−metabolite associations. The number of components included in the O2PLS model were selected by 10-fold
cross-validation, and the model contains 2 joint, 10 X-orthogonal, and 10 Y-orthogonal components. (A) Loading plot for plasma metals. (B) Loading
plot for serummetabolites. In this display, the relative position of each point in the two panels indicates whether regression coefficients for a given pair
of metals and metabolites positively or negatively correlates to each other, while the sum of the squared loadings on the two joint components (SSjoint)
indicates the magnitude of the association of the metal (metabolite) with metabolome (metallome). All 17 metals and the top 30 metabolites are
labeled. O2PLS: two-way orthogonal partial least-squares.

Figure 4. Joint associations ofmetal mixtures withmetabolites by two-stage Bayesian kernel machine regression (BKMR) analyses. The figure plots the
estimated change in metabolite concentrations when all the metals at particular percentiles (x-axis) were compared to all the metals at their 50th
percentile. The BKMR model adjusted for age, gender, BMI, smoking status, drinking status, and physical activity. For aspartylphenylalanine, the
BKMR model included a mixture of Al (PIP = 0.09), As (PIP = 0.16), Ba (PIP = 0.37), and Zn (PIP = 0.99). For carnitine C14:2, the BKMR model
included a mixture of Ba (PIP = 0.65), Co (PIP = 0.18), Mn (PIP = 0.05), and Pb (PIP = 0.88).
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pathways related to lipid metabolism and amino acid
metabolism with enrichment ratios from 12.00 to 27.93 (FDR
< 0.05). In detail, seven metals were associated with the
biosynthesis of unsaturated fatty acids pathway (As, Ba, Co, Pb,
Ti, V, and Zn), two metals with the linoleic acid metabolism
pathway (As and Pb), two metals with the alpha-linolenic acid
metabolism pathway (Ba and Pb), and one metal with the
aminoacyl-tRNA biosynthesis pathway (Ni).
3.3. Associations of Mixed Metal Exposure with

Metabolites. We constructed the O2PLS model for examina-
tion of variation shared by all plasma metals and serum
metabolites, and the model structure is depicted in Figure S2,
which shows that the joint part explained 27.2% of the metal
variation and 35.2% of the metabolite variation. The
permutation test (n = 10,000) shows that the model was fitted
with high reliability (P < 0.05, Figure S3). We then plotted the
loadings of each metal/metabolite against the two joint
components (Figure 3), from which the top five metabolites
contributing most to the joint covariation between the two data
matrices and in associations with the integrated metal exposure
were identified, including aspartylphenylalanine, tetradecenoic
acid (free fatty acid, FFA 14:1), uridine, carnitine C14:2, and
LPC 18:2 (SSjoint = 12.3%, 8.3%, 8.0%, 7.4%, and 7.3%,
respectively).
In BKMR analysis for joint associations of plasma metals with

each of the top five metabolites, which were aspartylphenyla-
lanine, FFA 14:1, uridine, carnitine C14:2, and LPC 18:2, we
included metals which obtained overzero PIPs in the first-stage
analysis for construction of the second-stage BKMR model
(Table S5). The number of metals included for the joint
association analysis of the five top metabolites were four, four,
one, four, and two, respectively. In the second-stage BKMR
analysis, we observed significant positive joint association of
coexposure to Al, As, Ba, and Zn with aspartylphenylalanine
(Figure 4) and significant positive joint association of

coexposure to Ba, Co, Mn, and Pb with carnitine C14:2 (Figure
4), when all the metals were at the 55th percentiles or above,
compared with the median, while no significant joint association
was observed for FFA 14:1, uridine, and LPC 18:2 (results not
shown). Specifically, for the positive joint association with
aspartylphenylalanine, Zn (PIP = 0.99) was the greatest metal
contributor, and bivariate exposure−response functions sug-
gested synergistic interactions between As and Ba (P for
interaction = 0.048; Figure 5). For the positive joint associations
with carnitine C14:2, Ba (PIP = 0.65) and Pb (PIP = 0.88) were
the vital contributors, and bivariate exposure−response
functions suggested synergistic interactions between Ba and
Pb (P for interaction < 0.001; Figure 5).
In the sensitivity analysis with further adjustment for

hypertension, hyperlipidemia, and diabetes at baseline, as well
as future disease status, all results remained robust (Figures S4
and S5).When the BKMR analysis was restricted to only control
participants (N = 996), results were also similar except that the
interaction between As and Ba in the association with
aspartylphenylalanine became insignificant (P for interaction =
0.11), possibly owing to the reduced sample size (Figures S6 and
S7).

4. DISCUSSION
In this metabolome-wide association study of 17 plasma metals,
we characterized metabolic profiles associated with each of the
metals, fromwhich we uncovered two novel pathways associated
with metal exposure, which were biosynthesis of unsaturated
fatty acids and alpha-linolenic acid metabolism. In terms of
individual metals, we found Pb was significantly associated with
not only the two novel pathways but also the linoleic acid
metabolism pathway, which had been reported associated with
other metals.21 These novel associations between Pb and
metabolic pathways had not been reported in previous studies,
except that there were also observations of associations of Pb

Figure 5. Bivariate exposure−response functions of each metal (shown by column) and metabolite concentration by two-stage Bayesian kernel
machine regression (BKMR) analyses, holding concentrations of one metal (shown by row) at different quantiles (25th, 50th, and 75th) and other
metals at medians. The BKMRmodel adjusted for age, gender, BMI, smoking status, drinking status, and physical activity. For aspartylphenylalanine,
the BKMR model included a mixture of Al, As, Ba, and Zn. For carnitine C14:2, the BKMR model included a mixture of Ba, Co, Mn, and Pb. The
multivariable linear regressionmodels validated the interactions between As and Ba (P for interaction = 0.048) and Ba and Zn (P for interaction = 0.15)
for aspartylphenylalanine and the interactions between Ba and Pb (P for interaction < 0.001), Ba and Co (P for interaction = 0.39), and Co and Pb (P
for interaction = 0.30) for carnitine C14:2.
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exposure with other pathways within lipid metabolism.15,21With
respect to As, we observed As was significantly associated with
one of the two novel pathways, biosynthesis of unsaturated fatty
acids, and we also found a novel association between As and the
linoleic acid metabolism pathway. These associations between
As and metabolic pathways were reported for the first time.
However, associations between As exposure and other pathways
within lipid metabolism had been reported,21 and metabolites
within As-associated pathways identified in our study such as
FFA 20:1, LPC 16:0, and LPC 14:0 were found to be associated
with As exposure among residents living in a high-arsenic area9

and among pregnant women.10 Of note, plasma Ba was also
significantly associated with both of the two novel pathways
within lipid metabolism, even though research on association
between Ba exposure and metabolomes among people is scarce,
with only negative results from a study of 232 pregnant
women.17 At a nominal significance level, we also found
associations of plasma Pb and As with the glycerophospholipid
metabolism pathway, and similar associations had also been
reported in previous studies of white veterans15 and Native
American,21 although blood Pb and urinary As were measured,
respectively, in the two studies. Consistent with our findings of
notable disturbed lipid metabolisms in association with plasma
Pb, As, and Ba, there was also evidence from animal studies that
Pb exposure disrupted lipid metabolism through increasing
transcription of genes involved in FFA and triglyceride
synthesis,32 and As exposure induced lipid metabolism disorder
through regulating the ERK/PPAR signaling pathway,33 while
Ba exposure also caused lipid peroxidation via disruption of
antioxidant defense systems.34 Previous epidemiological studies
also reported associations between Pb and As exposure and risk
of CVD,35,36 in which dyslipidemia played a cardinal role. As for
Ba, epidemiological research on the associated health effects is
scarce, and only a cross-sectional study showed that lipid
peroxidation may mediate the association between Ba exposure
and heart rate variability alteration, a cardiovascular risk factor.37

Taken together, our study provided an important line of
evidence from a population-based cohort that disruptions in
lipid metabolism, particularly the metabolism of unsaturated
fatty acids, might underlie the mechanism of cardio-metabolic
risk induced by exposure to various nonessential toxic metals,
including Pb, As, and Ba.
Apart from Pb, As, and Ba, we also found that metabolites

associated with plasma Co, Ti, V, and Zn were all enriched in the
pathway of unsaturated fatty acids biosynthesis, further
highlighting the involvement of the metabolism of unsaturated
fatty acids in metal exposure-related health effects. The top
metabolite hits within this pathway for each metal were FFA
18:2, FFA 18:0, FFA 20:5, and FFA 20:5, respectively. Although
no research has reported the biosynthesis of unsaturated fatty
acid pathways associated with any of the four metals, three
metabolites involved in the pathway, including FFA 18:2, FFA
20:4, and FFA 22:6, were identified in association with Zn
exposure in a previous nested case-control study, also within the
DFTJ cohort,7 and we also found suggestively significant
association between plasma Zn and the metabolism pathway of
another unsaturated fatty acid, linoleic acid, consistent with
another previous report.21 Epidemiological studies have shown
associations of exposure to Co, Ti, V, and Zn with
cardiometabolic diseases such as dyslipidemia, T2D, and
metabolic syndrome,38−40 and there was also evidence from
experimental studies of disruptive effects of Co, Ti, V, and Zn on
lipid metabolism.41−44 Our findings provided novel evidence

suggesting that Co, Ti, V, and Zn exposure might exert adverse
health effects by interfering with the biosynthesis of unsaturated
fatty acids.
Furthermore, we found plasma Ni was significantly associated

with the aminoacyl-tRNA biosynthesis pathway, which had been
reported with other metals,45 with arginine being the top
metabolite hit on this pathway in our study. Notably, among the
17 plasma metals examined in this study, Ni was associated with
the largest number of metabolites, totaling 85metabolites across
11 classes, and six of the Ni-associatedmetabolites fell within the
aminoacyl-tRNA biosynthesis pathway. Although there was no
previous report of such association, two amino acids involved in
the aminoacyl-tRNA biosynthesis pathway, glutamine and
alanine, were found to be associated with Ni exposure in a
previous metabolomic study among pregnant women,16 and an
experiment study also found that exposure to Ni could affect
amino acid metabolism in HepaRG cells.41 From epidemio-
logical studies, ample evidence showed that Ni exposure was
associated with the risk of lung cancer, and there was also a
report of association with CVD risk.46 Our study further
identified that it might be aminoacyl-tRNA biosynthesis related
to amino acid metabolism that Ni exposure was associated with,
which could be a mechanism underlying the adverse health
outcomes related with Ni exposure.
When considering the integrated exposure of all 17 metals, we

found through O2PLS analysis that the metabolites most
strongly associated with integrated metal exposure were
aspartylphenylalanine, FFA 14:1, uridine, carnitine C14:2, and
LPC 18:2, which might serve as nonspecific metabolic
biomarkers of metal exposure. Consistent with such observation,
these five metabolites were each significantly associated with 10,
6, 13, 11, and 11metals, respectively, in the analysis of individual
metals. Of the five metabolites, aspartylphenylalanine is a
dipeptide product of an angiotensin-converting enzyme (ACE)
and a marker for ACE activity.47 FFA 14:1, also called
myristoleic acid, is a monounsaturated fatty acid (MUFA) and
has been found associated with increased risk of T2D in a cohort
s study.48 Uridine is a pyrimidine nucleoside and plays a pivotal
role in regulating energy homeostasis, disruption of which may
contribute to metabolic disease.49 Carnitine C14:2 is a long-
chain acylcarnitine, involved in transporting cytosolic fatty acids
across the inner mitochondrial membrane for β-oxidation and
energy metabolism and has been found associated with both
T2D and prediabetic states in a cross-sectional study.50 LPC
18:2 belongs to lysophosphatidylcholine, a major class of
glycerophospholipids in human plasma and has been identified
as an independent predictor of incident coronary heart disease
and T2D.51,52 Three of the five metabolites were involved within
pathways of lipid metabolism, the most notable pathways
revealed in this study as associated with metal exposure, while
the remaining aspartylphenylalanine and uridine were involved
in metabolism of amino acids and nucleotides, respectively.
Apart from these twometabolites, we also identified a number of
other metal-associated metabolites involved in amino acid
metabolism such as arginine, iso-leucine, tyrosine, phenyl-
alanine, and tryptophan, as well as those involved in nucleotide
metabolism such as hypoxanthine, uric acid, and 1,3-
dimethyluric acid, and these two pathways had been previously
reported to be associated with exposure to Pb among residents
living in heavily polluted areas,14 to Co among pregnant
women,45 and to As, Sb, Mo, and Se among Native Americans.21

Even though we did not observe an enrichment of metal-
associated metabolites within these two pathways in the present
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study, possibly due to the limited coverage of relatedmetabolites
by our metabolomic platform, our results still provided support
of the associations of amino acid metabolism and nucleotide
metabolism pathways with metal exposure.
Through two-stage BKMR analysis of the five top metabolic

markers of metal exposure identified in our study, which further
accounted for intercollinearity within different metals, we found
significant positive joint association of plasma Al, As, Ba, and Zn
with aspartylphenylalanine and also positive joint association of
plasma Ba, Co,Mn, and Pb with carnitine C14:2, with Zn and Ba
plus Pb being the major contributors in the joint associations.
We also found significant synergistic interactions between As
and Ba in the association with aspartylphenylalanine and
between Ba and Pb in the association with carnitine C14:2.
There has been experimental evidence from Wistar rats that
exposure to Ba and Pb both could induce lipid oxidation,34,53

which might be one of the mechanisms underlying the
synergistic Ba−Pb interaction found in our study, while
mechanistic clues for the synergistic As−Ba interaction are
still lacking. The novel metal−metal interactions in associations
with metabolites found in our study suggested that coexposure
to Ba and Pb and to As and Ba may lead to greater adverse health
effects and need extra attention in real-life exposure scenarios,
and further investigations are warranted to examine these
interactions in other study populations.
Our study has several strengths. First, this study is the largest

study to date investigating the association between exposure to
multiple metals and metabolic responses, with a sample size
close to that in total of previous studies, and examination of 17
plasma metals and 189 metabolites annotated by matching to
authentic chemical standards, which enabled the uncovering of a
number of novel pathways associated with metal exposure.
Second, we applied new statistical methods such as BKMR
analysis which evaluated associations between mixed metal
exposure and metabolites and also revealed novel evidence of
interactions between As and Ba and between Ba and Pb,
respectively, in their associations with aspartylphenylalanine and
carnitine C14:2. Last but not the least, we collected detailed data
on demographic characteristics, lifestyle factors, and medical
information, making possible the comprehensive adjustment for
potential confounders in our statistical analysis.
There were also several limitations in our study. First, we only

conducted a single measurement of plasma metals, which may
not represent the long-term exposure levels. However, our
previous study has evaluated the reproducibility and intra-
individual variability of metal concentrations, and moderate to
high reproducibility was observed for most metals.25 Second,
our study population was based on two nested case-control
studies, thus selection bias might exist. Nevertheless, results
from sensitivity analysis with additional adjustment of prevalent
and future disease status and that within only control
participants remained basically unchanged. Third, for the 17
metals examined in this study, we took a total measure in plasma
as exposure assessment, while As has different forms with
different toxicities, which may also lead to different metabolic
responses that could be masked by a total measurement, and
future studies with measurement of different As forms are
needed to address this limitation. Fourth, participants in this
study were middle-aged and elderly Chinese, which may limit
generalizability to other populations, and causality cannot be
established owing to the cross-sectional study design.
In this study, we replicated two metal-associated pathways,

linoleic acid metabolism and aminoacyl-tRNA biosynthesis,

with novel metal associations, and uncovered two novel
pathways associated with metal exposure, which were biosyn-
thesis of unsaturated fatty acids and alpha-linolenic acid
metabolism. Furthermore, we identified five metabolites as
nonspecific metabolic markers of metal exposure and found
evidence of interactions between As and Ba in association with
aspartylphenylalanine and between Ba and Pb in association
with carnitine C14:2. Our findings may provide new insights
into the mechanisms underlying the adverse health effects
induced by metal exposure.
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Hyötyläinen, T.; Kuusisto, J.; Oresǐc,̌ M. Lipidome as a predictive tool
in progression to type 2 diabetes in Finnish men.Metabolism 2018, 78,
1−12.
(53) Lopes, G. O.; Aragão,W. A. B.; Nascimento, P. C.; Bittencourt, L.
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