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EDITORIAL COMMENT

Metabolic Suppression of HIF-1o

Contributes to Susceptibility of
Ischemic Injury in Diabetic Hearts*

Adam De Jesus, BS, Hsiang-Chun Chang, PuD, Hossein Ardehali, MD, PuD

ypoxia is a potent regulator of cellular

metabolism and growth. Earlier works

have identified hypoxia inducible factor
(HIF) signaling as the molecular pathway responsible
for such adaptation (1-3). The key component of this
signaling pathway consists of 2 proteins, the consti-
tutively expressed HIF-1f (also known as aryl-
hydrocarbon receptor nuclear translocator or ARNT)
and a labile binding partner (HIF-1o. or HIF-2a).
Under normoxia, oxygen-dependent prolyl hydroxy-
lases (PHDs) catalyze the hydroxylation of HIF-1a
and HIF-2a, which is a prerequisite for their degrada-
tion (4). Additionally, asparagine hydroxylation by
factor inhibiting HIF-1 (FIH1) prevents the interac-
tion between HIF-10 and core transcription machin-
eries (5). Both PHDs and FIH1 require oxygen, iron,
and a-ketoglutarate to carry out their functions. Dur-
ing hypoxia, HIF-1o and HIF-20 proteins accumulate
and dimerize with ARNT; this complex then translo-
cates into the nucleus (6), where it induces expres-
sion of genes involved in glucose metabolism,
mitochondrial function, cell proliferation, and
viability (6-8). Thus, HIF signaling coordinates a
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cellular program that protects the organism from
the adverse consequences of oxygen deprivation.

Downstream effectors of HIF have been exten-
sively studied in cardiovascular disease and diabetes.
HIF signaling regulates angiogenesis and vascular
remodeling. Additionally, HIF-1a increases glycolytic
gene expression, thereby ensuring adenosine
triphosphate (ATP) production from anaerobic
glycolysis (8,9). These effects have great implications
in ischemic and pressure overload heart diseases (9).
In addition to cardiovascular disease, altered HIF
signaling has been implicated in diabetes. In patients
with diabetes, the expression of ARNT is lower in the
pancreas and liver and genetic deletion of this protein
in these 2 organs results in diabetic phenotypes
(10,11). Cardiac expression of ARNT is also reduced in
the hearts of mice with genetic and diet-induced
diabetes. Cardiac-specific deletion of ARNT leads to
increased peroxisome proliferator-activated receptor-
o expression, thereby resulting in heightened lipid
uptake and oxidation. The imbalance between lipid
uptake and oxidation causes lipid accumulation and
spontaneous cardiomyopathy (12). This evidence
demonstrates that diabetes may influence HIF
signaling; at the same time, HIF signaling can
modulate diabetic phenotypes.

In the heart, diabetes shifts cellular metabolism in
favor of increased utilization of fatty acids (FAs) with
a concomitant inhibition of glycolysis and glucose
(13,14). FA-mediated
glucose oxidation was first described by Randle et al.
(15) in muscle and fat tissue. Increased FA oxidation
results in higher levels of mitochondrial acetyl-
coenzyme A and nicotinamide adenine dinucleotide
hydride (NADH) and cytosolic citrate. These meta-
bolic intermediates can allosterically inhibit 2 key
phosphofructokinase-1 and

oxidation suppression of

glycolytic enzymes:
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FIGURE 1 Aberrant HIF Signaling in Diabetic Hearts

A

Adaptive
Response

i

HIF-1a

PHDs

Hypoxia
Non-Diabetic

l

Fatty Acids

Adaptive
Response

Proteasome
Degradation

B-Oxidation

mitochondria

Hypoxia
Diabetic

Proteasome
Degradation

B-Oxidation
TCA x mitochondria

ate Fumarate

(A) In normal hearts under hypoxia, succinate levels increase dramatically because of increased glycolysis and MAS activity. Increased succinate levels inhibit PHD
activity, thereby facilitating HIF-1a. stabilization. (B) In diabetic hearts under hypoxia, the aberrant increase in fatty acid metabolism inhibits glycolysis. Reduced NADH
influx into mitochondria through MAS blunts the increase in succinate during hypoxia, resulting in the inability to stabilize HIF-1a.. CoA = coenzyme A; HIF = hypoxia
inducible factor; MAS = malate-aspartate shuttle; NADH = nicotinamide adenine dinucleotide hydride; PHD = prolyl-hydroxylase; TCA = tricarboxylic acid.

Figure adapted

from Servier Medical Art (28).

pyruvate dehydrogenase (16). The inhibition of
phosphofructokinase-1 in turn leads to accumula-
tion of glucose-6-phosphate, which inhibits hexoki-
nase (16); therefore, overall glycolytic flux is reduced.
Although diabetic hearts are still able to generate
adequate amounts of ATP through FA oxidation
under normoxia, they are less capable of producing
energy under hypoxia because of reduced anaerobic
glycolysis. These defects may contribute to the worse
outcome of patients with diabetes and acute
myocardial infarction and explain why cardiovascular
complications are the primary cause of death in pa-
tients with type 2 diabetes (17,18). Nevertheless,
precisely how the metabolic derangement controls
cellular response to hypoxia beyond energy produc-
tion remains to be answered.

SEE PAGE 485

The article by Dodd et al. (19) in this issue of
JACC: Basic to Translational Science brings a novel
insight into the susceptibility of diabetic hearts to
ischemic injury by demonstrating that they fail to
accumulate HIF-1o0 under hypoxia through a
proteasome-dependent mechanism. Under hypoxia,
the heart normally accumulates high levels of suc-
cinate; however, this increase is attenuated in the
diabetic heart (Figure 1) (20). Succinate is a potent
repressor of PHDs, and a reduced succinate to
a-ketoglutarate ratio allows for increased activity of
PHDs under (21). In cell

hypoxia culture,

supplementation of insulin-resistant cells with
dimethyl fumarate (which can be converted to
succinate) restores the HIF-10 protein accumulation
under hypoxia. A similar effect was achieved
through treating cells with DMOG, a PHD inhibitor.
Additionally, administration of DMOG to diabetic
rats results in better functional recovery after car-
diac ischemia/reperfusion in an ex vivo heart
perfusion system.

More important, the authors mechanistically link
increased FA oxidation to the failure of succinate
accumulation in diabetic hearts under hypoxia. In
hypoxia, the forward flow of electron transport chain
is inhibited. Anaerobic glycolysis thereby becomes a
vital source of ATP production, generating NADH as a
byproduct. However, if the electron equivalents
cannot be used, excessive cytosolic NADH would
bring anaerobic glycolysis to a halt. In addition to
lactate production, malate/aspartate shuttle allows
for the transport of electron equivalents into the
mitochondria, thus restoring cytosolic NADH/NAD™"
ratio. Increased mitochondrial malate and fumarate
in this situation can drive succinate dehydrogenase
in reverse and result in succinate accumulation
(Figure 1) (20). Supplementation of cell culture media
with FA forces cultured cells to use FA, which results
in inhibition of glycolysis and reduced HIF-1a accu-
mulation. Importantly, the authors demonstrated
that both palmitate and oleate have similar inhibi-
tory effects; therefore, the change in cellular
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metabolism is independent of the saturation of FA
species. Additionally, the authors use a FA uptake
inhibitor in their in vitro insulin resistance model to
demonstrate that the metabolic rewiring and the
failure of HIF-10 to accumulate depend on FA utili-
zation rather than changes in the insulin signaling
pathway. Taken together, they present a pathway
that increased FA utilization (probably from sub-
strate abundance) in diabetes results in glycolysis
suppression, reduced transport of electron equiva-
lents into mitochondria during hypoxia, reduced
succinate accumulation, and ultimately failure of
HIF-10 to accumulate (Figure 1).

This paper elegantly demonstrates the diabetes-
mediated rewiring of cellular metabolism and
response to hypoxia and provides the molecular
mechanism for the authors’ (22,23) previous obser-
vation of changes in tricarboxylic acid cycle metabo-
lites in diabetic hearts. However, the identified
molecular mechanism can play a role beyond regula-
tion of hypoxic adaptation of diabetic hearts.
Although diabetic hearts under hypoxia failed to
accumulate succinate because of reduced NADH
production through glycolysis, the inhibition of
glycolysis also occurs under normoxia (16); therefore,
it would be of great interest to profile succinate and
a-ketoglutarate levels in these hearts. Multiple
cellular enzyme families require oxygen and use
a-ketoglutarate and iron as cofactors. These include
the prolyl hydroxylase family, the Jumonji-C domain
containing histone demethylase family, and the TET
deoxyribonucleic acid (DNA) hydroxylase family
(which affects subsequent DNA demethylation) (24).
Succinate is one of the products of these enzymatic
reactions, and increased ratio of succinate over
a-ketoglutarate can inhibit the activity of these
enzymes (21). If normoxic diabetic hearts still have
reduced succinate levels, both TET DNA hydroxylases
and Jumonji-C domain histone demethylases can be
hyperactivated, which could result in global epige-
netic changes. Profiling the locus where DNA and
histone methylation are altered in this setting may
shed further insights to the pathogenesis of diabetic
heart disease.

Although Dodd et al. (19) described a molecular
pathway that could potentially be targeted for
treating ischemic complications in diabetic patients,
translating the findings into clinical practice
require more careful consideration. The in vitro
findings in this manuscript would argue for the use
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of cell-permeable succinate or fumarate as a ther-
apeutic agent; however, pharmacological increase
of succinate level poses a potential threat. Chou-
chani et al. (20) demonstrated that succinate
accumulation is required for the cardiac ischemia/
reperfusion injury through increased reverse elec-
tron transport chain upon reperfusion. Therefore,
novel therapy aiming at stabilizing HIF proteins in
diabetic hearts should function downstream of
succinate and should preferably directly target the
PHDs.

Additionally, this manuscript demonstrates the
utility of DMOG as a preventive agent for cardiac
ischemia/reperfusion injury in diabetic hearts; how-
ever, the effect of DMOG administration during
ischemic events remains to be determined. As a
result, patients at risk will have to receive chronic HIF
hydroxylase suppression. Currently, PHD inhibitors
are used to treat certain forms of anemia because HIF
stabilization promotes renal production of erythro-
poietin and increases erythropoiesis (25). Therefore,
chronic administration of the drug (that may be
needed to prevent ischemic injury) may result in
erythrocytosis, which is also associated with adverse
cardiac events (26). Additionally, inhibition of PHD
via tricarboxylic acid cycle metabolites (similar to
what the authors proposed) has been implicated in
several cancers (27). Thus, unless we can achieve
organ-specific delivery of PHD inhibitors, patients
should be monitored closely for cancer and adverse
cardiac events.

Overall, Dodd et al. (19) identified increased FA
oxidation in diabetes as the root cause of failure to
accumulate HIF-1¢. under hypoxia. Reduced NADH
production from anaerobic glycolysis is mechanisti-
cally linked to reduced accumulation of mitochon-
drial succinate, which in turn leads to PHD
hyperactivation. This manuscript is one of the first
to implicate such a mechanism in cardiac patho-
physiology. Although the authors performed proof-
of-principle experiments to rescue the disease
phenotype, more detailed studies are needed to
better target the molecular pathways without causing
untoward consequences.
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