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Protein acetylation is a reversible post-translational modification, and is

involved in many biological processes in cells, such as transcriptional

regulation, DNA damage repair, and energy metabolism, which is an

important molecular event and is associated with a wide range of diseases

such as cancers. Protein acetylation is dynamically regulated by histone

acetyltransferases (HATs) and histone deacetylases (HDACs) in homeostasis.

The abnormal acetylation level might lead to the occurrence and deterioration

of a cancer, and is closely related to various pathophysiological characteristics

of a cancer, such as malignant phenotypes, and promotes cancer cells to adapt

to tumor microenvironment. Therapeutic modalities targeting protein

acetylation are a potential therapeutic strategy. This article discussed the

roles of protein acetylation in tumor pathology and therapeutic drugs

targeting protein acetylation, which offers the contributions of protein

acetylation in clarification of carcinogenesis, and discovery of therapeutic

drugs for cancers, and lays the foundation for precision medicine in oncology.
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Introduction

Cancer is a malignant disease with heterogeneity, and its occurrence and

development are affected by a variety of factors (1). It has strong ability to migrate,

proliferate, and invade, and can adhere to the surrounding normal tissues. There are

many factors to affect cancers, including genetic, epigenetic, and environmental factors,

which all enhance tumor malignancy (2).

Epigenetics is the change in the level of gene expression without changes in the gene

sequence (3). Abnormal changes in epigenetics may lead to the occurrence and

development of various malignant diseases. Epigenetic research mainly includes DNA
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covalent modifications such as DNA methylation and poly-

methylation, chromatin remodeling, and the regulation of gene

expression levels by non-coding RNAs (3). Proteins are the

ultimate executors of biological functions. Studies have shown

that many abnormal post-translational modifications are closely

associated with malignant tumors, such as acetylation,

ubiquitination, and phosphorylation (4). Of them, protein

acetylation was discovered in the 1960s, but acetylation has

not been extensively studied until recent years (5). Acetylation

occurs on histones and non-histones, and most of the current

research focuses on acetylation on histones (6). Histone is an

octamer that constitutes the ribosome, consisting of four core

histones (H3\H4\H2A\H2B), which combine with surrounding

DNA fragments to form subunits of the ribosome, and the

histone tail is easily translated by different post-translational

modification to affect chromatin state and gene expression (6).

Histones are prone to be acetylated (6). Studies have shown that

protein acetylation is closely related to transcriptional

regulation (7).

Acetylation modification is the process of covalently binding

acyl-CoA compounds to specific amino acid sites of proteins

under the action of acetyltransferase, generally binding to lysine

residues (8). This process can also be reversed by deacetylases.

This process is reversible and plays an important role in

chromatin remodeling, gene expression, and regulation of

protein function (9). Acetylation processes in different

organelles are independent of each other. For example, acetyl-

CoA in mitochondria and acetyl-CoA outside mitochondria are

independent of each other (8). Acetylation in mitochondria

plays an important role in biological processes such as the

tricarboxylic acid cycle and fatty acid oxidation (9, 10).

Moreover, protein acetylation is involved in the transcriptional

regulation of genes, and some transcriptional co-activators have

acetylase activity and some transcriptional co-repressors have

deacetylase activity (7). Protein acetylation is associated with

novel drug targets for a variety of diseases such as cancer (11).

Thereby, it emphasizes the important scientific merits of protein

acetylation in carcinogenesis and targeted drug discovery.

This article reviews (i) the component and process of protein

acetylation system in cancers, including types of acetylation

(N-acetylation, O-acetylation, and K-acetylation), regulators

of acetylation (writers-acetyltransferases, erasers-deacetylases,

acetyl coenzyme A, and readers), (ii) biological role of

acetylation in cancer pathophysiology, including apoptosis,

autophagy, cellular metabolism, cell cycle, proliferation,

migration, and invasion, and (iii) acetylation system-based

targeted drugs in cancer, including HAT inhibitors, HAT

activators, HDAC inhibitors, and BET inhibitors. Also, we

proposed the future perspectives about the roles of protein

acetylation in carcinogenesis and targeted drug discovery. In

this review, we focus on the classification of acetylation and its

impact on pathophysiological processes in tumorigenesis. We
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link protein acetylation with epigenetic drugs for tumor

treatment to promote the development of cancer

precision medicine.
The components and process of
acetylation system in cancers

Types of acetylation in cancers

Protein acetylation is the process of covalently binding acyl-

CoA class A compound to protein-specific amino acid sites

under the action of acetyltransferases. Vincent Allfrey and his

colleagues discovered histone lysine acetylation modification in

1964 (7). In subsequent studies, they gradually discovered the

mechanism of acetylation modification, the discovery and

identification of HAT and HDAC, and the discovery and

identification of reader domains, which laid the foundation for

protein acetylation. With the development of mass spectrometry

and proteomics, non-histone acetylation was discovered and the

regulatory process of non-histone acetylation was revealed (7).

More and more studies have proved that histone acetylation and

non-histone acetylation have the same importance in the

regulation of biological processes in organisms (7). After the

discovery of non-histone acetylation, histone acetyltransferases

were also renamed lysine acetyltransferases and histone

deacetylases were renamed lysine deacetylases (7). Histone

acetylation occurs in the nucleus and is a type of epigenetic

regulation that regulates chromatin structure to regulate

transcription and DNA repair. Histone hyperacetylation by

histone acetyltransferase is associated with transcriptional

activation, while histone deacetylation by histone deacetylase is

associated with transcriptional repression. Histone acetylation

promotes transcription by remodeling higher-level chromatin

structure, attenuating histone-DNA interactions, and providing

binding sites for transcription activation complexes (12).

Histone deacetylation inhibits transcription, and histone

deacetylation and acetylation maintain homeostasis by

opposing mechanisms, including the assembly of higher-order

chromatin structures and the exclusion of bromo domain-

containing transcriptional activation complexes (12). Histone

acetylation and tumorigenesis are also closely related, and

histone acetylation promotes the expression of certain genes

that can lead to tumors (13). For example, P300 is a histone

lysine acetyltransferase that catalyzes the attachment of acetyl

groups to lysine residues, which leads to the activation of several

genes, including several oncogenes. Study finds elevated

expression of p300 in breast cancer (13).

Non-histone acetylation is involved in most biological

processes in organisms and occurs with very high frequency.

Non-histone acetylation is involved in key cellular processes

related to organism physiology and tumors, such as gene
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transcription, DNA damage repair, cell division, protein folding,

autophagy, cell signaling, and metabolism. For example,

HDAC6 acts not only on histones, but also on non-histone

substrates to maintain the balance of non-histone acetylation

(14). a-Tubulin, the first non-histone substrate of HDAC6,

reversibly modulates its homeostasis and in turn affects MT

stability and function (15). The a-tubulin acetylation affects

intracellular trafficking events through the protein encoded by

the cylindromatosis gene, thereby participating in mitosis and

affecting the development of the cell cycle (14). Non-histone

acetylation modifies protein expression through various

mechanisms and affects protein function. For example,

regulating protein stability, regulating protease activity,

affecting subcellular localization, and regulating protein-

protein interactions, etc. Protein acetylation can be classified

into three types (N-acetylation, O-acetylation, and K-

acetylation) according to acetylation site in a protein amino

acid sequence.

N-acetylation
N-terminal acetylation in a protein is one of the most

common modifications in mammals, which transfers the acetyl

group to the N terminus of the protein, the amino group of the

first residue in the protein (4). Unlike O-acetylation and K-

acetylation, N-acetylation is an irreversible post-translational

modification. N-acetylation occurs in 80%-90% of human

proteins and is controlled by N-acetyltransferases. The

addition of the acetyl group to N-terminus changes the charge

carried by the amino acid, neutralizes the positive charge of the

amino acid residue itself, changes the molecular weight of amino

acid residue, changes the properties of the protein, and then

affects the biological function of the protein. Studies have shown

that N-acetylation mainly affects protein-membrane binding

and protein stability (16). N-acetylation is also one of many

factors contributing to tumor progression; for example, slow N-

acetylation is a factor in bladder carcinogenesis and muscle

invasiveness, and NAT1 is recognized as a biomarker candidate

in bladder cancer and a potential target for drug development

point (17).

O-acetylation
O-acetylation was detected less frequently than N-

acetylation and K-acetylation. O-acetylation occurred mainly

on the hydroxyl group at the serine or threonine terminal. O-

acetylation was discovered in 2006 by Orth while studying YopJ,

a bacterial virulence factor that acts as an acetyltransferase

during acetylation (18). Studies have shown that YopJ

transfers acetyl groups to the hydroxyl residues of serine or

threonine, which inhibits the activation of MAPKK6, thereby

inhibits the activation of MAPK and NF-kB pathways, inhibites
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the response of immune responses, and promotes the occurrence

and development of malignant diseases (19). The discovery of O-

acetylation adds to the complexity of the study of the regulation

of gene expression by acetylation. Some studies have found that

O-acetylation can compete with phosphorylation at some

modification sites (20). Although there are few studies on O-

acetylation, it has been found that O-acetylation is closely related

to tumorigenesis in recent years (21). GD2 O-acetylation is

elevated in neuroblastoma and glioblastoma, which is a

potential biomarker of therapeutic target (21). In childhood

acute lymphoblastic leukemia, the expression of 9-O-acetylated

sialoglycoprotein was enhanced, decreased with the remission of

clinical symptoms, and increased again when the disease

relapsed (22). These studies indicate that O-acetylation might

be a potential biomarker and target for drug-targeted

therapy (22).
K-acetylation
Lysine acetylation is currently the most extensive research

field of acetylation. Protein deacetylation is very extensive in the

human body, with more than 3600 acetylation sites in more than

1750 proteins (23). Lysine acetylation mainly occurs on the

histones of ribosomes and is jointly regulated by lysine

acetyltransferase and lysine deacetylase to maintain the

dynamic balance of lysine acetylation in cells (9). Lysine

acetylation also occurs in non-histone proteins in the nucleus,

cytoplasm, and mitochondria, and regulates various biological

functions of cells (9). For example, DNA repair enzymes can be

carried out in the nucleus through acetylation (24). The dynamic

balance of lysine acetylation affects multiple functions in the cell,

such as gene replication, gene transcription, stability of protein

structure, interaction between proteins and proteins, cell cycle,

cellular self-regulation, phagocytosis, and cell apoptosis (25). For

example, there is a large amount of tubulin in the cytoplasm.

Tubulin acts as a cytoskeletal component to maintain the

stability of cells. The acetylation of a-tubulin is a significant

marker of microtubule stability (26). Studies have shown that the

acetylation of cytoskeleton is related to the occurrence of tumors,

and tubulin is the target of many anti-tumor drugs. Lysine

acetylation is one of the most important post-translational

modifications in cell signaling pathways (10). The occurrence

and development of many malignant tumors are closely related

to lysine acetylation (27). For example, most metabolic enzymes

are targets for lysine acetylation, such as ATM, ABL1, CDK9,

BTK, CDK1 (25, 28–32), and a large number of acetylated

proteins mediated abnormal changes in cell signaling pathways

(33). For instance, acetylated phosphoglycerate kinase 1 is

involved in glycolysis and amino acid biosynthesis in

nonfunctional pituitary neuroendocrine tumors (NF-

PitNETs) (34).
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Regulators of acetylation in cancers

Acetylation in eukaryotic cells is in a dynamic equilibrium,

which is jointly participated by writer-acetyltransferase, eraser-

deacetylase, acetyl coenzyme A, and reader (4) (Figure 1).

Writer-acetyltransferases
Protein acetylation is a dynamic process by the joint action of

acetyltransferases and deacetylases, including N-acetylation, O-

acetylation, and K-acetylation (18). Most of the current studies

focus on the acetylation of histones (6). Histone acetylation

mainly occurs on lysine residues of histones (K-acetylation) in

eukaryotic cells. The group is transferred to the side chain of the

lysine residue, which in turn changes the R group of the lysine

residue, neutralizes the positive charge on the lysine residue, and

then affects the properties of the protein, and affects the structure

and regulation of chromatin gene expression. According to

structural and sequence similarity, mammalian lysine

acetyltransferases are mainly divided into three categories:

GCN5-related enzymes, p300-related enzymes, and MYST19-

related enzymes (35). These acetyltransferases are present in the

nucleus, and there are also acetyltransferases such as ESCO1,

ESCO2, and HAT1 present in the nucleus (7). In addition to

acetyltransferase in the nucleus, tubulin also contains

acetyltransferase TAT1 (36). Acetylation of a-tubulin is a

prominent marker of microtubule stability, and p27 promotes

microtubule acetylation by binding and stabilizing ATAT-1 in

glucose-deficient cells (37). Acetyltransferases have substrate

specificity, which can regulate the structure of chromatin and

thus regulate gene expression (7). For example, MOZ has a plant

homeodomain-linked (PHD) type zinc finger that regulates

chromatin by binding to trimethylated lysine 4 of histone 3

Structure (38). Acetyltransferases are also closely associated with
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transcriptional activators. For example, loss of Kat2a affects

transcription factor binding and reduces transcriptional burst

frequency in a subset of gene promoters, thereby enhancing

variability at the transcriptional level (39). CBP/p300 blocks the

role of estrogen receptor alpha (ERa) in luminal breast cancer by

inhibiting enhancer H3K27 acetylation (40). The mechanism of

action of acetyltransferase depends on oncogene activation, which

is closely related to the occurrence and development of tumors

through signal transduction (41). Both Tip60 expression and

ABCE1 acetylation were up-regulated in lung cancer cells (42).

Downregulation of Tip60 reduced ABCE1 acetylation levels and

inhibited cell proliferation, invasion and migration (42). In

addition, downregulation of Tip60 activates the apoptotic

pathway, thereby achieves its inhibitory effect (42). Naa10 can

acetylate and stabilize TSC2, thereby inhibiting mTOR activity

and inhibiting cancer development (43). Acetyltransferase can

also control the occurrence and development of tumors by

regulating kinases in tumor cells. Naa10 inhibits tumor cell

migration by inhibiting MYLK kinase activity through

acetylation (44). ESCO2 inhibits the nuclear translocation of

hnRNPA1 and increases the binding of hnRNPA1

(heterogeneous nuclear ribonucleoprotein A1) to the intron

sequence flanking exon 9 (EI9) of PKM RNA, which ultimately

inhibites the formation of PKM1 isoforms and induces the

formation of PKM2 isoforms to promote glycolysis of tumor

cells, and accelerate the metabolism of tumor cells (45).

The abnormal expression of HATs is usually associated with

the occurrence and development of several malignant tumors

and poor prognosis, which indicates that HATs may be potential

tumor therapy targets and potential biomarkers (46). It is still

necessary to in-depth study the effect mechanism of HATs on

tumors to clarify the applicability and effectiveness of HATs in

the clinical treatment of tumors (Table 1).
FIGURE 1

The regulators of protein acetylation-writers, erasers, and readers.
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Eraser-deacetylases
Protein deacetylase is called the “eraser” of acetyl group,

which reduces the acetyl group attached to the amino acid

residue to acetate, affects the R group structure of the amino

acid residue, and then reduces the positive charge of the

amino acid, and facilitates its binding to negatively charged

DNA (52). Protein deacetylases are involved in regulating gene

replication, gene transcription, protein structure stability, DNA

damage repair, and other cellular functions (7). Mammalian

genes encode 18 deacetylases, which act on histone and non-

histone proteins in cells to remove their acetyl groups (7). For

example, sirtuin enzymes are divided into four classes and

localized in different locations of cells (57). Class III belongs to

NAD+-dependent sirtuin enzymes, which are localized in

mitochondria, cytoplasm and nucleus (57). Zn2+-dependent

HDACs have a highly conserved deacetylase domain, including

classes I (HDAC 1, 2, 3, and 8), II (HDAC 4, 5, 7, and 9), and IV

(HDAC 11) localized in the nucleus (58). Studies have found that

HDAC can not only act on histone deacetylation, but also play

other roles on histones, such as decrotonylation, and
Frontiers in Endocrinology 05
desumoylation (9). HDACs have been found to be abnormally

expressed or altered in localization in a variety of cancers (59).

Studies have shown that the abnormal expression of HDAC in

cancer patients is closely related to the dynamic imbalance of

acetylation in the human body (60). In addition, the specific

domains of individual sirtuins also have their own specific

functions, such as maintaining protein stability (52) (Table 2).

Transcription factors are a kind of non-histone proteins, and

protein deacetylases regulate gene transcription activity by

deacetylating transcription factors (27). For example, HDAC7

regulates the acetylation of H3K27 and the transcriptional

activity of super-enhancer-related genes in breast cancer stem

cells (80). A common mutation in AML is a chromosome 16

inversion that fuses the core-binding factor beta (CBFB) gene

with the smooth muscle myosin heavy chain gene (MYH11) to

form the oncogene CBFB-MYH11 (61). The expressed protein

CBFbeta-SMMHC forms a heterodimer with the key

hematopoietic transcription factor RUNX1, and CBFbeta-

SMMHC acts together with RUNX1 to activate the

transcription of specific target genes (61). HDAC1 promotes
TABLE 1 Classification, localization and role of acetylases in cancers.

Family Name Location Effects on cancers Reference

NAT Naa10 (NatA) Nucleus Represses tumor cell migration (44)

Naa20 (NAT5)

Naa30 (NAT12) Cytoplasm

Naa40 (NAT11) Negative regulator of apoptosis (47)

Naa50 (NAT5)

Naa60 (NAT15)

Naa11

NAT10

GNAT KAT1 Nucleus

GCN5 (KAT2A) Deplete acute myeloid leukemia (39)

PCAF (KAT2B) Modulate protein stability (48)

ELP3 (KAT9) Wnt-driven intestinal tumor initiation (49)

ATAT-1

AT-1 Regulate apoptosis (50)

AT-2

P300/CBP CBP (KAT3A) Breast cancer,
hematological malignancies

(40, 51)

P300 (KAT3B) Breast cancer,
hematological malignancies

(36, 52)

MYST Tip60 (KAT5) Lung cancer (42)

MOZ (KAT6A) Acute myeloid leukemia (38)

MORF (KAT6B) Leiomyoma (53)

HBO1 (KAT7) Promotes DNA replication licening (54)

MOF (KAT8) Tumor promoter in GBM (55)

Others ESCO1 Promote sister chromatid cohesion (56)

ESCO2 Promote LUAD malignant progression (45)

HAT1

TAT1 Tubulin
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transcriptional activation as a cofactor for the leukemic fusion

protein CBFbeta-SMMHC (61). HDACs also act directly on

proteins involved in tumor migration, metastasis and growth

(97). For example, Api5 is a known anti-apoptotic and nuclear

protein responsible for inhibiting cell death under conditions of

serum starvation (97). The only known post-translational

modification of Api5 is the acetylation of lysine 251 (K251)

(97). p300 interacts with HDAC1 to regulate cell proliferation by
Frontiers in Endocrinology 06
regulating Api5 acetylation and stability (97). Inactivation of

SIRT6 in cancer cells results in the accumulation of nuclear

ACLY protein, increasing nuclear acetyl-CoA, which in turn

drives site-specific histone acetylation and the expression of

cancer cell adhesion and migration genes that promote tumor

aggressiveness (98). Novel mechanism by which SIRT6

suppresses aggressive cancer cell phenotypes revealed and

acetyl-CoA-responsive cell migration and adhesion genes
TABLE 2 Classification, localization and role of deacetylases in cancers.

Family Name Location Cancer Effects on cancer Reference

Class I HDAC 1 Nucleus Acute myeloid leukemia
(AML)
glioblastoma

Regulate apoptosis
Maintenance of the malignant phenotype

(61–63)

HDAC 2 Nucleus Hepatocellular
carcinoma (HCC)

Regulate cell cycle, migration, apoptosis, and cell adhesion. (64, 65)

HDAC 3 Nucleus Acute myeloid leukemia
(AML),
colorectal cancer,
lung cancer,
melanoma,
human maxillary
cancer,
acute promyelocytic
leukemia (APL),
multiple myeloma
(MM),
hepatocellular
carcinoma (HCC),
breast cancer

Promotes cancer progression (66–72)

HDAC 8 Nucleus Acute myeloid leukemia Aberrant expression or deregulated interactions with transcription factors (73, 74)

Class II a HDAC 4 Nucleus Breast cancer,
Glioblastoma
nasopharyngeal
carcinoma

Promote proliferation, migration, and invasion in nasopharyngeal carcinoma (75–77)

HDAC 5 Nucleus CAN in HCC Regulate cell proliferation and invasion, the immune response, and maintenance of
stemness

(78, 79)

HDAC 7 Nucleus Breast cancer Regulates gene expression, cell proliferation, cell differentiation and cell survival (80, 81)

HDAC 9 Nucleus Breast cancers Antiestrogen resistance, promotes tissue-specific transcriptional regulation (82, 83)

Class II b HDAC 6 Cytoplasm Prostate cancer Regulate cell proliferation, metastasis, invasion, and mitosis (14, 84)

HDAC 10 Cytoplasm Lung adenocarcinoma (85)

Class III SIRT 1 Nucleus Lung cancer Involved in gene regulation, genome stability maintenance, apoptosis, autophagy,
senescence, proliferation, aging, and tumorigenesis

(86, 87)

SIRT 2 Cytoplasm Lung cancer,
Glioblastoma
melanoma

suppresses NK cell function and proliferation (76, 86, 88)

SIRT 3 Mitochondria Lung cancer,
Ovarian cancer

Regulate autophagy (89, 90)

SIRT 4 NSCLC,
Endometrioid
adenocarcinoma

(91) (92)

SIRT 5 Acute Myeloid
Leukemia

(93)

SIRT 6 Nucleus Acute Myeloid
Leukemia

(94)

SIRT 7 Nucleosome Breast cancer,
glioblastoma

(76, 95)

Class IV HDAC11 Nucleus HCC High expression in HCC (96)
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identified as downstream targets of SIRT6 (98). Therefore, the

regulatory mechanism of HDACs in tumors is difficult to be

clearly described.

Class III HDACs are mainly located in mitochondria, which

are the center of cellular energy metabolism (57). Acylated

mitochondrial proteins are involved in many functions related

to cellular metabolism, including TCA cycle, oxidative

phosphorylation, nucleotide metabolism, amino acid

metabolism, and urea cycle (99). SIRT can regulate energy

production by regulating the acetylation and deacetylation of

organisms involved in energy metabolism in mitochondria,

thereby affecting cellular metabolism (7). For example, sirtuin

3 (Sirt3) is a key player in maintaining mitochondrial function

and is involved in ATP production by regulating the acetyl and

pyruvate dehydrogenase complex (PDH) (89). The underlying

mechanism of SIRT is also related to the metabolic

reprogramming of tumors (9). SIRT5 disruption-induced

apoptosis is caused by a decrease in oxidative phosphorylation

and glutamine utilization and an increase in mitochondrial

superoxide, which is attenuated by ectopic superoxide

dismutase 2 (93). SIRT5 controls and orchestrates key

metabolic pathways in AML, so SIRT5 may be a potential

therapeutic target in AML (93).

Class IV HDACs only contain HDAC11, which is highly

expressed in HCC and is closely related to disease prognosis

(96). Loss of HDAC11 promotes histone acetylation in the LKB1

promoter region, thereby activating the AMPK signaling

pathway and inhibiting the glycolysis pathway, thereby

increasing the transcription of LKB1, thereby inhibiting

tumorigenesis and HCC progression (96). Histone deacetylases

are abnormally expressed in clinical tumor patients and are

associated with poor prognosis and survival (59). HDAC9

expression is positively associated with up-regulated genes in

endocrine therapy-resistant breast cancer, and high HDAC9

levels are associated with poorer prognosis in patients treated

with OHTam (82). HDAC10 regulates tumor stem cell

properties in KRAS-driven lung adenocarcinoma, and

HDAC10 regulates the stem-like properties of kras-expressing

tumor cells by targeting SOX9 (85). The expression of SOX9 is

significantly increased in HDAC10-depleted tumor cells, TGFb
pathway-related genes are enriched in HDAC10 knocked out

tumor cells, and activation of TGFb signaling contributes to the

induction of SOX9 in HDAC10 knocked out lung

adenocarcinoma cells (85). However, HDACs show activating

activity in some tumors and inhibitory activity in some tumors,

which suggests that their mechanism of action might not be a

single one. SIRT1 may exert oncogenic effects by inactivating

other tumor suppressors (eg, HIC1) and/or activating tumor-

promoting genes (eg, via N-Myc stabilization or p53) or other

proteins (cortatin) (100–102). There are interactions between

HDACs. Studies have shown that inhibition or knockdown of

HDAC1 and HDAC3 results in downregulation of HDAC7,
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which is associated with reduced histone 3 lysine 27 acetylation

(H3K27ac) at transcription start sites (TSS) and super-enhancers

(SEs), this is particularly evident in stem-like BrCa cells (80).

Inactivation of HDAC7 can lead to suppression of the CSC

phenotype, either directly or through the inhibition of HDAC1

and HDAC3, by downregulating multiple se-related oncogenes

(80). HDAC7 may be a potential drug target (80).

HDACs inhibitors also have many adverse reactions in

clinical application, such as drug resistance and toxic side

effects (59). Aberrant expression of HDACs has also been

shown to correlate with tumor resistance. HDAC8 increases

the expression of p65, a key component of the NF-kB complex,

and promotes the expression of IL-6 and IL-8 (103). This may be

because HDAC8 can directly bind to the promoter of p65,

increasing its transcription and expression. Thus, HDAC8

promotes DNR resistance in human AML cells by regulating

IL-6 and IL-8 (103).

Acetyl coenzyme A
Acetyl Coenzyme A is a key precursor that used to

synthesize acetyl. The progression of lysine acetylation can be

controlled by regulating the concentration of acetyl-CoA.

Acetyl-CoA is an important metabolite in cellular biological

processes and is the only donor of acetyl groups during

acetylation (104). Acetyl-CoA has different production

pathways in different organelles. Acetyl-CoA produced in

different organelles can be locally utilized in organelles,

produced by decarboxylation of pyruvate in mitochondria, and

produced by fatty acid b-oxidation in cytoplasm (105). ACLY,

ACSS2, PDC can produce acetyl-CoA in organelles to regulate

lysine acetylation (106). The interaction between lysine

acetylation and acetyl-CoA is influenced by many factors,

including the kinds of HATs, the acetyl-CoA/CoA ratio and

intracellular pH gradient (107, 108).

Acetyl-CoA is derived from glycolysis and b-oxidation in the

mitochondrial matrix, which ultimately leads to the production

of cytoplasmic pyruvate,and enters the mitochondria for

decarboxylation to form acetyl-CoA (109, 110). Branched-

chain amino acids (i.e., valine, leucine, and isoleucine) can also

be used to produce acetyl-CoA (111). Most of the acetyl-CoA in

the cytoplasm comes from glutamine reductive carboxylation,

which generates acetyl-CoA through the TCA cycle (112).

Acetyl-CoA also has compartmentalized effects on protein

acetylation. Acetyl-CoA exists in mitochondria, nucleus, and

cytoplasm (105). Acetyl-CoA in mitochondria has a specific

source pathway. Acetyl-CoA can pass through nuclear pores in

the nucleus and cytoplasm. During the shuttle, acetyl-CoA has

different abundances of acetyl-CoA in the nucleus and

cytoplasm, and the occurrence of protein acetylation is also

different (105). At the same time, studies have shown that the

acetyl-CoA/CoA ratio may be a relevant regulator of HAT enzyme

activity, rather than the absolute level of acetyl-CoA (105).
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This establishes a link between the nuclear and cytoplasmic

abundance of acetyl-CoA and the epigenetic regulation of genes

(105). In the process of tumorigenesis, abnormal expression of

acetyl-CoA was also found. Acetyl-CoA can affect the

proliferation, invasion and migration of tumor cells directly or

by affecting protein acetylation (113). Acetyl-CoA induces cell

growth and proliferation by promoting acetylation of histones at

growth genes (113), and increase the levels of acetyl-CoA and

acetylated histones to maintain the accelerated proliferation of

cancer cells (105).

Reader
For histone acetylation to exert their biological functions,

they also need to be combined with specific recognition proteins.

Acetylated lysine in a protein will provide a reading site, recruit

proteins with special structural domains, affect biological

functions such as gene replication, gene transcription, and

repair after DNA damage, and jointly participate in the

regulation of gene expression (8). Recognition proteins can

contain multiple different recognition domains that cooperate

with PTM sites. Studies have shown that lysine-containing

acetylation modification sites can be specifically recognized by

proteins such as bromodomains, dual-PHD finger domains, and

YEATS domains (8).

Four BET proteins have been identified in humans, BRD2,

BRD3, BRD4 and the testis-specific protein BRDT (114). BRDT

is only present in male germ cells (115). The BET family controls

the transcr ipt ion of var ious proinflammatory and

immunoregulatory genes by recognizing acetylated histones

(mainly H3 and H4) and recruiting transcription factors (such

as RELA) and transcription elongation complexes (such as P-

TEFb) to chromatin, thereby promoting the phosphorylation of

RNA polymerase II and subsequent transcription initiation and

elongation (116).

Localized in the nucleus, BRD2 can bind to hyperacetylated

chromatin and play a role in transcriptional regulation through

chromatin remodeling (115). BRD2 can regulate the

transcription of the CCND1 gene and play a role in

nucleosome assembly (117). Abnormal expression of BRD2

affects the development of various malignant tumors (118).

For example, Runx3 forms a complex with BRD2 in a KRas-

dependent manner in the early stages of the cell cycle, resulting

in the inactivation of Runx3 and promoting the development of

lung adenocarcinoma (118). Studies have shown that OCCC

cells are susceptible to knockdown of epigenetic gene targets

such as bromopseudomin and the extraterminal domain (BET)

proteins BRD2 and BRD3, and targeting the BET proteins BRD2

and BRD3 in combination with PI3K-AKT inhibition may as a

therapeutic strategy for ovarian clear cell carcinoma (119). The

abnormal expression of BRD2 is also closely related to the drug

resistance of patients. Studies have shown that BRD2 promotes

drug resistance in adult T-LBL through the RasGRP1/Ras/ERK
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signaling pathway (120). Targeting BRD2 may be a new strategy

to improve treatment efficacy and prolong survival in adults with

T-LBL (120).

Localized to the nucleus, BRD3 is a chromatin reader that

recognizes and binds hyperacetylated chromatin and plays a role

in transcriptional regulation, possibly through chromatin

remodeling and interactions with transcription factors (121).

BRD3 regulates transcription by promoting the binding of the

transcription factor GATA1 to its targets (122). The study found

that BRD3 directly interacts with BCL6 and maintains the

negative feedback regulatory loop of BCL6 (123). BRD2 and

BRD3 preferentially associate with hyperacetylated chromatin

throughout the length of transcribed genes in vivo (121). BRD2-

and BRD3-associated chromatin was significantly enriched in

H4K5, H4K12, and H3K14 acetylation reactions, and contained

relatively less dimethylated H3K9 (121). Both BRD2 and BRD3

allow RNA polymerase II transcription by nucleosomes in a

defined transcription system (121).

Localized in the nucleus, BRD4 is currently the most widely

studied chromatin reader protein that recognizes and binds

acetylated histones and plays a key role in the transmission of

epigenetic memory across cell division and transcriptional

regulation (124). Remains associated with acetylated

chromatin throughout the cell cycle, and by preserving

acetylated chromatin state and maintaining higher-order

chromatin structure (125). Studies have shown that BRD4 is a

transcriptional repressor of autophagy and lysosomal function

(126). BRD4 plays a key role in regulating the transcription of

signal-induced genes by binding to the P-TEFb complex and

recruiting it to promoters. The P-TEFb complex is also recruited

to the distal enhancer, an anti-pause enhancer that cooperates

with JMJD6 (125). BRD4 and JMJD6 are required to form the

transcriptionally active P-TEFb complex by replacing negative

regulators such as HEXIM1 and the 7SK snRNA complex from

P-TEFb, thereby converting it to the active form, which can then

phosphorylate the C-terminal structure of RNA polymerase II

Domain (CTD) (125). MYC regulates its own transcription by

restricting its site for BRD4-mediated chromatin remodeling

(127). The MYC-stabilizing kinase ERK1 regulates MYC levels

directly or indirectly by inhibiting BRD4 kinase activity. These

findings suggest that BRD4 negatively regulates MYC levels,

which is counteracted by ERK1 activation (127).

BRD4 has three isoforms, BRD4 short isoform and BRD4

long isoform (128). There are two BRD4 short isoforms, which

are spliced from other mRNAs. The short isoform of BRD4

promotes tumor metastasis, and the long isoform of BRD4

inhibits tumor metastasis and spread (128). Study shows

BRD4 isoforms have opposing functions in breast cancer

(128). The role of BRD4 in cancer is largely dependent on the

long isoform (BRD4-L), and we demonstrated by isoform-

specific knockdown and endogenous protein detection as well

as transgene expression that the less abundant short isoform of
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BRD4 (BRD4-L) S) is oncogenic and BRD4-L has a tumor

suppressor role in breast cancer cell proliferation and

migration as well as breast tumor formation and metastasis

(128). An isoform of BRD4 that acts as a chromatin insulator in

DNA damage response pathways (129). Inhibits DNA damage

response signaling by recruiting condensin-2 complexes to

acetylated histones, leading to remodeling of chromatin

structure, shielding this region from DNA by limiting the

spread of histone H2AX/H2A.x phosphorylation injury

response (129).

Due to the abnormal expression of BRD4 in various tumors,

targeting BRD4 has emerged as a potential therapeutic strategy

(130). For example, the expression of BRD4 in glioma was

significantly higher than that in adjacent normal brain tissue

(130). BRD4 inhibitors effectively penetrate the blood-brain

barrier and target glioma tumor tissue, but have little effect on

normal brain tissue (130). BRD4 is overexpressed in NFPA and

GHPA, and the effects of BRD4 inhibitors on PA cells in vitro

and in vivo were evaluated, so BRD4 is a promising therapeutic

target for NFPA and GHPA (131).

BRD4 promotes the progression and metastasis of gastric

cancer, and the abundance of BRD4 in human gastric cancer

tissue is associated with shorter survival in patients with non-

metastatic gastric cancer (132). BRD4 recognizes acetylated

K146 and K187 on snails in an acetylation-dependent

manner to prevent snails from recognition by their E3

ubiquitin ligases FBXL14 and b-Trcp1, thereby inhibiting snail

polyubiquitination and proteases body degradation (132).

The mode of action of I-BET151 is due to the repression of

transcription of key genes (BCL2, C-MYC and CDK6) by

displacing BRD3/4, PAFc and SEC components from

chromatin (133). This suggests that replacing BET proteins

from chromatin is a potential epigenetic therapy for aggressive

leukemia. BRDT (Bromodomain testis-specific protein),

localized in the nucleus, exists only in male germ cells, and

not often studied in tumors (115).

YEATS family proteins include YAF9, ENL, AF9, TAF14,

SAS5 proteins (4). As the “readers” of protein acetylation,

YEATS family proteins can combine with proteins to form

various chromatin-related complexes with different complex

functions, and play a role in chromatin remodeling and gene

expression (4). YEATS family proteins are closely related to the

occurrence of various malignant tumors. For example, ENL

binds to acetylated histone H3, and co-localizes with H3K27ac

and H3K9ac on the promoters of actively transcribed genes that

are critical for leukemia (134). ENL is a regulator of leukemia.

oncogenic transcriptional program (134), and an intact YEATS

chromatin-reader domain was essential for ENL-dependent

leukemic growth (135). YEATS4 overexpression enhances the

malignant features of breast cancer cells, especially inducing

epithelial-to-mesenchymal transition, and YEATS4 is associated

with poor prognosis in breast cancer (136). YEATS protein
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promotes the proliferation of gastric cancer cells and affects

tumor development by activating the Wnt/b-catenin signaling

pathway (137). GAS41 is abundantly expressed in non-small cell

lung cancer and is closely related to the proliferation of lung

cancer cells (138). YEATS2, a target gene of HIF1a, promotes

pancreatic cancer development under hypoxia (139).

Complex post-translational modifications are affected by

many factors, one of which is the way the recognition site

binds to the recognition protein. Initial studies believed that a

post-translational modification recognition site can only bind to

one recognition protein. The researchers found that a PTM

recognition site can interact with multiple recognition proteins,

eg. At the same time, a single recognition domain can also bind

to multiple different protein PTMs, eg. Also, since recognition

proteins include multiple distinct domains, synergy is extremely

common in recognition proteins.
Biological role of acetylation in
cancer pathophysiology

Acetylation of proteins is related to various kinds of cellular

processes and human cancer (140). Here, we address the roles of

acetylation in cancer cell apoptosis, autophagy, cell metabolism,

cell cycle, proliferation, and migration and invasion, which will

offer the basis for acetylation enzymes and BETs in reader as the

important therapeutic targets (Figure 2).
Role of acetylation in apoptosis

Apoptosis refers to the orderly death of cells controlled by

genes, which is a normal programmed death in order to maintain

the stability of the internal environment. In the process of cell

apoptosis, it can be divided into the initiation stage, which receives

apoptosis signals, interacts with apoptosis regulators, and then

activates proteolytic enzymes, resulting in apoptosis (141).

However, tumors have the characteristics of avoiding apoptosis,

and abnormal apoptosis leads to abnormal tumor growth (142).

The abnormal expressions of acetyltransferase and deacetylase can

affect the normal apoptosis of cells. For example, PDCD5, a

protein associated with apoptosis in human cells, binds to Tip60

and enhances the stability of Tip60 protein under stress-free

conditions (143). PDCD5 increases Tip60-dependent K120

acetylation of p53 and is involved in p53-dependent expressions

of apoptosis-related genes such as Bax (143). The combination of

PDCD5 and Tip60 accelerates DNA damage-induced apoptosis,

whereas knockdown of PDCD5 or Tip60 inhibits apoptosis-

accelerating activity (143). HDAC1 and HDAC2 double

knockout cells show significant activation of apoptosis (144).

HDAC6 negatively regulates pro-apoptotic acetylation of p53 at

K120 in mesenchymal stem cells (MSCs) (145). Studies have
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shown that targeting histone acetyltransferases and histone

deacetylases can regulate tumor cell apoptosis, thereby affecting

tumor growth and development (146). For example, histone

deacetylase inhibitors induce apoptosis and autophagy in

human neuroblastoma cells (147). Valproic acid induces cell

cycle arrest and apoptosis via Hsp70 acetylation and inhibits

proliferation of HER2-expressing breast cancer cells (148). When

rRNA transcription was inhibited, nucleolar RNA content was

reduced. The nucleolar protein Myb-binding protein 1A

(MYBBP1A) translocates to the nucleoplasm and increases p53

acetylation as the level of nucleolar RNA content decreases (149).

Acetylated p53 enhances p21 and BAX expression and induces

apoptosis (149). Targeting protein acetylation to regulate tumor

apoptotic activity can provide new therapeutic ideas for the

clinical treatment of malignant tumors.
Role of acetylation in autophagy

Autophagy is a special substance degradation pathway in

cells, which depends on lysosomes for its action (10). The

degradation substrates of autophagy include proteins and

organelles. The probability of autophagy occurring in normal

cells is low, and it mainly occurs in cells under abnormal

conditions, such as starvation, hypoxia or organelle damage

(150). There are three main types of autophagy. (i) The first

type is microautophagy, in which lysosomes wrap a part of the

cytoplasm into lysosomes and degrade them. (ii) The second is

macroautophagy, which first generates an autophagosome (151).

The double-membrane structure of the phagosome, the fruiting

body contains the substances that need to be degraded in the

cytoplasm, the autophagosome and the lysosome are combined

to generate the autophagolysosome, and the acidic substances in

the lysosome are used to degrade the autophagosome (151).
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Substances are degraded. (iii) The third is chaperone-mediated

autophagy. Molecular chaperone-mediated autophagy uses heat

shock protein 70 to bind to substrates with specific amino acid

sequences and transport the substrates to lysosomes for further

development (152). In 2004, Shao et al. found that HDAC

inhibitor suberoylanilide hydroxamic acid b-D-glucur onide

could induce autophagic death of cancer cells, and researchers

gradually began to pay attention to the relationship between

protein acetylation and autophagy (153). There is a close

relationship between histone acetylation and cell autophagy.

Histone acetylation can induce the occurrence of cell

autophagy in the face of long-term stress, starvation and other

harsh environments (154). The most widely studied is the

relationship between H4K16ac and H3K56ac and autophagy.

In eukaryotic cells, H4K16ac affects chromatin condensation

and promotes gene transcription (155).

There is also a close link between non-histone acetylation

and cell autophagy. Non-histone protein associated with

autophagy that can be acetylated include transcription factors,

autophagy-related proteins, and cytoskeletal proteins (7). The

Fox O protein family is a transcriptional activator in eukaryotic

cells, and acetylation can affect its biological activity. K on Fox O

protein can be acetylated by HAT, and the activity of Fox O

protein after acetylation is reduced, inhibiting DNA and its

interaction, binding to regulate transcription (156). SIRT1 can

also affect autophagy by regulating Fox O activity (157). TFEB

protein is also a transcription factor that regulates the

transcription of autophagy-related genes, such as LC3, and

plays an important role in biological processes such as

lysosomal biosynthesis and autophagy activation (158). The

biological activity of the TFEB protein family is also affected

by acetylation modification, and TFEB deacetylation can

significantly enhance the autophagy and lysosomal function of

cells (159). The TFEB-specific lysine acetylase is GCN5, which
FIGURE 2

Biological role of histone acetylation and non-histone acetylation in cancer pathophysiology.
frontiersin.org

https://doi.org/10.3389/fendo.2022.972312
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2022.972312
can acetylate the K276 and K279 sites of TFEB, affect the

formation of TFEB dimers, interfere with the binding of TFEB

and its targets, and inhibit autophagy happened (160).

Acetylations affect subcellular localization, thereby affecting

autophagy (161). In general, BmP300-mediated acetylation

sequesters components of the BmAtg8-PE ubiquitin-like

system in the nucleus, leading to inhibition of autophagy.

Conversely, BmHDAC1-mediated deacetylation leads to

nuclear-to-cytoplasmic transfer of components of the BmAtg8-

PE ubiquitin-like system, promoting autophagy (161).

Protein acetylation is an important process regulating

autophagy and plays an important role in the development of

malignant diseases. The phosphorylation of ATG5 (T101) in the

lesion tissue of glioblastoma patients is positively regulated by

the acetylation modification of the hypoxia-induced autophagy

regulator PAK1, which plays an important role in hypoxia-

induced autophagy and promotes the occurrence and

development of tumors (162). Targeting protein acetylation

modification to regulate autophagy activity can provide new

therapeutic ideas for clinical treatment of malignant tumors.
Role of acetylation in cell metabolism

A major feature of tumors is uncontrolled proliferation,

fueled by corresponding metabolic dysregulation (2). Tumors

undergo metabolic reprogramming to promote tumor cell

growth, division, invasion and migration. An abnormal

response of tumor cell energy metabolism is called the

Warburg effect (89). In the presence of oxygen, tumor cells

reprogram glucose metabolism by limiting energy metabolism

mainly to glycolysis, thereby generating energy for tumor growth

(163). Lysine acetylation is a ubiquitous modification in enzymes

that catalyze intermediate metabolism. Almost every enzyme in

glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, urea

cycle, fatty acid metabolism and glycogen metabolism is found to

be acetylated in human liver tissue (10). All seven enzymes in the

TCA cycle are acetylated (10). Acetylation occurs in most

intermediate metabolic enzymes, and acetylation can directly

affect the activity or stability of the enzyme (10). The

bioenergetic preference of cancer cells promotes tumor

acidosis, which in turn results in a marked reduction in

glycolysis and glucose-derived acetyl-CoA (164). Protein

acetylation affects tumor metabolism by affecting the TCA

cycle. CBP acetylates STAT3 to undergo mitochondrial

translocation, and STAT3 associates with pyruvate

dehydrogenase complex E1, which in turn accelerates the

conversion of pyruvate to acetyl-CoA, increases mitochondrial

membrane potential and promotes ATP synthesis (165). SIRT5

removes the STAT3 acetyl group, thereby inhibiting its

function in mitochondrial pyruvate metabolism (165). The

protein also affects lipid metabolism in tumor cells and thus
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affects tumor development (166). Dynamic regulation of ME1

phosphorylation and acetylation affects lipid metabolism and

colorectal tumorigenesis (166). The manner in which SIRT6

deacetylase antagonizes ACAT1 function involves mutually

exclusive ME1 S336 phosphorylation and K337 acetylation

(166). ACAT1 acetylates GNPAT at K128, which inhibits

TRIM21-mediated GNPAT ubiquitination and degradation

(167). GNPAT deacetylation by SIRT4 antagonizes the

function of ACAT1. GNPAT inhibits TRIM21-mediated

degradation of FASN and promotes lipid metabolism. promote

the occurrence of liver cancer (167). Studies have shown that

lysine acetylation controls metabolic activity by directly blocking

the active site of the enzyme (168).
Role of acetylation in cell cycle

Protein acetylation is closely related to gene transcription.

Hyperacetylation promotes gene transcription and expression,

while hypoacetylation inhibits gene transcription and expression

(12). A large number of proteins involved in chromatin

remodeling and cell cycle are acetylated (169). The cell cycle of

tumor cells is greatly shortened and disordered. Studies have

found that acetylation of tumor cells is also closely related to cell

cycle progression (170). Protein acetylation affects tumor cell cycle

progression by affecting chromatin remodeling, SIRT2 regulates

H4K20me1 deposition through deacetylation of H4K16Ac

(acetylation of H4K16), regulates chromatin localization, and

affects cell cycle progression (169). Protein acetylation also has

effects through the regulation of various factors in the cell cycle.

For example, CDC2, a major cyclin-dependent kinase and

regulator of S-phase progression and mitosis, is acetylated at

residues K6 and K33 in CDC2 (25). SIRT1 interacts with CHK2

and is deacetylated at residure lysine 520, which inhibits CHK2

phosphorylation, dimerization, and thus activation (171). SIRT1

depletion induces CHK2 hyperactivation-mediated cell cycle

arrest and subsequent cell death (171). Transcription factor Sp1

is a target of acetylation and is closely associated with cell cycle

arrest in colon cancer cell lines (172). Simultaneous regulation of

Api5 acetylation and deacetylation is an important factor in cell

cycle progression (97).
Role of acetylation in cell proliferation

Cancer cells have unlimited replicative potential with

continuous proliferative signals (2). Normal cells and tissues

release growth signals in an orderly manner, and these growth

signals instruct cells to grow, divide and differentiate in an

orderly manner, thereby ensuring the stability of cell numbers

and the homeostasis of the internal environment, thereby

maintaining normal tissue structure and function (2).
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However, tumor cell proliferation signals are abnormal and can

continuously obtain proliferation signals from a variety of

different pathways. In the abnormal proliferation of tumor

cells, protein acetylation plays an important role. For example,

acetylation at the K323 site of PGK1 is an important regulatory

mechanism that promotes its enzymatic activity and cancer cell

metabolism (173).

Acetyltransferase and deacetylase dynamically regulate the

balance of acetylation, affecting the apoptosis and autophagy of

tumor cells and other death methods, thereby affecting the

proliferation of tumor cells. For example, Api5 is a known

anti-apoptotic and nuclear protein responsible for inhibiting

cell death under serum starvation conditions (97). The only

known post-translational modification of Api5 is acetylation at

K251. The K251 acetylation in Api5 is responsible for its

stability, whereas the deacetylated form of Api5 is unstable

(97). Inhibition of acetylation by p300 results in a decrease in

Api5 levels, whereas inhibition of deacetylation by HDAC1

results in an increase in Api5 levels (97). Acetylation also

affects the proliferation of tumor cells by affecting the activities

of various metabolic enzymes in cells. For example, PKM2 K305

acetylation reduces PKM2 enzymatic activity and promotes its

lysosome-dependent degradation through chaperone-mediated

autophagy (CMA) (174). Degrade and promote tumor growth

through chaperone-mediated autophagy (174). Ribonucleotide

reductase (RNR) catalyzes the de novo synthesis of

deoxyribonucleoside diphosphates (dNDPs), which provide

dNTP precursors for DNA synthesis (175). Acetylation at

residue K95 in RRM2 results in a reduction of the dNTP pool,

DNA replication fork arrest, and inhibition of tumor cell growth

in vitro and in vivo (175). P300 acetylates MAT IIa at K81 and

destabilizes MAT IIa by promoting its ubiquitination and

subsequent proteasomal degradation, inhibits tumor cell

growth, and is reduced in human hepatocellular carcinoma

(176). Inactivation of HDAC2 leads to elevated TPD52

acetylation, which impairs the interaction between TPD52 and

HSPA8, resulting in impaired CMA function and tumor growth

in vivo (177). Acetylation-dependent regulation of CMA

oncogenic function in PCa by TPD52 suggests the possibility

of targeting the TPD52-mediated CMA pathway to control PCa

progression (177). p21 depletion converts KLF4 from a cell cycle

inhibitor to a promoter of bladder cancer cell proliferation (178).

Furthermore, KLF4 is acetylated in a p21-dependent manner to

inhibit bladder cancer cell growth as a tumor suppressor (178).

Since tumor cell proliferation is affected by acetylation

modifications, drugs targeting acetylation can be used to treat

abnormal tumor growth. For example, Rg3 extracted from

ginsenosides has antiproliferative activity against melanoma by

reducing HDAC3 and increasing p53 acetylation in vitro and in

vivo (179). Therefore, Rg3 may serve as a potential therapeutic

agent for the treatment of melanoma (179). Therapeutic
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modalities targeting acetyltransferases and deacetylases are also

a potentially effective tumor treatment modality.
Role of acetylation in migration
and invasion

The development of tumor is divided into multiple stages. In

the early stage, the primary lesion proliferates indefinitely, and

after the formation of an obvious primary lesion, the function of

the organ in which it is located is affected (2). Although the

primary tumor is extremely malignant, the cause of death in

most patients is the abnormal growth of metastatic tumors in

sites other than the primary tumor (180). The reasons for these

metastases are also unresolved and need to be discovered and

solved urgently. Studies have found that protein acetylation is

one of the important factors affecting tumor cell metastasis (6).

For example, isocitrate dehydrogenase 1 (IDH1) is

hyperacetylated in CRC primary tumors and liver metastases

(181), sirtuin-2 is the deacetylase of IDH1, and SIRT2

overexpression significantly inhibits CRC cell proliferation,

migration and invasion (181). COL6A1 is dysregulated in

several human malignancies, and upregulation of H3K27

acetylation-activated COL6A1 promotes cell migration and

invasion by inhibiting the STAT1 pathway in OS cells and

promotes osteosarcoma lung metastasis (182). ZMYND8

acetylation of P300 at residues K1007 and K1034 is required

for HIF activation and breast cancer progression and metastasis

(183). TGF-b-activated kinase 1 (TAK1) stimulates

phosphorylation by TGF-b and then induces acetylation of

tubulin through aTAT1 activation, which subsequently

activates AB cell migration and invasion (184). AFP

acetylation promotes its oncogenic effects by blocking binding

to the phosphatase PTEN and the pro-apoptotic protein

caspase-3, thereby increasing signaling of proliferation,

migration and invasion and reducing apoptosis (185). In HCC

cells, hepatitis B virus X protein (HBx) and palmitic acid (PA)

increased the levels of acetylated AFP by disrupting SIRT1-

mediated deacetylation (185). AFP acetylation plays an

important role in hepatocellular carcinoma progression (185).

miR-15a-5p reduces histone H4 acetylation by inhibiting ACSS2

expression, inhibiting acetyl-CoA activity (186). miR-15a-5p

inhibits lipid metabolism by inhibiting ACSS2-mediated

acetyl-CoA activity and histone acetylation, thereby inhibiting

a novel mechanism of lung cancer cell metastasis (186). In

addition to histone acetylation affecting tumor cell invasion

and migration, non-histone acetylation also affects tumor

metastasis. For example, elevated levels of alpha-tubulin

acetylation are sufficient reasons for the metastatic potential of

breast cancer (187). Metastatic breast cancer cells exhibit high

levels of alpha-tubulin acetylation, extending along
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microantenna (McTN) protrusions (187). Mutation of

acetylation sites on a-tubulin and enzymatic regulation of this

post-translational modification had a dramatic effect on McTN

frequency and reattachment of suspended tumor cells (187).

Reducing alpha-tubulin acetylation significantly inhibited

migration but not proliferation (187). Targeting protein

acetylation to affect tumor invasion and migration may serve

as a potentially effective therapeutic strategy.
Acetylation system-based targeted
drugs in cancer

Research on abnormal protein acetylation in cancer mainly

focuses on the mechanism of tumorigenesis, identification and

prediction of new biomarkers for tumor invasion and migration,

and tumor therapy. Since the process of protein acetylation is

reversible, treating tumors can restore the acetylation process to

normal levels for treatment. Therefore, some inhibitors of

protein acetylation have also been approved for clinical

treatment (59). For example, HAT inhibitors, HDAC inhibitors,

HAT activators, and HDAC activators (59, 188, 189). HDAC

activators are currently less studied.

Epigenetic regulation is an extremely promising strategy for

the treatment of tumors, so many HAT- and HDAC-related

modulatory drugs have been clinically tested (190). A research of

NEO2734 in clinical trial revealed that there is an ongoing

clinical trial. NEO2734 is a dual BET and CBP/p300 inhibitor

targeting patients with advanced solid tumors and is in phase 1

clinical trials. Curcumin, a natural product-derived epigenetic

modulator, the effect of curcumin on HDAC activity is variable

and likely cell-line specific (190). Multiple clinical trials of

curcumin have been completed, and other clinical trials

are ongoing.

HDAC is considered to be a potential next-generation tumor

therapy because HDAC inhibitors have been shown to have

significant efficacy in a variety of tumor treatments (191, 192).

Among them, vorinostat, romidepsin, panobinostat and

belinostat have been approved by the US FDA for cancer

treatment and are used in peripheral T-cell lymphoma,

cutaneous T-cell lymphoma, and multiple myeloma (191, 192).

Vorinostat has been shown to be effective in the treatment of

cutaneous T-cell lymphoma and is already in clinical use (192).

Romidepsin regulates the expression of the immune checkpoint

ligand PD-L1, and suppresses cellular immune function in colon

cancer (193). Romidepsin has antitumor effects on several types

of solid tumors (193). Romidepsin is used in clinical treatment of

T-cell lymphoma (194). The safety and activity of panobinostat

in relapsed/refractory Hodgkin lymphoma was also

demonstrated in a multicenter phase II trial, and showed a

significant reduction in tumor size (195). Belinostat has been

found to be effective and well tolerated in patients with
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peripheral T-cell lymphoma (PTCL) or cutaneous T-cell

lymphoma (CTCL) (196). Abexinostat is an extremely

promising new HDAC inhibitor. Clinical trials have been

carried out simultaneously in the United States and China.

The main indications include hematological tumors (197, 198),

metastatic sarcoma (199), breast cancer (200). There are also a

number of drugs in clinical trials. Trichostatin A, for example, is

in phase I clinical trials and is being tested in the clinic for

tolerability in relapsed or refractory hematological malignancies.

Ricolinostat is in phase II clinical trials for the treatment of

multiple myeloma. The clinical development of HDAC

inhibitors illustrates an extremely promising avenue for the

treatment of tumors through epigenetic modulation.
HAT inhibitors

HAT is one of the important targets of tumor therapy. HAT

inhibitors are inhibitors of protein acetyltransferase, which can

inhibit its activity and reduce the level of protein acetylation.

Three types of HAT inhibitors have been reported, dual

substrate inhibitors, natural compounds and synthetic

compounds (201). HAT inhibitors are widely used in tumor

treatment. Currently, the main researches are drug inhibitors

targeting CBP/P300 and small molecule inhibitors of HAT

domain (201) (Table 3).

Anacardiic acid, a natural compound extracted from natural

plants, is a p300/CBP histone acetyltransferase inhibitor,

significantly reduces the viability of PTEN-/- cells not in

PTEN+/+ cells by inducing apoptosis (209). Delphinoside

induces p53-mediated apoptosis in human prostate cancer

LNCaP cells by inhibiting HDAC activity and activating p53

acetylation (211). Therefore, delphinidin may have a role in the

prevention of prostate cancer (211). There are also synthetic

compounds acting on HAT, targeting HAT as inhibitors to

regulate intracellular acetylation homeostasis (210). A-485

competes with acetyl-CoA. A-485 selectively inhibits

proliferation of lineage-specific tumor types, including several

hematological malignancies and androgen receptor-positive

prostate cancer (202). WM-3835 is a potent and highly

specific HBO1 (KAT7 or MYST2) inhibitor that directly binds

to the acetyl-CoA binding site of HBO1 33 WM-3835 activates

apoptosis while inhibiting osteosarcoma (OS) cells proliferation,

migration and invasion (216). WM-3835 has antitumor activity

and potently inhibits the growth of osteosarcoma xenografts

in mice (216). TH1834 dihydrochloride is a specific Tip60

(KAT5) histone acetyltransferase inhibitor (215). TH1834

dihydrochloride induces apoptosis and increases DNA damage

in breast cancer cells. TH1834 dihydrochloride does not affect

the activity of the related histone acetyltransferase MOF.

Anticancer activity (215). Combination therapy of CK1

inhibitor SR3029 and Tip60 inhibitor MG149 had stronger
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inhibitory effects on b-catenin acetylation, transcription of Wnt

target genes, and viability and proliferation of colon cancer cells

(214). Transcriptional activity of b-catenin can be regulated

through the CK1d/ϵ-b-catenin-Tip60 axis, which may be a

potential therapeutic target for colon cancer (214).
HAT activators

HAT activators are activators that act on protein

acetyltransferases and can activate acetyltransferases to

increase the level of protein acetylation. For example, CTB can

induce acetylation of P53 protein by increasing the expression of

P300, thereby inducing significant cell death in MCF-7, but it

may be well tolerated in MRC-5 (217). Therefore, CTB can be

applied in cancer treatment (217). The research on HAT

activators is not very extensive, and most of them are

activators targeting the CBP/P300 complex (217) (Table 4).
HDAC inhibitor

HDACs are found to be abnormally expressed in malignant

tumors (219). The expression of HDACs is closely related to
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clinical treatment prognosis and tumor occurrence and

development. In liver cancer, inhibition of HDAC2 expression

can promote histone acetylation in the promoter region of

MIR22HG, thereby upregulating the expression of MIR22HG,

promoting the production of miR-22-5p, and ultimately

increasing the sensitivity to radiotherapy (64). In acute B

lymphocytic leukemia, inhibits the activity of HDAC3, which

enhances the sensitivity of acute B lymphocytic leukemia cells to

drugs by inhibiting the JAK/signal transducer and activator of

transcription 3 signaling pathway (220). Inhibition of HDAC8

activity causes cytotoxic effects, cell cycle arrest in human

monocytic leukemia followed by apoptosis, and cytostatic

effects in p53-deficient human myelocytic leukemia cells (73).

SIRT1/2 inhibition results in HSPA5 acetylation and

dissociation from EIF2AK3, leading to endoplasmic reticulum

stress response, which in turn upregulates ATF4 and dit4,

triggering autophagy (86). Sirtuins have become a promising

target for a novel class of anti-cancer drugs. HDAC inhibitor can

reverse this phenomenon and reactivate the expression of tumor

suppressors, and HDAC inhibitor can act on histone acetylation

and non-histone acetylation to inhibit tumor growth, invasion

and metastasis, and has become a clinically effective anti-tumor

drug (221) (Table 5).
TABLE 3 Classification and targets of HAT inhibitors in cancers.

Class Drug Targets Cancer references

dual substrate inhibitor A-485 P300/CBP Prostate cancer,
Growth hormone pituitary adenoma,
Human melanoma

(202–204)

PU139 GCN5
P300
PCAF
CBP

Neuroblastoma (205)

NEO2734 P300/CBP Prostate cancer,
Acute myeloid leukemia,
Multiple myeloma

(206–208)

Natural compounds Anacardic
acid

P300
PCAF

Breast cancer (209)

Garcinol PCAF Colon cancer,
Breast cancer,
Prostate cancer,
Head and neck cancer,
Hepatocellular carcinoma

(210)

Curcumin P300/CBP

Delphinidin P300/CBP prostate cancer (211)

synthetic compounds C646 P300 Pancreatic cancer (212)

Acetaminophen NAT2

WM-1119 KAT6A Lymphoma (213)

Remodelin hydrobromide NAT10

MG 149 Tip60 Colon cancer (214)

TH1834 dihydrochloride Tip60 Breast cancer (215)

PF-9363 KAT6A/KAT6B

WM-3835 KAT7/MYST2 Osteosarcoma (216)
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Studies have shown that HDAC inhibitor has a significant

inhibitory effect on P53, HSP90, NF-kB factors and multiple

dephosphorylation enzymes, and a variety of HDAC inhibitors

have been developed (59). The FDA has developed and approved

several HDAC inhibitors for clinical cancer treatment. HDAC

inhibitors are mainly divided into five categories according to

different structures, including short-chain fatty acids, amides,

hydroxamic acids, cyclic peptides, and chemical substances

extracted from plants (265). Among histone deacetylase

inhibitors, fatty acids are one of the less commonly used

inhibitors. Valproic acid is an anticonvulsant drug that has

been used clinically in bipolar disorder (266). The study found

that valproic acid can also inhibit histone deacetylase 9, affect

Notch cell signaling, and inhibit the activity of human

neuroblastoma cells (267). The HDAC inhibitor of the

benzamide class is the first inhibitor that selectively targets

class I HDACs. There are also a large number of benzamide

drugs in clinical trials for tumor treatment (59). The enzyme

kinetics study of aminobenzamide-based HDAC inhibitors

shows that the aminobenzamide motif has a tight binding

mechanism (slow start/slow shutdown) unlike the classical

fast-on/fast-off kinetics of hydroxamic acid-based HDAC

inhibitors (268).

Hydroxamic acid HDAC inhibitors are the first class of

HDAC inhibitors to be developed (59). Vorinostat is the first

HDAC inhibitor on the market. At appropriate concentrations,

vorinostat can inhibit HDAC1, 2, 3, 6, inhibit the activity of

HDAC, and lead to significant hyperacetylation of H4 at residues

lysine 5, 8, 12, 1, and 6 (269). These hyperacetylation are closely

related to transcriptional changes, and vorinistat can

simultaneously increase or decrease the transcription of

specific genes in tumor cells, suggesting that HDAC inhibitor

can have completely opposite effects throughout the genome

(265). Virinostat is currently approved for the treatment of

cutaneous T-cell lymphoma (CTCL). Studies have shown that

vorinostat has activity in the treatment of recurrent glioblastoma

multiforme (270). Clinically, it can be used in combination with

other drugs to treat tumors (270). Vorinostat is clinically used in

combination with gefitinib in the treatment of lung cancer to

enhance the induction of apoptosis of lung cancer cells (271).

Panobinostat is involved in many biological processes, including
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DNA replication and repair, chromatin remodeling, gene

transcription, cell cycle progression, protein degradation and

cytoskeleton reorganization (226). For example, in prostate

cancer, Panobinostat reverses HepaCAM gene expression and

inhibits proliferation by increasing histone acetylation (226).

Panobinostat can also be used in combination with other drugs

to improve treatment efficiency, such as in acute myeloid

leukemia, studies have shown that the combination of

panobinostat differentiation and arsenic trioxide apoptosis can

significantly improve survival (272). Another HDAC inhibitor is

SIRT inhibitor, inhibition of SIRT1 and SIRT2 induces cancer

cell apoptosis and plays multiple roles in regulating autophagy

(86). Salermide in NSCLC cells, inhibiting SIRT1 and 2 by

acetylating HSPA5, and then activating ATF4 and dit4 to

inhibit the mTOR signaling pathway, thereby inducing pro-

survival autophagy (86). Ginsenoside Rg1 inhibits cell

proliferation and induces cellular senescence in acute myeloid

leukemia cells CD34+CD38- leukemia stem cells by activating

Sirtuin 1 (SIRT1)/tuberous sclerosis complex 2 (TSC2) signaling

pathway (273). Capsaicin attenuates cell migration by enhancing

corticosteroid and -catenin acetylation in bladder cancer cells

through SIRT1 targeting and inhibition (274). Capsaicin-

reduced cell migration is associated with downregulation of

sirtuin 1 (SIRT1) deacetylase, possibly through proteasome-

mediated protein degradation (274). Combination therapy of

SIRT1/2 inhibitor and drug autophagy inhibitor is an effective

therapeutic strategy (86). Some studies have found that synthetic

HDAC inhibitors may have toxic side effects such as atrial

fibrillation, researchers turned their attention to natural

inhibitors extracted from plants (59). Plant-derived inhibitors

also showed good activity in inhibiting tumors. For example,

hawthorn polyphenol extract (HPE) can significantly reduce

ROS levels, apoptosis and inflammation-related factor

expression in cells, and also inhibit AMPK/SIRT1/NF-kB and

miR-34a/SIRT1/p53 pathways by regulating acetylation (275).

Pathway is involved in hyperglycemia-induced inflammation

and apoptosis of human retinal epithelial cells (275). These

inhibitors can significantly inhibit tumor proliferation,

migration and invasion, and can induce apoptosis and induce

autophagy (59). However, the application of these inhibitor

drugs in clinical practice requires more in-depth research.
TABLE 4 Targets of HAT activators and associated cancers.

Drug Targets Cancer References

CTB P300 Breast cancer (217)

TTK21 CBP/P300

CTPB P300

I-CBP112 CBP/p300 Leukemia (218)

YF-2 CBP
PCAF
GCN5
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TABLE 5 Classification and targets of sirtuins in cancers.

Class Drug Targets Cancer Reference

Hydroxamates Vorinostat HDACs 1, 2, 3, 6 CTCL,
BCR-ABL-negative myeloproliferative neoplasms,
Triple-negative breast cancer,
Melanoma

(222–225)

Panobinostat HDACs Multiple myeloma,
Prostate cancer,
Acute myelogenous leukemia

(226, 227)

Trichostatin A (TSA) HDACs 7, 8 Esophageal squamous,
Cholangiocarcinoma,
Cholangiocarcinoma,
Osteosarcoma

(228–231)

Belinostat HDACs PTCL,
Pancreatic cancer,
Lung squamous cell carcinoma,
Breast cancer

(232–235)

Dacinostat (LAQ824) Medulloblastoma,
Malignant Melanoma

(236, 237)

Givinostat HDACs Chronic myeloproliferative neoplasms,
Hematological malignancies

(238, 239)

Resminostat HDACs Hodgkin’s lymphoma,
Hepatocellular carcinoma,
Lymphoma

(240, 241)

Abexinostat HDAC 1 Lymphoma,
Leukemia,
Lymphocytic

(198)

Quisinostat HDACs Lymphoma,
Neoplasms,
Myelodysplastic syndromes,
Hepatocellular carcinoma,
Neuroblastoma,
Tongue squamous cell carcinoma

(242–244)

CUDC-101 HDACs Lymphoma,
Pancreatic cancer,
Liver cancer,
Breast cancer,
Gastric cancer

(245, 246)

CUDC-907 HDACs Lymphoma,
Solid tumors,
Breast cancer,
Multiple myeloma,
NUT midline carcinoma

(247, 248)

MPT0E028 HDACS 1, 2, 6

CHR-3996 HDACs

LMK235 HDACs 4, 5

Short-chain fatty acids Valproic acid (VPA) HDACs 2, 9 Acute myeloid leukemia
Cholangiocarcinoma

(229, 249)

Phenylbutyrate HDACs 1-11 Oral squamous cell carcinoma (250, 251)

Pivanex (AN-9) HDACs Lung cancer,
Liver cancer

(252)

AR-42 HDACs Acoustic neuroma,
Testicular lymphoma,
Intraocular lymphoma,
Esophageal squamous cell carcinoma,
Adult T-cell leukemia,
Lymphoma osteolytic bone tumors,
Vestibular schwannoma

(253, 254)

Cyclic tetrapeptide Romidepsin (Depsipeptide/FK228) HDACs 1, 2, 4, 6 CTCL (255)

(Continued)
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BET inhibitor

As a scaffold protein, BET can read epigenetic code,

recognize histone acetylation or non-histone acetylation, and

regulate gene expression, and play an important role in cell

function (115). However, abnormal expression of BET leads to

abnormal gene expression, resulting in abnormal cell function,

which is related to the development of many malignant diseases.

The study found that the abnormal expression of BRD4 is related

to glioma, and the expression in glioma is significantly higher

than that in normal tissue (130); BRD4 inhibitors effectively

penetrated the blood-brain barrier and targeted glioma tumor

tissue, but had little effect on normal brain tissue (130).

Therefore, BRD4 is a target for the treatment of glioma (130).

Targeting BET protein therapy is a very promising tumor

treatment strategy. The BET-bromodomain-specific inhibitors

JQ1, I-BET and I-BET151 represent initial successes in the

development of BET inhibitors (276). The small molecule BET

inhibitor drug, JQ1, is a potent growth inhibitor for many

cancers and holds promise for cancer therapy (276). However,

studies have found that JQ1 can activate other oncogenic

pathways and may affect epithelial-to-mesenchymal transition

(EMT) (276). That is to say, JQ1 has an unexpected role in

promoting prostate cancer invasion (276). In the application of

tumor treatment, attention should be paid to the possible toxic

and side effects of JQ1. BET inhibitor treatment in HCC cell lines

reduces cell migration by downregulating SMARCA4 (277). GS-

5829 inhibits CLL cell proliferation and induces leukemia cell

apoptosis by deregulating key signaling pathways such as BLK,

AKT, ERK1/2, and MYC (278). BRD2 supports borderline

activity and raises the possibility that pharmacological BET

inhibitors may partially affect gene expression by interfering

with regional borderline function (279). Disruption of negative

autoregulation by BET inhibitor (BETi) leads to a marked

increase in BCL6 transcription, which further activates the
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mTOR signaling pathway by inhibiting tumor suppressor

death-associated protein kinase 2 (123).

The effectiveness of BET-specific targeted inhibitors is often

affected by tumor drug resistance (280). There is also an urgent

need to address the issue of BET inhibitor resistance. Prostate

cancer-associated SPOP mutations confer resistance to BET

inhibitors by stabilizing BRD4 (281). Tumor-suppressive

effects of SPOP in prostate cancer, where it acts as a negative

regulator of BET protein stability, and also provides a molecular

mechanism for resistance to BET inhibitors in individuals with

prostate cancer carrying SPOP mutations (281). Prostate cancer-

associated SPOP mutants display impaired binding to BET

proteins, leading to reduced proteasomal degradation and

accumulation of the protein in prostate cancer cell lines and

patient specimens, and causing resistance to BET inhibitors

(282). Transcriptomic and BRD4 enzymatic analysis revealed

enhanced expression of GTPase RAC1 and cholesterol

biosynthesis-related genes, and activation of AKT-mTORC1

signaling due to BRD4 stabilization (282). Resistance to BET

inhibitors in SPOP-mutant prostate cancer can be overcome by

combination with AKT inhibitors and further supports the

evaluation of SPOP mutations as biomarkers to guide BET

inhibitor-directed therapy in prostate cancer patients (282).

Although research on BET inhibitors is still a research focus,

the combination use of BET inhibitors with other drugs is also

being explored. BET inhibitors can be used in combination with

other types of inhibitors in order to promote the therapeutic

effect or reduce adverse reactions (283). For example, the

combination of BET inhibitor I-BET762 and PARP inhibitor

Talazoparib Synergy is used in the treatment of SCLC and has a

synergistic effect (283). At the same time, a strategy of combined

application of HDAC inhibitor and JQ1 inhibitor has shown

good efficacy in the treatment of AML (284). Based on the

combination drug strategy, dual-target inhibitors of HDAC and

BET are also being developed, and have shown more significant
TABLE 5 Continued

Class Drug Targets Cancer Reference

Benzamides Mocetinostat (MGCD0103) HDACs 1, 2, 3 Lymphoma,
Urothelial carcinoma,
Relapsed and refractory, Myelodysplastic syndrome,
Metastatic leiomyosarcoma

(256)

Entinostat (MS-275) HDACs Breast cancer,
NCSLC,
Osteosarcoma,
Ovarian cancer,
Hematologic malignancies,
Oral squamous cell carcinoma

(257–262)

Tacedinaline (CI-994) Lung cancer,
Multiple myeloma

Chidamide HDAC 1, 2, 3, 10 T-cell lymphoma (263)

Ricolinostat (ACY-1215) HDAC 6 Multiple myeloma (264)
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efficacy than single-target inhibitors in the treatment of

pancreatic cancer (285). This multi-targeted drug can ensure

the efficacy and durability of the anti-cancer effect, and this

combination approach also reduces the possibility of tumor

resistance (285). This provides a new scope of research for

BET inhibitors in the treatment of tumors. BET and HDAC

inhibitors are synergistic at reduced doses, suggesting a potential

approach to avoid overlapping toxicities of the two drug classes

(280). The combination of CPI-0610 with a PRAP inhibitor has

been found to better address PRAP inhibitor resistance in

ovarian cancer patients (286). It also proposes new therapeutic

strategies to address PARP inhibitor resistance using drugs

already approved or in clinical development that have the

potential to rapidly transform and benefit a broad range of

ovarian cancer patients (286) (Table 6).
Future perspectives

Tumor is currently the most troublesome problem in human

life and seriously affects human health. The development of tumors

is affected by many factors, including genetic factors and epigenetic

factors (6). The development of tumor is the result of the joint
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influence of many factors (6). Protein acetylation is at the junction

of genetics, epigenetics and tumor microenvironment (9). Protein

acetylation is affected by many aspects to promote the occurrence

and development of tumors (9). For example, protein acetylation

writer, eraser, and reader may be abnormally expressed (7).

Regulatory factor or regulatory factors aberrantly promote

tumorigenesis and are associated with multiple malignant

phenotypes of tumors. The study of protein acetylation provides

a deeper understanding of tumor-related mechanisms, facilitates

the discovery of potentially effective biomarkers and therapeutic

targets, and facilitates the discovery and application of therapeutic

drugs (11). At the same time, it is beneficial to solve the drug

resistance and recurrence of tumors. At the same time, we also

emphasize the strengthening of these studies on protein acetylation

in different cancers, combined with PPPM in clinical practice for

the treatment of malignant tumors (301).
Conclusions

This review summarized current studies about the role of

protein acetylation in tumors and related targeted therapy drugs,

including the classification of protein acetylation, related

regulators of protein acetylation, the pathological role of protein

acetylation in tumors, and targeted proteins acetylated drugs.

Protein acetylation affects various physiological functions of

tumors and is therefore associated with tumor development and

progression. Protein acetylation plays an important role in the link

between cancer pathology and post-translational modifications.

Therefore, protein acetylation plays an important role in tumor

therapy. Drugs about protein acetylation have been extensively

studied. Drugs targeting protein acetylation have promising

applications in tumor therapy, and combined use with other

pathway drugs is a potential therapeutic strategy.
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Glossary

ACLY ATP- citrate lyase

ACSS2 Acyl- CoA synthetase short- chain family member 2

Api5 Apoptosis inhibitor 5

ATAT-1 Alpha-tubulin N-acetyltransferase 1

BET Bromodomain and extra-terminal

BETi Bromodomain and extra-terminal inhibitor

BRD2 Bromodomain 2

BRD3 Bromodomain 3

BRD4 Bromodomain 4

BRDT Bromodomain testis-specific protein

CBFB Core-binding factor beta

CBP CREB- binding protein

CMA Chaperone-mediated autophagy

CTCL Cutaneous T-cell lymphoma

CTD C-terminal structure of RNA polymerase II Domain

EMT Epithelial-to-mesenchymal transition

ERalpha Estrogen receptor alpha

ESCO1 Establishment of sister chromatid cohesion N-acetyltransferase 1

ESCO2 Establishment of sister chromatid cohesion N-acetyltransferase 2

Fox O Forkhead box-containing protein

O subfamily

GCN5 General control of amino acid synthesis protein 5

H3 Histone 3

H3K14 Histone H3 lysine 14

H3K27 Histone H3 lysine 27

H3K27ac Histone H3 lysine 27 acetylation

H3K56ac Histone H3 lysine 56 acetylation

H3K9 Histone H3 lysine 9

H3K9ac Histone H3 lysine 9 acetylation

H4 Histone 4

H4K12 Histone H4 lysine 12

H4K16ac Histone H4 lysine 16 acetylation

H4K20me1 Histone H4 lysine 20 mono-methylation

H4K5 Histone H4 lysine 5

HAT Histone acetyltransferase

HAT1 Histone acetyltransferase 1

HBO1 Histone acetyltransferase binding to ORC1

HBx Hepatitis B virus X protein

HCC Hepatocellular carcinoma

HDAC Histone deacetylase

hnRNPA1 Heterogeneous nuclear ribonucleoprotein A1

HPE Hawthorn polyphenol extract

Hsp70 Heat shock protein 70

HSPA5 Heat shock protein family A (Hsp70) member 5

HSPA8 Heat shock protein family A (Hsp70) member 8

IDH1 Isocitrate dehydrogenase 1

IL-6 Interleukin- 6

IL-8 Interleukin- 8

(Continued)
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McTN Microantenna

MOF Males absent on the first

MOZ Monocytic leukemia zinc finger protein

MSCs Mesenchymal stem cells

mTOR Mechanistic target of rapamycin kinase

Naa10 N-alpha-acetyltransferase 10

NAT1 Arylamine N-acetyltransferase 1

NF-PitNETs Nonfunctional pituitary neuroendocrine tumors

NF-kB Nuclear factor k-B

NSCLC Non-small cell lung cancer

OCCC Ovarian clear cell carcinoma

OS Osteosarcoma

PA Palmitic acid

PDH Pyruvate dehydrogenase complex

PHD Plant homeodomain-linked

PKM Pyruvate kinase

PKM2 Pyruvate kinase M1/2

PRAP Proline-rich acidic protein

PTM Post-translational modification

RNR Ribonucleotide reductase

SCLC Small Cell Lung Cancer

Ses Super-enhancers

SIRT1 Sirtuin 1

SIRT2 Sirtuin 2

SIRT3 Sirtuin 3

SIRT4 Sirtuin 4

SIRT5 Sirtuin 5

SIRT6 Sirtuin 6

snRNA Small nuclearRNA

TAK1 TGF-b-activated kinase 1

TAT1 a-tubulin N- acetyltransferase 1

TCA Tricarboxylic acid

Tip60 60 kDa Tat- interactive protein

TSC2 Tuberous sclerosis complex 2

TSC2 Tuberous sclerosis complex 2

TSS Transcription start sites

YEATS2 YEATS domain containing 2

YEATS4 YEATS domain containing 4

YopJ Serine/threonine-protein acetyltransferase YopJ.
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