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ABSTRACT
Background We sought to measure population-level
adherence to antihyperlipidemics, antihypertensives, and
oral hypoglycemics, and to develop a model for early
identification of subjects at high risk of long-term poor
adherence.
Methods Prescription-filling data for 2 million subjects
derived from a payor’s insurance claims were used to
evaluate adherence to three chronic drugs over 1 year.
We relied on patterns of prescription fills, including the
length of gaps in medication possession, to measure
adherence among subjects and to build models for
predicting poor long-term adherence.
Results All prescription fills for a specific drug were
sequenced chronologically into drug eras. 61.3% to
66.5% of the prescription patterns contained medication
gaps >30 days during the first year of drug use. These
interrupted drug eras include long-term discontinuations,
where the subject never again filled a prescription for any
drug in that category in the dataset, which represent
23.7% to 29.1% of all drug eras. Among the prescription-
filling patterns without large medication gaps, 0.8% to
1.3% exhibited long-term poor adherence. Our models
identified these subjects as early as 60 days after the
first prescription fill, with an area under the curve (AUC)
of 0.81. Model performance improved as the predictions
were made at later time-points, with AUC values
increasing to 0.93 at the 120-day time-point.
Conclusions Dispensed medication histories (widely
available in real time) are useful for alerting providers
about poorly adherent patients and those who will be
non-adherent several months later. Efforts to use these
data in point of care and decision support facilitating
patient are warranted.

INTRODUCTION
Although medications may be the single most
important healthcare intervention for chronic
disease in the developed world,1 2 their impact is
modulated by patient adherence. Even for condi-
tions where using a single medication just once
a day is known to improve outcomes, only about
50% of patients adhere to the correct regimen.3e5

Studies of patients taking antihypertensives, anti-
depressives, hypoglycemics, antipsychotics, and
antihyperlipidemics show that poor adherence is
predictive of poor outcomes and high costs,
including future hospitalizations and treatment
discontinuation.6e18 Conversely, consistent adher-
ence to statins, antihypertensives, antidiabetic
agents, and antiviral therapies is associated with
positive health outcomes.3 16 17 19

Causes of non-adherence are multifactorial,
including tolerability, side effects, complexity of

prescribing and filling procedures, level of under-
standing of the importance of taking the medica-
tion, cultural norms, out of pocket cost of the
medication, and the possible lack of discernable
effects of the medication.1 20e24 Healthcare
providers tend to overestimate medication
adherence.25e30

Surveillance of adherence can be achieved by
monitoring the records of dispensed prescription
medications.31 32 Prescription-filling data provide an
indirect measure of a patient’s adherence to
prescription medication. Although filled prescrip-
tion medications are not always taken, it is gener-
ally true that patients who do not fill a prescription
are non-adherent. Early identification of patients at
high risk of poor adherence would enable early
interventions by clinicians that could improve
health outcomes.30 33e35 Attempts to predict poor
adherence using only patient characteristics (such
as socio-economic status and comorbidities) have
found those variables to be weak predictors.24 36

However, these studies did not consider the
predictive potential of early prescription-filling
patterns. We sought to measure the adherence of
patients filling prescriptions for three classes of
chronic drugs: antihyperlipidemics, antihyperten-
sives, and oral hypoglycemics. Furthermore, we
sought to develop models for early identification of
patients who will likely be long-term poor adherers
to these classes of drugs.

METHODS
This study is a retrospective analysis of temporally
sequenced dispensed medication data. We use
a two-phase prediction model for early identifica-
tion of patients at risk of poor adherence to
chronic medications. The first phase is a straight-
forward approach to identifying prolonged gaps in
prescription-filling patterns. The second phase
uses a regression model to isolate more complex
and subtle patterns predictive of future poor
adherence.

Data
The subjects for this study were identified from
more than 8.5 million beneficiaries of a large private
insurance plan covered during the period of January
1999 to December 2006, who were taking at least
one of three classes of drugs: antihyperlipidemics,
antihypertensives, and oral hypoglycemics. The
three drug classes were selected because for these
chronic medications, improved health outcomes
require consistent adherence over time. The indi-
vidual drugs included for each category are given in
online supplementary appendix table A1. The
prescription-filling data included the date, National
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Drug Code (NDC), quantity dispensed (in days), and informa-
tion about whether the prescription was filled through a mail
order or retail mechanism in addition to other administrative
information. The age and gender of the subjects were also
available, as well as information about hospitalizations and
dates of membership of the insurance plan.

For each subject, all instances of prescription fills for a specific
drug were sequenced chronologically into drug eras.37 Each drug
era represented the prescription-filling history of a particular
subject for a specific drug during the time period included in the
dataset.

Study period and cohort construction
Drug eras coinciding with a gap in membership of the insurance
program during the first year of prescriptions were excluded
(figure 1). Left and right censoring was performed by excluding
the drug eras beginning within the first 6 months of the study
period, as well as those beginning in the last 13 months of the
study period. Drug eras coinciding with hospitalizations during
the first year of prescriptions were excluded. A final exclusion
was performed to remove drug eras with unrealistic or unusual
data including ages greater than 200 years, quantities greater
than 200 supply days, and unlisted genders.

Adherence analysis
The drugs eras were first evaluated based on medication gaps
during the first year of prescription fills (figure 2). Those
containing at least one medication gap greater than 30 days were
flagged as poor adherers. This did not include drug eras where
the subject switched to another drug in the same category
within 30 days of running out of their last prescription. A
switch to a new drug must have been initiated no sooner than
90 days before the last prescription fill.

The drug eras that were flagged by the large-gap detector were
further subdivided into three categories: (1) those that switched
to another drug in the same category within 90 days of the
flagging date; (2) long-term discontinuers who never filled
another prescription for that particular drug in this dataset; and
(3) short-term discontinuers who filled at least one more
prescription for the same drug after the flagging date.

Drug eras that were neither flagged by the large-gap detector
nor switched to another drug in the same category (‘No gap, no
switch’ category in figure 2) exhibited consistent filling of
prescriptions for at least 1 year. For this group of drug eras, we

developed models to identify those exhibiting poor adherence by
consistently filling prescriptions late.

Model development and evaluation
The outcome variable was adherence as measured by the
medication possession ratio (MPR), a standard measure of
possession of filled prescription medication over time.13 The
study period considered was the first year of the drug era,
measured from the first observed prescription fill. An MPR of
0.80 is the accepted standard indicator of good adherence.11 The
goal of our modeling was to identify the subjects who did not
meet this criterion of good adherence at the 1-year time point
(‘Poor adherence’ category in figure 2). Only drug eras that did
not contain medication gaps greater than 30 days during the first
year were considered (‘No gap, no switch’ category in figure 2).
The drug eras were used to build and test a logistic regression

model for predicting the outcome variable using two indepen-
dent measures: age and the latest calculated MPR value. Gender
and drug names were also initially considered as variables but
were found not to significantly contribute to the models, and
were excluded. Three models were developed to make predic-
tions at three time points early in the drug era (days 60, 90, and
120). Each of the models was trained with one third of the drug
eras to identify those that would not meet the criterion for good
adherence 1 year after the first filled prescription. To demon-
strate the value of the fill data patterns, comparison models for
each drug category were also developed for performance
comparison using only the gender and age of the subject. The
models were tested on the remaining two thirds of the dataset
and evaluated using the area under the receiver operator char-
acteristic curve (AUC). Additional metrics for performance
included the specificity, accuracy, positive predictive value, and
negative predictive value, with the sensitivity of the models set
to 90.0%.

RESULTS
Over 2 million subjects were identified (table 1). After the
exclusion criteria were applied, the antihypertensives class had
the most subjects (1 294 521) followed by antihyperlipidemics
(790 883) and oral hypoglycemics (278 029). The antihyper-
tensives class contained more than four times as many drugs
(74) as the two other classes (17 and 16 for antihyperlipidemics
and oral hypoglycemic, respectively) (online supplementary
appendix table A1). In all three classes, between 50% and 60%

Figure 1 Cohort construction.
Analysis of prescription fills for three
chronic drug categories:
antihyperlipidemics, antihypertensives,
and oral hypoglycemic. For each
subject, prescription fills for the same
drug were sequenced temporally into
drug eras. Drug eras were excluded
from analysis if there were: (1) gaps in
membership in the insurance plan
during the first year of prescriptions; (2)
drug eras that began before a 6-month
wash-out period, or in the last
13 months of the dataset (left and right
censoring); (3) hospitalizations during
the first year of prescriptions; and (4)
unusual age, gender, and fill quantities
likely due to human errors during data
entry.
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of subjects filled prescriptions for more than one drug in the
same class, resulting in 1.4 to 1.9 times as many drug eras as
unique subjects in each class. The final cohort had slightly more
females than males in all three classes, and the average age on
the date of the first prescription was between 62 and 67 years
(table 1).

A two-phase adherence monitor was applied. First, a large-
gap detector, identifying periods of more than 30 days between
expected fills, was applied. For antihypertensives, anti-
hyperlipidemics, and oral hypoglycemics, respectively, 66.5%,
64.5%, and 61.3% of drug eras contained medication gaps
greater than 30 days. These include long-term discontinuations,
where the subject never again filled a prescription for that drug
in the dataset, which represent 29.0%, 29.1%, and 23.7% of all
the drug eras and 59.5%, 68.6%, and 51.8% of the drug eras
containing large medication gaps. Among the long-term
discontinuations, 50.4%, 50.3%, and 36.6% had only one
prescription fill. On average, long-term discontinuation drug
eras had 1.7, 1.6, and 2.2 prescription fills, and 71.3, 59.6, and
59.5 dispensed supply days. The drug eras defined as short-term
discontinuationsdcontaining large gaps followed by prescrip-
tion fills (short-term discontinuations)dhad average gap
lengths of 105.6, 120.0, and 107.6 days for antihyperlipidemics,
antihypertensives, and oral hypoglycemic, respectively.

After applying the large-gap detector, we applied an algorithm
to detect non-adherence defined as an MPR of less than 0.80 at
1 year. The MPR, a standard measure of adherence, is defined as

the days supply of medication divided by the days between
refills. Among drug eras not containing large gaps between fills
(‘No gap, no switch’ category in figure 2), those which had
MPRs less than 0.80 at the 1-year outcome date (‘Poor adher-
ence’ category in figure 2) met our definition of long-term poor
adherence. For antihyperlipidemics, antihypertensives, and oral
hypoglycemic, respectively, these drug eras represented 1.0%,
0.8%, and 1.3% of all the drug eras, and 3.1%, 2.6%, and 3.5% of
the drug eras in the ‘No gap, no switch’ category. The distri-
butions of the 1-year MPR values for the drug eras in this group
are similar for the three drug categories (figure 3). These drug
eras were used to build logistic regression models for predicting
long-term poor adherence. Models were built for making
predictions at three early time-points in the drug era: 60, 90, and
120 days after the first prescription fill.
The logistic regression models are in the form:

risk of poor adherence ¼ 1
1 þ e�z

z ¼ b0 þ b1x1 þ b2x2

where x1 is the latest available MPR value and x2 is the age of the
subject at the beginning of the drug era. The intercepts (b0) and
coefficients (b1 and b2) for the nine models are given in table 2.
The performance of the prediction models developed for each

drug category and each time point to detect drug eras with poor
adherence is shown in figure 4. The models performed similarly

Figure 2 Classification of drug eras by adherence during the first year of prescription fills. The drug eras were initially separated into three categories:
(1) subject switched to another drug in the same category; (2) flagged by the large-gap detector because they accumulated a medication gap greater
than 30 days; and (3) neither switch to another drug nor accumulation of a large medication gap. The drug eras that accumulated a large medication
gap were further categorized into those with a switch to another drug in the same category within 90 days after the flagging date, long-term
discontinuers who never filled a prescription for that same drug again in the dataset, and short-term discontinuers who did fill a prescription for the
same drug sometime after the flagging date. The drug eras that exhibited consistent prescription filling for the entire year without any large gaps (‘No
gap, no switch’) were further categorized into those that had a medication possession ratio greater than 0.80 (‘Good adherence’) and those who fell
below the threshold (‘Poor adherence’).

Table 1 Cohort characteristics on date of first prescription fill

Antihyperlipidemics Antihypertensives Oral Hypoglycemics

Number of unique subjects 790 883 1 294 521 278 029

Percent female 50.2% 53.5% 51.1%

Age (in years) at first prescription fill
(mean6SD)

62.5612.9 66.3615.2 62.8613.8

Number of drug eras per subject
(mean6SD)

1.460.8 1.961.3 1.660.8
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for the three drug classes, and performance improved across the
three time points of prediction when starting at a later point.
For antihyperlipidemics, antihypertensives, and oral hypoglyce-
mics, respectively, for predictions made at 120 days after the first
fill, compared with 60 days, the areas under the curve (AUC)
improved from 0.83, 0.81, and 0.83 to 0.93, 0.92, and 0.93
(figure 4).

With sensitivity held constant at 90%, table 3 shows the
performance statistics for each model, which like the AUC,
improved when making predictions at later time points. Spec-
ificity, accuracy, positive predictive value, and negative predic-
tive value all increased from below 50% to above 80% between
days 60 and 120. The negative predictive value remained
constant at 99% for all three drug categories and the three time
points.

DISCUSSION
A high rate of non-adherence is evident in claims data. Similar
data are available in real time from pharmacy benefit managers
(PBMs) and pharmacies, suggesting a ready approach to real
time adherence surveillance. Beyond simply detecting overt non-
adherence, we have also shown that poor adherence is predict-
able very early based on patterns of medication fills.

Among the patients who continuously fill their prescriptions
over the course of at least 1 year, the small percentage of long-
term poor adherers can be identified as early as 60 days after the
first prescription fill. Poor adherers in this class are harder to
catch than those with significant medication gaps, and identi-
fying them early in the treatment could greatly reduce the risks
associated with long-term poor adherence.

Our analysis and modeling were conducted on claims data
that included both mail order and retail mechanisms for
acquiring medications. The main difference between the two
mechanisms is that mail order prescriptions were generally for
90-day supplies, while retail prescriptions were for fewer supply
days, most commonly 30 days. The mechanism for mail order
still required that the beneficiary actively request each new
medication course. We expect that in contrast, mail order
mechanisms requiring minimal or no action on the part of the
subject would make prescription-filling data less predictive of
future adherence to chronic medications, potentially disguising
non-adherence.
The MPR metric used in this model, although widely

accepted, is still only an indirect metric of adherence to taking
medication, as patients may fill the prescription but not take
the medication. It is certainly reasonable to assume that in
most cases, if the subject did not fill the prescriptions, then the
subject was not taking sufficient medication. However, it is
possible that the subjects were receiving supplies of the
medication through methods not captured in the data avail-
able for this study, such as out of pocket payments, particu-
larly when the copay would be higher than the advertised rate.
An additional concern is pill splitting, which would
be observed as poor adherence in the dataset, but might well
be a physician-approved regimen. Samples provided by the
physician at visit intervals may also have disrupted the
perceived fill cycle. Further, although this could be corrected by
including e-prescribing data in the model, without it, the
method misses patients who are prescribed a medication and
never fill.
The definition of poor adherence as an MPR value of less than

80%, although widely used in studies of adherence measure, is
arbitrary and may not be appropriate in all cases.38 In the
context of this study, the threshold of 80% adherence labeled
a very small portion of the overall population as poor adherers.
Although a single threshold was used in this study to define poor
adherence, similar models can be built and evaluated with
different threshold values.
The models presented here incorporate information widely

available through pharmacies, pharmacy benefit managers, and
insurers. Bringing these data and their interpretation to the
point of care presents an opportunity for a clinician to quantify
a patient’s adherence to a specific medication regime and to
intervene where appropriate. In practice, an automated system
that uses both the large-gap detector and the regression model
could identify the vast majority of patients at risk of poor
outcomes due to poor adherence. By running the algorithm on
a prescription-filling dataset on a daily basis, subjects would be
identified as soon as they met the models’ criteria for alert,
rather than waiting until a future interaction with a clinician.

Figure 3 Distribution of medication
possession ratios (MPRs) measured 1
year after the first prescription fill. Data
include drug eras remaining after the
removal of those containing medication
gaps greater than 30 days during that
time period and those that switched to
another drug in the same category (‘No
gap, no switch’ category in figure 2).

Table 2 Coefficients for the logistical regression models where the risk
of poor adherence is calculated using the latest available MPR value and
the age of the subject at the beginning of the drug era

Day 60 model Day 90 model Day 120 model

Antihyperlipidemics

b0 (intercept) 7.195 11.791 16.462

b1 (MPR) �8.850 �14.481 �20.350

b2 (age) �0.039 �0.034 �0.031

Antihypertensives

b0 (intercept) 5.911 10.430 14.397

b1 (MPR) �8.140 �13.420 �18.260

b2 (age) �0.031 �0.029 �0.027

Oral hypoglycemics

b0 (intercept) 6.406 10.759 14.524

b1 (MPR) �8.436 �13.595 �18.260

b2 (age) �0.031 �0.029 �0.026

MPR, medication possession ratio.
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Once a patient is identified as being at risk, a clinician could
evaluate whether the subject is indeed non-adherent and
initiate an interaction with the subject to attempt to improve
adherence.

Dispensed medication data for chronic medications could be
useful in alerting providers about patients currently poorly
adherent as well as those who will be non-adherent several
months afterwards. Even moderate non-adherence early in the
treatment course can be an indicator of future poor adherence.
However, there are practical considerations around integrating
an automated adherence screening tool into clinical practice
including integrating a point of care application into clinician
workflow and devising approaches to notifying physicians
without inducing ‘alert fatigue.’ False alerts could be reduced if
e-prescribing were incorporated into the algorithm, eliminating
detection of intended medication discontinuations.

Studies of interventions have shown mixed results in
improving adherence, and new approaches are being developed
and studied,22 29 30 33 39 40 but none have used a predictive
model. Pharmacies use prescription-filling data to target poor
adherers with programs aimed at reducing gaps in medication
possession, including mail order programs with refill reminders
through email, phone or text, proactive interactive phone calls,
counseling by pharmacists, and education on adherence for
pharmacists.35 36 Furthermore, studies of adherence show
that good adherers are systematically more health-seeking than

non-adherers,41 which suggests that identifying patients at
high risk of poor adherence may also help identify patients in
need of intervention to improve not only adherence to chronic
medications, but also other aspects of health.
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