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Abstract: In previously reported experimental studies, a yield of double-walled carbon nanotubes
(DWCNTs) at C70@Single-walled carbon nanotubes (SWCNTs) is higher than C60@SWCNTs due
to the higher sensitivity to photolysis of the former. From the perspective of pyrolysis dynamics,
we would like to understand whether C70@SWCNT is more sensitive to thermal decomposition
than C60@SWCNT, and the starting point of DWCNT formation, which can be obtained through
the decomposition fragmentation of the nanopeapods, which appears in the early stages. We have
studied the fragmentation of C70@SWCNT nanopeapods, using molecular dynamics simulations
together with the empirical tight-binding total energy calculation method. We got the snapshots of
the fragmentation structure of carbon nano-peapods (CNPs) composed of SWCNT and C70 fullerene
molecules and the geometric spatial positioning structure of C70 within the SWCNT as a function of
dynamics time (for 2 picoseconds) at the temperatures of 4000 K, 5000 K, and 6000 K. In conclusion,
the scenario in which C70@SWCNT transforms to a DWCNT would be followed by the fragmentation
of C70, after C70, and the SWCNT have been chemically bonding in the early stages. The relative
stability of fullerenes in CNPs could be reversed, compared to the ranking of the relative stability of
the encapsulated molecules themselves.

Keywords: tight-binding molecular dynamics simulation; snapshots of fragmentation; C70@SWCNT
nanopeapods; DWCNT

1. Introduction

The formation of a closed C fullerene by creating curvature through the fusion of
12 pentagon rings of carbon has been the special topic of several studies [1]. A single
nanotube can be formed by wrapping and connecting the graphene sheet [2]. Carbon
nanotubes are valuable materials that have excellent physical and chemical properties such
as high electrical conductivity, thermal stability, mechanical strength, aspect ratio, and
surface area. These unique features of carbon nanotubes (CNTs) enable the development of
innovative technologies and materials that can be used in various applications such as food,
energy, and the water industry. The complex relationship between these resources (water,
energy, and food) requires a sustainable, integrated approach for ensuring sustainable
energy production as well as the security of water and food [3].

One of the most prominent features of nanocarbons (e.g., fullerenes, carbon nan-
otubes, and graphene) is their ability to encapsulate atoms, ions, molecules, molecular ions,
nanowires, or nanoribbons in empty spaces within their structures [4].

The well-known C60 molecule is highly (almost spherically) symmetric. Therefore,
a C60 molecule encapsulated in a CNT remains particularly mobile, both orientationally
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and translationally, until low temperatures, as predicted from theory [5] and confirmed
by experiments [6]. In addition, when using tight-binding molecular dynamics, the de-
composition process for C60@SWCNT [7] and (C60)2@SWCNT [8] was studied in which
the decomposition process was at 1000 K intervals in the temperature range of 4000 to
6000 K. Using the internal space of the SWCNT as a nanometer-scale reaction chamber,
double-walled carbon nanotubes (DWCNTs) forming secondary tubes inside the SWCNT
were observed, which confirmed that the temperature excitation can be used to over-
come the activation barrier for the inner tube formation [9]. The C60 molecules inside the
SWCNT can remain unchanged at up to 800 ◦C without de-doping. Further heating to
about 1200 ◦C induces cohesion between the C60 molecules, resulting in the molecules
forming tubular structures. The annealing binding can potentially produce double-wall
carbon nanotubes in a macroscopic amount. The interest in studying this material with
macroscopic spectroscopy has been gathered by showing that Raman spectroscopy can
be performed on DWCNTs [10]. Using equilibrium molecular dynamics simulations, the
thermal conductivity of CNPs was described as the interaction between the nanotubes and
the encapsulated fullerene particles, and the possible margin of movement between the
fullerene particles. It was shown to decrease with the coalescence of encapsulated fullerene
molecules [11].

It was claimed that the conversion of C70@SWCNT into double-walled carbon nan-
otubes was more efficient than the corresponding conversion of C60@SWCNT due to the
higher sensitivity to photolysis of the former [12]. Thus, it is interesting to see the snapshots
of fragmentation of C70@SWCNT to understand the formation of double-walled carbon
nanotubes grown by thermal treatment of peapods (the thermal annealing). We have a
lot of interest in cases where molecules are inserted inside of carbon nanotubes, and it
would be very interesting and important to know how C70 molecules behave in these
nanotube structures.

The decomposition or fragmentation of C70 fullerenes contained within a nanotube
can be studied by tight-binding molecular dynamics (TBMD) analysis. Moreover, simula-
tion studies of the interaction between carbon nanotubes and C70 molecules at different
temperatures could be helpful for understanding the thermal conductivity indirectly. The
exact mechanism behind the formation of carbon materials is difficult to elucidate because
the control of many of the experimental conditions is still challenging. Therefore, it would
be very interesting to study the fragmentation behavior of CNPs in an indirect way to gain
an understanding of the mechanism underlying DWCNT formation. In this study, we
applied TBMD calculations to study the dynamics fragmentation behavior of CNPs. The ac-
curacy of our calculations depended on our selection of the correct empirical tight-binding
parameters for both the molecule dynamics simulations and the empirical TBMD method
for electronic band structure calculations. Here, the carbon system parameters have been
used to reproduce the universal binding energy curves of various stages obtained based on
the computation of the first principles [13]. This potential has been successfully applied
to various carbon systems [14–17]. In addition, the fragmentation of C60 [18] and C70 [19]
clusters, C20 isomer clusters [20], and C60@SWCNT [7], and (C60)2@SWCNT [8] has already
been studied using these TBMD parameters.

2. Results and Discussion
2.1. Geometry of C70, SWCNT, And CNP

The bond distances of SWCNT with the TBMD simulations [13,21,22] for the ground
state are shown in Figure 1a. The atomic structure of the optimized C70 molecule shown in
Figure 1b was obtained using Becke’s three-parameter hybrid method and Lee-Yang-Parr
exchange correlation function theory (B3LYP) [23–28] with the electron based set 6–31G (d, p).
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Figure 1. Structures of a single-walled carbon nanotube (SWCNT) and C70 fullerene molecule 
(length unit: Å). (a) Single-walled carbon nanotube (SWCNT) is composed of a chirality of 10 × 10, 
diameter of 13.551, unit cell length of 14.989, and 240 atoms in a unit cell. The bond lengths of 
SWCNT were 1.431 Å, respectively. (b) In C70, the bond length of e, f, g, h, i, j, k, and l is 1.452, 
1.397, 1.448, 1.389, 1.449, 1.434, 1.432, and 1.471 Å, respectively. 

The SWCNT in Figure 1a is composed of a chirality of 10 × 10, diameter of 13.551 Å, 
unit cell length of 14.989 Å, and 240 atoms in a unit cell. The bond lengths were 1.431 Å. 
In Figure 1b, C70 has eight kind of the bond lengths of e, f, g, h, i, j, k, and l, which is 1.452, 
1.397, 1.448, 1.389, 1.449, 1.434, 1.432, and 1.471 Å, respectively. In the TBMD simulations, 
the initial CNP structure was obtained by matching the center of gravity of C70 with the 
center of gravity of the nanotube (as shown in Figure 2). Moreover, the C70 and SWCNT 
structures used were obtained using the Becke’s Three Parameter Hybrid Functional Us-
ing the LYP Correlation Functional (B3LYP) and TBMD methods, respectively (as shown 
in Figure 1). 

 
Figure 2. Model of a carbon nano-peapod with C70 fullerene encapsulated within a single-walled 
(10, 10) carbon nanotube. 

2.2. Distance Distribution Function of Adjacent Carbon Atoms in a CNP 
Figure 3 shows the distance distribution function of adjacent carbon atoms in a CNP 

structure consisting of carbon nanotubes with C70 fullerenes inserted, at temperatures of 
0, 4000, 5000, and 6000 K, respectively.  
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Figure 1. Structures of a single-walled carbon nanotube (SWCNT) and C70 fullerene molecule (length
unit: Å). (a) Single-walled carbon nanotube (SWCNT) is composed of a chirality of 10 × 10, diameter
of 13.551, unit cell length of 14.989, and 240 atoms in a unit cell. The bond lengths of SWCNT were
1.431 Å, respectively. (b) In C70, the bond length of e, f, g, h, i, j, k, and l is 1.452, 1.397, 1.448, 1.389,
1.449, 1.434, 1.432, and 1.471 Å, respectively.

The SWCNT in Figure 1a is composed of a chirality of 10 × 10, diameter of 13.551 Å,
unit cell length of 14.989 Å, and 240 atoms in a unit cell. The bond lengths were 1.431 Å.
In Figure 1b, C70 has eight kind of the bond lengths of e, f, g, h, i, j, k, and l, which
is 1.452, 1.397, 1.448, 1.389, 1.449, 1.434, 1.432, and 1.471 Å, respectively. In the TBMD
simulations, the initial CNP structure was obtained by matching the center of gravity of
C70 with the center of gravity of the nanotube (as shown in Figure 2). Moreover, the C70
and SWCNT structures used were obtained using the Becke’s Three Parameter Hybrid
Functional Using the LYP Correlation Functional (B3LYP) and TBMD methods, respectively
(as shown in Figure 1).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 8 
 

 

 
Figure 1. Structures of a single-walled carbon nanotube (SWCNT) and C70 fullerene molecule 
(length unit: Å). (a) Single-walled carbon nanotube (SWCNT) is composed of a chirality of 10 × 10, 
diameter of 13.551, unit cell length of 14.989, and 240 atoms in a unit cell. The bond lengths of 
SWCNT were 1.431 Å, respectively. (b) In C70, the bond length of e, f, g, h, i, j, k, and l is 1.452, 
1.397, 1.448, 1.389, 1.449, 1.434, 1.432, and 1.471 Å, respectively. 

The SWCNT in Figure 1a is composed of a chirality of 10 × 10, diameter of 13.551 Å, 
unit cell length of 14.989 Å, and 240 atoms in a unit cell. The bond lengths were 1.431 Å. 
In Figure 1b, C70 has eight kind of the bond lengths of e, f, g, h, i, j, k, and l, which is 1.452, 
1.397, 1.448, 1.389, 1.449, 1.434, 1.432, and 1.471 Å, respectively. In the TBMD simulations, 
the initial CNP structure was obtained by matching the center of gravity of C70 with the 
center of gravity of the nanotube (as shown in Figure 2). Moreover, the C70 and SWCNT 
structures used were obtained using the Becke’s Three Parameter Hybrid Functional Us-
ing the LYP Correlation Functional (B3LYP) and TBMD methods, respectively (as shown 
in Figure 1). 

 
Figure 2. Model of a carbon nano-peapod with C70 fullerene encapsulated within a single-walled 
(10, 10) carbon nanotube. 

2.2. Distance Distribution Function of Adjacent Carbon Atoms in a CNP 
Figure 3 shows the distance distribution function of adjacent carbon atoms in a CNP 

structure consisting of carbon nanotubes with C70 fullerenes inserted, at temperatures of 
0, 4000, 5000, and 6000 K, respectively.  

e
fg

h i

j k

l

(a) SWCNT (b) C70 

Figure 2. Model of a carbon nano-peapod with C70 fullerene encapsulated within a single-walled (10,
10) carbon nanotube.

2.2. Distance Distribution Function of Adjacent Carbon Atoms in a CNP

Figure 3 shows the distance distribution function of adjacent carbon atoms in a CNP
structure consisting of carbon nanotubes with C70 fullerenes inserted, at temperatures of 0,
4000, 5000, and 6000 K, respectively.

In addition, by using the snapshots in Figure 4a–c, it could be shown that we could
obtain a successful formation yield of higher DWCNTs at C70@SWCNTs than C60@SWCNTs
in Reference [7]. In previously reported experimental studies, a yield of DWCNT at
C70@SWCNT is higher than C60@SWCNT due to the higher sensitivity to photolysis of the
former. Thus, C70@SWCNT is more sensitive to both thermal and photolysis reactions than
C60@SWCNT. The passage of thermal conductivity in the CNP was mostly transmitted
through C70 rather than CNT, which was consistently the finding of a previous study [11].
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We should be keeping in the mind the point of view that the stability of the nano-
peapod is different from the stability of an encapsulated molecule itself such as when
observing which C70 is more stable than C60 in the point of energetics. It is in line with
the reports that a combination of electronic and steric requirements inside fullerenes and
nanotubes significantly changes the stereochemical properties of even relatively simple
molecules in comparison with their free state [23], in which, by using neutron spectroscopy,
there are some couplings between vibrational modes and whole molecule mobility of the
confined fullerene in C60@SWCNT [24], and that the polymerization of fullerenes and the
chemical interaction between the fullerenes and the tube wall is observed in the tube filled
with fullerenes in the bending of 270 degrees by using the empirical and the quantum
mechanical methods [25].

In the future, we hope to apply our approach for real-world applications, such as
those involving fullerenes and multi-wall carbon nanotubes. We would like to extend our
approach to simulations, first for understanding fragmentation and formation of complexes
comprised of nano-diamonds and graphene, and for the decomposition of fullerenes and
nanotubes including the effect of the honeycomb flat size around the defect, as reported in
skeletal rearrangements of fullerene [26].

3. Materials and Methods
3.1. Tight-Binding Molecular Dynamics Simulations

In the TBMD scheme, the total Hamiltonian is written as follows:

E = ∑
P2

I
2m

+
occupied

∑
n
〈ψn|HTB|ψn〉+ Urep. (1)

Urep = ∑
I

f

[
∑

J
ϕ
(
rI,J
)]

(2)

The first, second, and third terms represent the kinetic energy of the carbon atoms,
the electronic energy calculated from the Hamilton HTB bound by parameters, and the
short-range repulsive energy Urep, respectively, where φ(rI,J) is the pairwise potential
function. The above parameters and functions were fitted to the electronic band structure
and binding energy results obtained by first-principle calculations for various crystalline
carbon phases.
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If the total energy calculation method is constructed in Tight-Binding (TB), the next
step in the TBMD simulation is to calculate the force per atom. This can be achieved by
taking a derivative of the total energy for each atom, as follows:

Fi = mai = −
∂Etot

∂ri
= −

occupied

∑
n

〈
ψn

∣∣∣∣∂HTB
∂ri

∣∣∣∣ψn

〉
− ∑

I<J

∂UrI J

∂ri
(3)

The first term here is called the Hellman-Feynman force and the second term comes
from the repulsive pairwise potential [21]. These forces are supplied to the molecular
dynamics simulations, and the 3N coupled secondary differential equations are numerically
solved through the Gear algorithm [22]. Since this method uses the valence electrons of
atoms, its computational efficiency is improved compared with that of ab initio calculations,
which is a very important factor in practical calculations [13].

Scheme 1 shows the TBMD flow chart for the calculations. We use 7.08 × 10−16 s as a
one-time step. In the total energy calculations, we used 10−3 eV as a convergence criterion
for the energy surface of the microcanonical ensemble at room temperature.
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Scheme 1. Flow chart of the tight-binding molecular dynamics calculations.

The TBMD simulations were performed in thousands of time steps to ensure equilib-
rium. The system was set to rerun 1500-time steps at a given temperature with a typical
temperature control method (canonical ensemble), and then 1000-time steps at the mi-
crocanonical ensemble. The equilibrium structures, heat capacities, bond distributions,
assembly energies, total energies, and charge distributions were then calculated in an
average of more than 3000-time steps at a given temperature.

3.2. Hybrid Density Functional Calculations

In this study, hybrid density functional theory, using Becke’s three-parameter hybrid
method combined with Lee-Yang-Parr exchange-correlation functional theory (B3LYP) [27–32],
was applied to optimize the geometries of the C60 molecule, as shown in Figure 1b. It
also used the electron basis set 6–31G (d, p) [31]. We used the Gaussian 2003 B.04 package
suite [32] to fully optimize the geometry of C70, by applying the convergence criterion with
tight optimization and an ultrafine pruned (99,590) grid.
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