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Mechanisms of bone
remodeling and therapeutic
strategies in chronic
apical periodontitis
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State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,
Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan
University, Chengdu, China
Chronic periapical periodontitis (CAP) is a typical oral disease in which

periodontal inflammation caused by an odontogenic infection eventually

leads to bone loss. Uncontrolled infections often lead to extensive bone loss

around the root tip, which ultimately leads to tooth loss. The main clinical issue

in the treatment of periapical periodontitis is the repair of jawbone defects, and

infection control is the first priority. However, the oral cavity is an open

environment, and the distribution of microorganisms through the mouth in

jawbone defects is inevitable. The subversion of host cell metabolism by oral

microorganisms initiates disease. The presence of microorganisms stimulates a

series of immune responses, which in turn stimulates bone healing. Given the

above background, we intended to examine the paradoxes and connections

between microorganisms and jaw defect repair in anticipation of new ideas for

jaw defect repair. To this end, we reviewed the microbial factors, human

signaling pathways, immune cells, and cytokines involved in the development

of CAP, as well as concentrated growth factor (CGF) and stem cells in bone

defect repair, with the aim of understanding the impact of microbial factors on

host cell metabolism to inform the etiology and clinical management of CAP.

KEYWORDS

bone remodeling, chronic apical periodontitis, microorganism, signaling pathway,
bone regeneration
1 Introduction

Most periapical infections are asymptomatic and the untreated inflammation usually

develops gradually and is ongoing, referred to as CAP (Paloma de Oliveira et al., 2017;

Amaral et al., 2022). Infection is the most common cause of CAP, the most common of

which is pulp disease, followed by apical foramen, root canal, and dentinal tubule
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infections. The presence of microbial factors stimulates an

immune response, producing a series of pathological

manifestations, mainly inflammation, and even affecting bone

tissue. During treatment, infection control should be resolved

first, and periapical bone remodeling should be guided on this

basis. Current research focuses on CGF and stem cell research.

Here we summarize the recent studies on microbes, signaling

pathways, and bone remodeling to deepen the understanding of

the pathogenesis of CAP and propose new treatment ideas.
2 Chronic apical periodontitis:
a brief overview and etiology

2.1 Essential characteristics

Chronic apical periodontitis refers to the chronic

inflammation of periapical tissues due to the long-term

presence of infection and pathogenic irritants in the root

canal, which is manifested by the formation of inflammation

and destruction of alveolar bone. Periapical granuloma is the

main type of CAP, in which apical granulation tissue is produced

around the root tip of the tooth, limiting bacteria to the original

infected area and activating the immune system in response to

inflammatory stimuli; this process is tailored toward tissue

reorganization as opposed to tissue damage. However, the loss

of normal tissue is the consequence of developing tissue to fight

infection (Dahlén, 2000). Notably, periapical granuloma is the

early stage of CAP, and its inflammatory response is more

intense than that of periapical cysts (Andrade et al., 2017).

Bone loss is another clinical feature of CAP, which is caused

by microbial factors and the immune defense response.

However, bone loss is inexorable in apical periodontitis (AP)

(Xu R et al., 2019) and repair of bone defects is difficult in AP.
2.2 Etiological analysis

CAP is an inflammatory disease with microbial etiology

(Braz-Silva et al., 2019). Various microorganisms from the

dental pulp cavity play leading roles in the development of AP

(Xu R et al., 2019), and it is worth noting that bacteria account for

a larger proportion of the total population than other disease-

causing microorganisms, such as viruses, fungi, yeasts and

protozoa (Gomes and Herrera, 2018). Typically, bacterial

lipopolysaccharide (LPS) leads to AP by stimulating a local

immune response (Dong et al., 2018a). When enamel or

cementum is opened because of caries or trauma, oral

microorganisms may enter the pulp cavity or root canal system

from the crown or dentin canal and directly contact the pulp

tissue or alveolar bone. However, bacteria that cause CAP are

usually less toxic than those causing acute AP (Gomes and
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Herrera, 2018). These bacteria inhabit anatomical locations that

are inaccessible to macrophages and other immune cells, such as

dentin tubules, thus creating conditions for bacteria to directly

damage tissue and secrete enzymes, exotoxins, and metabolic end

products to regulate the immune response (Braz-Silva et al., 2019).

Microleakage or the introduction of oral irritants after root canal

treatment can aggravate CAP (Xu R et al., 2019). In rare cases, if

the pulp has metabolic disorders or has been injured, the bacteria

in the blood can be ingested by anachoresis into the pulp tissue. If

the immune defense mechanism of the pulp itself cannot remove

the retained bacteria, the latter can multiply in the pulp, resulting

in infection.
2.3 Restrictions of current
treatment strategies

Infection restriction and bone injury fixation are the main

modalities of CAP treatment (Xu R et al., 2019). Currently, root

canal therapy is the main clinical treatment for CAP.

Nevertheless, the complex anatomical structure of the root

canal system leads to difficulty removing the pulp cavity

contents completely (Gao et al., 2018). In this case, tooth

extraction or further microscopic apical surgery may be

performed. Root canal microsurgery is a minimally invasive

technique that not only reduces postoperative pain and dropsy,

but also expedites wound healing (Floratos and Kim, 2017).

According to the American Association of Endodontists, the

cure rate in the microscopic treatment group can reach up to

89% at 18 months of follow-up for CAP; however, various

aberrancies that may exist within the tooth still affect the

therapeutic effect.
3 Bone remodeling of CAP

As an inflammatory condition, CAP causes an imbalance

between bone resorption and reconstruction, leading to bone loss.

Bone remodeling is performed by altering bone resorption and

formation in chronological order. Bone resorption and formation

are opposing and coupled processes of osteoblasts and osteoclasts

(Yu et al., 2016), which together constitute normal bone mass.

This section focuses on several factors that influence periapical

bone remodeling, including microorganisms, human signaling

pathways, and the immune system.
3.1 Microbial factors: disease promotion
or alleviation

CAP is thought to be initiated by direct bacterial damage and

triggers an immune response from the host, which causes the
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main tissue destruction process (Larsen and Fiehn, 2017). The

early microbiota is simple during the pulpitis progression, and

the intricacy of the root canal microbiota increases with the

dominance of Gram-negative anaerobic bacteria, such as

Porphyromonas (Larsen and Fiehn, 2017). A previous study

demonstrated that among the bacteria in periapical lesions,

Fusobacteria (4.2%), Proteobacteria (9.1%), Bacteroidetes

(12.1%), Actinobacteria (14.0%), and Firmicutes (62.9%) were

the main species (Korona-Glowniak et al., 2021). Moreover,

54.6% of the bacteria were strictly anaerobic, while anaerobic

Gram-negative bacteria were dominant in root canals with

periapical lesions (Korona-Glowniak et al., 2021). In tissues

with periapical infection, bacterial abundance and diversity are

significantly reduced, and the microbial balance in biofilms is

disrupted (Qian et al., 2019).

Microorganisms may directly contribute to the formation

and maintenance of AP, or interfere with it by influencing the

host immune response. This section focuses on the former.

3.1.1 LPS and LTA (lipoteichoic acid)
In general, bacterial stimulation can promote osteogenesis

through synergistic action with osteogenic induction signals

(Croes et al., 2019). In addition, endotoxins in the cell wall of

Gram-negative bacteria, namely LPS, can cause local tissue

swelling and bone absorption, mobilize the immune response,

and aggravate tissue damage, and its content is positively

correlated with the degree of bone damage. LPS is a TLR4

ligand (Tominari et al., 2021), which stimulates receptor

activator of nuclear factor kB ligand (RANKL) expression

through TLR4 signaling. In contrast to LPS, LTA is a major

constituent of the cell walls of many Gram-positive bacteria.

LTA induces osteoclast differentiation and bone resorption and

is involved in maintaining the survival of mature osteoclasts,

thereby jointly causing inflammatory alveolar bone loss

(Tominari et al., 2021). LTA can also stimulate the

production of prostaglandin E2 (PGE2) by upregulating

genes related to PGE2 synthesis in osteoblasts and

participating in subsequent inflammatory responses

(Tominari et al., 2021).

3.1.2 Fusobacterium nucleatum
Previous studies have shown that absorption of the

alveolar bone by Porphyromonas gingivalis, Campylobacter

rectus , and Fusobacterium nucleatum is mediated by

arachidonic acid metabolites, such as prostaglandins (Gao

et al . , 2020). Fusobacterium nucleatum can act on

osteoblasts, which is reflected in the reduced expression of

osteogenic genes and proteins (Reis et al., 2016), inhibition of

cell differentiation, formation of mineralized nodules, and

increased production of pro-inflammatory factors (Gao

et al., 2020) (Figure 1).
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3.1.3 Porphyromonas gingivalis
An experimental study showed that the degree of CAP

caused by different pathogens varies. For the same duration of

infection, CAP caused by Porphyromonas gingivalis was more

severe in terms of bone damage and root resorption than CAP

caused by Enterococcus faecalis (Chen S et al., 2019). Moreover,

phosphoethanolamine dihydroceramide and phosphoglycerol

dihydroceramide of Porphyromonas gingivalis can promote

RANKL-mediated osteoclast formation independent of Toll-

like receptor 2/4 (TLR2/4) by interacting with Myh9 (non-

muscle myosin II-a) (Kanzaki et al., 2017; de Andrade

et al., 2019).

3.1.4 Enterococcus faecalis
Macrophages are precursors of osteoclasts. LTA of

Enterococcus faecalis inhibits the differentiation of

macrophages (RAW264.7) into osteoclasts, with no impact on

the phagocytic function (Xu et al., 2018). Continuous

stimulation with Enterococcus faecalis induces the pre-

resolution polarization of macrophages into an M2 phenotype

(Polak et al., 2021). In addition, Enterococcus faecalis can induce

secretion of IL-1b and RANKL, activation of the NLRP3

inflammasome, thereby aggravating the severity of bone

resorption (Reis et al., 2016; Ran et al., 2021). Xiang, Y., et al.

proposed phage therapy and obtained positive results for

effective inhibition of Enterococcus faecalis using this method

(Xiang et al., 2022).

3.1.5 Probiotics
Microorganisms not only cause CAP but have also been used

in the research of new treatments. For example, some studies

have explored the inhibitory effect of probiotics on pathogenic

bacteria in the root canal (Kumar et al., 2021), which may be

used to identify pathogenic bacteria in the root canal for the

purposes of treatment (Bohora and Kokate, 2017). The results of

a comparative clinical trial showed that treatment with a

probiotic product completely prevented the regeneration of

biofilms formed by Enterococcus faecalis compared to low

concentrations of sodium hypochlorite solution (Safadi et al.,

2022). Indeed, probiotics also inhibit bone resorption by

increasing osteoprotectin (OPG) and decreasing RANKL

(Kumar et al., 2021) (Figure 1).
3.2 RANKL-RANK-OPG system

RANKL is the ligand required for osteoclast formation,

whereas RANK and OPG are the receptor and decoy receptor

of RANKL, respectively. The RANKL-RANK-OPG system plays

an important role in mandibular bone remodeling (Aguirre

et al., 2021).
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3.2.1 RANKL
RANKL is a pivotal cytokine in bone resorption, and

facilitates bone dissolution while continuously promoting

periapical inflammation (Francisconi et al., 2018). Previous

studies have shown that LPS (Dong et al., 2018b), IL-6,TGF-b,
parathyroid hormone -related protein (PTHrP) (Yasuda, 2021),

IGF-1 (Huang et al., 2018; Yasuda, 2021), and other

inflammatory factors facilitate RANKL expression. During

osteoclast differentiation, activated T nuclear factor (NFATc1)

is a major transcription factor, which can be activated by

RANKL binding to its receptor RANK to promote osteoclast

differentiation (Canalis et al., 2021). Additionally, TNF receptor-

associated factor 6 (TRAF6) in osteoclast precursors is necessary

to mediate RANKL-induced NF-kB activation and osteoclast

formation and activation. Studies have shown that RANKL

contributes to periapical granulomas and cysts (Santos et al.,

2017). Chronic infiltration is strongly associated with high

expression of RANKL, which represents increased osteolytic

activity (Santos et al., 2017). A reverse RANKL signaling was

also detected, which served to restore alveolar bone loss in mice

(Ozaki et al., 2017). Therefore, the RANKL reversal signaling

modulator may be a promising candidate drug action site for the

treatment of AP bone loss (Ozaki et al., 2017). The experimental

results of a rat AP model showed that the SPHK1-S1PR1-

RANKL axis regulates inflammatory bone imbalance (Xiao

et al., 2018). The activity of SPHK1 was significantly increased

in macrophages stimulated by LPS, which activated S1PR1 in

Bone marrow Mesenchymal Stem Cells (BMSCs), resulting in

increased expression of RANKL in BMSCs. Additionally, the

RANKL/RANK/OPG system plays an important role in the

regulation of the immune system (Kimura et al., 2020),

principally via regulation of the phenotype and function of

dendritic cells by RANKL (Lin et al., 2016). A previous study

reported that inflammatory damage from the activate to inactive

state in CAPmay occur as a result of RANKL immunoregulatory

feedback, and dendritic cells seem to be the underlying factor

determining whether this transition is possible (Cavalla

et al., 2021).
3.2.2 OPG
OPG, the inducible receptor of RANKL, is mainly produced by

osteoblasts and has a higher affinity than RANK (Canalis et al., 2021).

It has been reported that during CAP, IL-17, IFN-ϒ, and higher

concentrations of IL-33 upregulate RANKL production (Duka et al.,

2019). The expression of OPG is upregulated by IL-10 and low

concentrations of IL-33, which inhibits bone dissolution (Duka et al.,

2019). However, another study reported contradictory results,

indicating that IL-33 was highly expressed in CAP and was

negatively correlated with the expression of RANKL but positively

correlated with the expression of OPG (Gegen et al., 2019). One

possible explanation is that even though IL-33 expression is higher

than normal in periapical lesions, its high expression remains
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insufficient to promote RANKL and inhibit OPG generation.

However, this conjecture requires further experimental confirmation.

3.2.3 RANKL/OPG ratio
The RANKL/OPG ratio is widely used as a reflective

indicator of bone formation and absorption. Evidence has

shown that the RANKL/OPG ratio is a key determinant of the

progression or stability of periapical lesions (Cavalla et al., 2021).

An increase in this ratio indicated increased bone loss. One

experimental study showed that the RANKL/OPG ratio in the

periapical granuloma group was significantly higher than that in

the periapical cyst group, suggesting significantly more bone

absorption in periapical granuloma (Takahama et al., 2018).

This is associated with an increased inflammatory response and

pathological microbial activity in periapical granulomas

(Andrade et al., 2017). The RANKL/OPG ratio is mainly used

to distinguish healthy from diseased periapical, but it lacks the

ability to distinguish symptomatic from asymptomatic

periapical. However, the detection of the TRAP5 level meets

these requirements (Salinas-Muñoz et al., 2017).

RANKL may be involved in the activation of the

inflammatory state of CAP through a feedback mechanism of

the immune system. Moreover, its stimulatory effect on

osteoclast maturation and differentiation can be inhibited by

OPG. In addition, osteopontin (OPN) has also been shown to

affect the binding of RANKL to OPG via the NK-kB pathway to

promote osteolysis, which may be related to N-glycosylation

during OPN formation (Dong et al., 2022).
3.3 Signaling pathways

3.3.1 Notch signaling
The Notch signaling pathway is a highly evolutionarily

conserved ligand receptor signaling pathway that plays a

crucial role in cell fate determination during cell survival,

homeostasis, proliferation, differentiation, and development

(Lee et al., 2021). Notch1 inhibits osteoclast formation,

whereas Notch2, through both direct and indirect

mechanisms, promotes osteoclast differentiation and function

(Yu and Canalis, 2020). In periapical disease, Notch2 affects the

clinical attachment level and is considered to be involved in

alveolar bone loss. Downregulation of Notch1 may occur in

severe osteolysis following RANKL activation (Djinic

Krasavcevic et al., 2021). Notch3 also induces RANKL

expression in osteoblasts and osteocytes (Yu and Canalis,

2020). However, Notch4 is less expressed in bone cells (Yu

and Canalis, 2020). Another study suggested that the Notch

signaling pathway may participate in alveolar bone resorption in

Epstein-Barr virus infected periapical lesions (Jakovljevic et al.,

2020). According to a recent study, basic levels of Notch3 are

essential for skeletal bone mass balance, whereas activated

Notch3 in osteoblasts and osteocytes suppresses osteoclast
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formation and bone resorption in cancellous bone (Canalis et al.,

2021). Additionally, it has been hypothesized that the Notch

signaling pathway increases Notch receptors on the surface of

immune cells and stimulates the transposition of the Notch

receptor intracellular domain (NICD) to the nucleus (Jakovljevic

et al., 2019).

3.3.2 Wnt/b-catenin signaling
Wnt signaling is a vital regulatory pathway in osteoblast

differentiation (Zhang and Zhang, 2017). The regulation of

Wnt/b-catenin signaling pathway inhibitors intensifies

periapical lesions (Naruse et al., 2021). The effect of Wnt3a

treatment on osteogenic function is temporally dichotomous

(Tang et al., 2014). Interactions between signaling pathways

may also exist. Upregulation of NF-kB signaling in LPS-

induced inflammation can be inhibited by inhibition of the

Wnt3a/b-catenin signaling pathway (Guan et al., 2021). It is

speculated that simultaneous blocking of these two signaling

pathways can significantly inhibit the development of AP. In

addition, the secretion of crimp-related protein I (sFRP1) is

involved in the osteogenic differentiation of HPLCs under

inflammatory conditions by antagonizing Wnt (Yang F et al.,

2021). Both the promotion of bone repair by berberine and the

role of Dickkopf-1 in mediating bone damage are associated

with the regulation of the Wnt/b-catenin signaling pathway

(Tan et al., 2018; Cui et al., 2020).

3.3.3 TGF-b signaling
In mice with conditional deletion of TGFb R2 (a major

receptor for TGFb signaling) from early mesenchymal

progenitor cells, alveolar bone mass and density were

significantly reduced during early development and the

periodontal ligament was severely damaged (Xu et al., 2021).

Bone morphogenetic proteins (BMPs) belong to the TGF-b
family, which is a group of highly conserved and structurally

similar functional proteins. BMPs are a research hotspot in

bone regeneration technology. Among the members of the

BMP family, BMP9, BMP7, BMP6, BMP4, and BMP2 are

known to induce osteogenesis (May et al., 2019). Mineralized

nanofiber fragments and BMP-2 mimic peptides have the

potential to induce alveolar bone regeneration (Boda et al.,

2019). As biocompatible scaffolds, carbonate apatite scaffolds

can upregulate the expression of BMP7 and BMP2, decrease

the expression of MMP8, and support the proliferation and

differentiation of mesenchymal stem cells (Prahasanti et al.,

2020). The presence of BMP-2 and mesenchymal stem cells can

accelerate bone formation (Stutz et al., 2020). Another study

showed that the combination of BMP-2/7 non-viral vectors

with in vivo electroporation has potential as a non-surgical

treatment option for alveolar bone regeneration (Kawai

et al., 2018).
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3.3.4 5-Lipoxygenase signaling
In a mouse model of AP, activating the 5-LO pathway

stimulated the synthesis of inflammatory mediators and

inhibited osteoclast formation (Paula-Silva et al., 2020). Another

study showed that 5-LO inhibitors can significantly reduce the

number of inflammatory cells and osteoclasts, and bone

resorption by affecting leukotriene B4 (LTB4) levels (Lopes

et al., 2017). In the early development of the disease, osteoclasts

are reduced because of the inhibition of 5-LO (Paula-Silva et al.,

2016). However, when 5-LO inhibition is longstanding, it is

difficult to block the synthesis of catabolic mediators, so the

recruitment of inflammatory cells and bone absorption are not

reduced (Paula-Silva et al., 2016). Another study examined 5-LO

in periapical mice from a holistic perspective. Compared to the

control group, 5-LO deficient mice had a greater periapical bone

damage area, and significantly increased levels of inflammatory

factors and osteoclast-forming factors, including TNF-a, IL-1b,
and RANKL, while OPG was decreased, suggesting that the innate

immune system of mice with 5-LO deficiency was damaged and

periapical inflammation was aggravated (Wu et al., 2018).

3.3.5 TLR signaling
Toll-like receptors (TLRs) are pathogen recognition

receptors encoded by a variety of germ lines expressed by

antigen-presenting cells, which induce their maturation, lead

to gene transcription, and produce a variety of pro-inflammatory

and anti-inflammatory cytokines (Desai et al., 2011). TLRs play

important roles in the initial recognition of periapical pathogens.

TLR4 has pro-inflammatory properties and can be activated by

LPS or endogenous damage-associated molecular patterns

(DAMPs), promoting an increase in NF-kB and pro-

inflammatory factors (Deng S et al., 2020; Ciesielska et al.,

2021). Interestingly, the activity of LPS in Porphyromonas

gingivalis is mediated exclusively by TLR4 (Nativel et al.,

2017). In periapical granuloma, TLR2 is highly expressed in

lymphocytes and plasma cells, but with reduced expression in

dendritic cells, suggesting that the former two cell types play a

more important role in the disease than the latter (Chen et al.,

2018). Another study showed that in apical lesions, TLR2 and

TLR4 are overexpressed and associated with collagenolytic

MMPs (Fernández et al., 2019). Experiments demonstrated

that TLR signaling related genes in TLR4, NF-kB, TNF, CD14,
MyD88, and IL-6 were gradually upregulated during the

progression of CAP and were highly expressed during the

formation of bone destruction (Hasegawa et al., 2021).

In future therapeutic strategies at the molecular level of CAP,

further investigation of BMP can lead to its clinical translation

by inducing the transmission of Notch1, Notch3, and 5-LO

signaling pathways, inhibiting Notch2, and downregulating the

expression of the Wnt/b-catenin and NF-kB signaling pathways

to achieve the desired effect.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.908859
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Luo et al. 10.3389/fcimb.2022.908859
3.4 Production and destructive effects
of reactive oxygen species at the
site of inflammation

Oxidative stress is commonly seen in a variety of

inflammatory diseases. The hypoxic environment of periapical

inflammation can drive the progression of periapical

inflammation by inducing ROS production as well as

apoptosis of osteoblasts (Lai et al., 2018). ROS modulates cell

signaling to increase the production of pro-inflammatory

mediators and MMP and may exacerbate alveolar bone

resorption by stimulating RANKL-mediated osteoclast

differentiation and inhibiting osteoblast differentiation

(Hernández-Rıós et al., 2017; Georgiou et al., 2021). SIRT5 can

mitigate hypoxia-induced osteoblast apoptosis by a mechanism

that may be related to Mitochondria (Yang CN et al., 2021).
3.5 Epigenetics

3.5.1 DNA methylation
DNA methylation, which can modify gene expression

patterns without altering the DNA sequence, refers to the

covalent bonding of methyl to the cytosine 5’ carbon position

of genomic CpG dinucleotides in the presence of DNA

methylation transferase. Campos, K., et al. found that all

periapical lesion samples exhibited partial or full IFNG gene

and that the partially methylated samples showed increased

expression of the corresponding mRNA (Campos et al., 2013).

The team also found that the FOXP3 gene promoter showed

high methylation levels in both periapical granulomas and apical

cysts, with corresponding mRNA expression downregulated and

associated with downregulation of IL-10 and TGF-b (Campos

et al., 2015). Wichnieski, C., et al. showed that the differential

methylation profiles of FADD, CXCL3, IL-12B and IL-4R

contribute to disease-related potential contribution of altered

gene expression (Wichnieski et al., 2019). Bordagaray, M.J., et al.

found that TLR2 upregulation was associated with methylation

of a single CpG site in the TLR2 gene promoter (Bordagaray

et al., 2022), while Fernández, A., et al. showed that TLR2 gene

promoter hypomethylation was associated with increased

transcriptional activity of pro-inflammatory cytokines and

angiogenic markers in periapical inflammation (Fernández

et al., 2020). Demethylation of the CpG site of the TLR9

promoter, as well as the DNA methylation status within the

gene, has also been shown to be associated with lesions in

periapical inflammation (Fernández et al., 2022). Both

methylation and demethylation of DNA are associated with

bone conversion. The methylation status determines the

propensity of bone marrow-derived MSCs to differentiate

towards osteoblasts, which may be associated with

hypomethylation of the promoter regions of the osteogenic
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genes RUNX2 and OCN, and higher expression of the

corresponding mRNAs. In addition, methylation regulation of

the Wnt/b-catenin signalling pathway and the RANKL/RANK/

OPG system also plays an important role in bone regeneration

(Oton-Gonzalez et al., 2022). The studies related to DNA

methylation in periapical inflammation are currently

inadequate, and the elucidation of the relevant mechanisms

depends on further studies.

3.5.2 miRNA
The contribution of miRNAs to bone remodeling in CAP has

also been extensively studied (Figure 1). Several miRNAs have been

identified in AP (Shen et al., 2021), but only a few have been

thoroughly studied. Among them, mir-10A-5p has the highest

expression level, and its overexpression can downregulate TNF-a
mRNA levels and upregulate IL-10 (Shen et al., 2021). mir-155

inhibits SEMA3A in the progression of AP (Yue et al., 2016). mir-

335-5p positively contributes to the inflammation of HPDLF, and

its targets are RANKL and uPAR. Regardless of inflammation, mir-

335-5p can promote the expression of RANKL in HPDLFs, while

uPAR is suppressed by mir-335-5p, which can be alleviated by LPS

stimulation (Yue et al., 2017). Moreover, mir-335-5p promotes

osteogenic differentiation in mice by downregulating the Wnt

antagonist, Dickkopf-1 (DKK1) (Zhang et al., 2017). mir-200a

takes part in the migration of BMSCs induced by Enterococcus

faecalis products through the FOXJ1/NFkB/MMPs axis, thus

regulating bone injury repair (Li et al., 2020). mir-181b-5p

negatively regulates THF-a-induced inflammation by targeting

IL-6 in cementoblasts and modulating the NF-kB signaling

pathway while promoting osteoblast apoptosis (Wang et al.,

2019). Another study inferred that mechanical stress-induced

exosomes facilitated the proliferation of HPLSCs through the

mir-181-5p/PTEN/AKT signaling pathway and facilitated their

osteogenic differentiation through BMP2/Runx2 (Lv et al., 2020).

An experiment showed that mir-146a is also LPS-induced and is a

negative mediator of inflammation that downregulates the

expression of TNF-a, IL-1b, and IL-6 (Lina et al., 2019).

Meanwhile, it was demonstrated that Hey2 is the target gene of

mir-146a, which together form a regulatory loop and negatively

regulate each other (Lina et al., 2019). Furthermore, exosomal mir-

1260b inhibits osteoclast formation via the WNT5a-mediated

RANKL pathway (Nakao et al., 2021).
3.6 Main immune cells mediate the
major tissue destruction process

3.6.1 T Cells
The activity of osteoclasts in CAP is influenced by T-cell

regulation (Wang et al., 2021). The functions of the T

lymphocyte family, including Th1, Th2, Th17, and regulatory

T (Treg) cells, have been extensively described. Recent studies

have focused on Th17 and Treg cells, which have opposite roles
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in the immune response in periapical lesions (Toledo et al.,

2019). Treg and Th17 cells are thought to be important junctions

between the immune system and bone (Zhang et al., 2021).

According to a recent review, IL-17 and TNF-a secreted by Th17

cells promote RANKL expression and osteoclast differentiation,

while TGF-b and IL-10 secreted by Treg cells inhibit this process

(Wei et al., 2021). Th17 cells also stimulate the colony of

neutrophils, triggering an inflammatory response to stimulate

osteoclast activity, whereas neutrophil clearance of infection

inhibits osteoclast activity (Wei et al., 2021). In addition, IL-

1b, IL-6, IL-21, IL-23, and in periapical inflammatory

environment can stimulate the upregulation of STAT3 and

NFAT in Th17 cells, further increase the levels of IL-22, IL-21,

IL-17F, IL-17A, and pathologically up-regulate the expressions

of IFN-g and GM-CSF (Hasiakos et al., 2021).

3.6.2 B Cells and plasma cells
Plasma cells play a more important role in tissue repair than

CAP development (Weber et al., 2019). The intensity of the

plasma cell response is determined by its number, with plasma

cells being more numerous and responsive in older, neglected

granulomas than in more recent ones (Bănică et al., 2018). A
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mouse model suggested that antigen-activated B cells

significantly increase RANKL expression and promote

osteoclast generation (Settem et al., 2021). Switched memory B

cells produce more RANKL and increase Th1 and Th17 cell

proliferation to stimulate osteoclast and alveolar bone loss (Han

et al., 2018). In contrast, in periodontitis, B cells may play an

active role in suppressing inflammation and osteolysis (Zeng

et al., 2021). However, the mechanism underlying the roles of B

cells in periapical periodontitis has rarely been described, and

the mechanism in periodontitis can only be used as a reference.

Therefore, further experiments are required to study B cells in

periapical periodontitis.

3.6.3 Macrophages
Macrophages are involved in both innate and adaptive

immunity, and modulate the immune response to host

inflammation. One report has shown that AP antigen

presenting cells, such as macrophages, may have a greater role

than T cells in the pathogenesis of AP (Weber et al., 2019).

Macrophages in periapical lesions show polarization switches

towards M1 (Veloso et al., 2020), and this polarization process is

triggered by pathogen-associated antigens. Macrophage
FIGURE 1

Main microbial factors affecting bone remodeling in CAP. Various oral microorganisms ultimately affect the inflammatory response and bone
damage in the periapical region by influencing the physiological functions of macrophage differentiation and osteoblast and osteoclast
metabolism. Bone regeneration: (A) Probiotics inhibit pathogenic bacteria. (B) Probiotics promote OPG expression by OBs. (C) OPG
competitively inhibits the binding of RANK to RANKL. (D) Probiotics downregulate RANKL produced by OBs. Periapical bone loss: (E)
Fusobacterium nucleatum and Enterococcus faecali stimulate OBs to produce RANKL, binding to RANK on OCs. (F) OBs are stimulated to
secrete a variety of inflammatory factors, triggering greater bone loss. (G) LPS recruits macrophages from the blood and LTA promotes the
differentiation of macrophages towards OCs.
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polarization may be related to the development and progression

of periodontitis injury, including alveolar bone loss (Weber et al.,

2018). Th1 T cells and phagocytes promote bone resorption by

upregulating the expression and secretion of inflammatory

factors and RANKL (Hienz et al., 2015). The development of

exacerbated inflammation in AP is likely to be distinctly

influenced by the macrophage migration inhibitory factors

-794 CATT5-8 and -173G>C (Freer-Rojas et al., 2020). One

study showed that the expression of PD-L1 was more significant

in macrophages at the focal site of CAP than in the control group

(Delgado et al., 2019). PD-L1 binds to PD-1 on T cells to inhibit

immune function, which may be related to the persistence of

bacteria in CAP and chronic pulp infection.

3.6.4 Mast cells
Mast cells (MCs) also contribute to bone damage in

periapical periodontitis (Sheethal et al., 2018). MCs can

promote bone destruction by secreting the classic pro-

inflammatory factor TNF-a. In addition, the number of MCs

with MMP-8 and MMP-13 double-positive in AP was

significantly increased (Wang G et al., 2018). In contrast,

TGF-b expressed by MCs seems to neutralize IL-1, TNF-a,
and other pro-inflammatory factors and inhibit macrophage

activity (Tang et al., 2017). From an immune perspective, bone

loss due to inflammatory bone imbalance has positive roles

because bone resorption creates space for immune cells to

infiltrate, thus forming a barrier against infection (Holland

et al., 2017).
3.7 Relative cytokines

Cytokines are diverse and play complex roles in

inflammatory responses. In this section, we discuss colony

stimulating factor (CSF), tumor necrosis factor (TNF),

interleukin (IL), and interferon (IFN) (Table 1).

3.7.1 CSF
The proliferation and survival of osteoclasts before

differentiation are mainly regulated by MCSF (Anesi et al.,

2019). An in vitro assay showed that M-CSF anti-c-fms

antibodies did not alter the expression of RANKL and OPG

during osteoblast and osteoclast differentiation but directly

inhibited osteoclast precursors to osteoclast formation (Nara

et al., 2020). LPS can induce the production of TNF-a in

osteoblasts in CAP induced by LPS from Porphyromonas in

dental pulp. The expression of M-CSF in apical cysts was

significantly higher than that in apical granulomas, indicating

increased osteoclast activation and continuous bone resorption

in periapical cysts (Weber et al., 2019). In addition, RANKL was

not significantly upregulated in periapical cysts compared to in
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granulomas (Weber et al., 2019). GCSF stimulates bone tissue

injury by increasing the expression of inflammatory factors such

as CXC chemokines, interleukins (IL-1b, IL-6), andMMP-9, and

increasing the ratio of RANKL/OPG and the number of

osteoclasts (Zhang Z et al., 2020).

3.7.2 TNF
TNF-a and TNF-b can activate osteoclasts and inhibit

collagen synthesis, and are mainly produced by macrophages

and activated lymphocytes, respectively. TNF-a directly affects

osteoblast expression of osteolytic cytokines, such as M-CSF,

through the NF-kB signaling pathway, and indirectly affects

osteoclast formation and activity through the action of M-CSF

(Yu et al., 2016). TNF-a can also up-regulate the release of

prostaglandin E2 from fibroblasts and osteoblasts (Canalis et al.,

2021), and contributes to the alleviation of bone loss by

increasing exosome CD73 expression and inducing the

polarization of M2 macrophages. In addition, TNF-a inhibits

the role of BMP9-induced osteoblast stem cells in inflammatory

processes in mouse apical papilla osteogenesis (Wang et al.,

2017). Nonetheless, the role of TNF in promoting osteoclast

precursor differentiation is inhibited by multiple mechanisms,

such as the RBP-J-mediated regulatory network, which has been

reviewed and described in detail (Zhao, 2020). This may explain

why TNF-mediated osteoclast formation is much weaker than

RANKL-mediated osteoclast formation. Moreover, at the

molecular level, the TNF-a-induced inflammatory response in

odontoblast cells can be down-regulated by mir-181b-5p (Wang

et al., 2019).

3.7.3 IL
Among the pro-inflammatory cytokines in the periapical

granulation tissue, Interleukin-1 b (IL-1b) is the most common.

TLR and inflammasome activation contribute to the regulation

of synthesis and secretion of IL-1b (Ran et al., 2021). With the

progression of periapical inflammation, the expression levels of

IL-1a and IL-1b in deciduous teeth increase in periapical

granulomas, which may be a cause of inflammation (Yang

et al., 2018). The main role of IL-4 in AP is to prevent bone

damage and inhibit the development of inflammation and the

resulting injury (Freire et al., 2021). IL-6 and IL-23 (Veloso et al.,

2020) are associated with the severity of apical lesions. IL-23

stimulates osteoclast formation in LPS-induced PDL cells (Ma

et al., 2017). IL-12 may regulate the expression of MMP in

hPDLFs through the NF-kB signaling pathway, in which the

expression levels of MMP-13, MMP-3, and MMP-1 are

increased, while the expression levels of MMP-9 and MMP-2

are inhibited (Ma et al., 2017; Miao et al., 2017). IL-17 also

contributes to bone resorption in periapical inflammation

(Xiong et al., 2019), possibly through RANKL upregulation

(Duka et al., 2019). A previous study confirmed that IL-17 can
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TABLE 1 Roles of cytokines and miRNA.

Names Functions References

IL

IL-4 prevents bone damage (Freire et al., 2021)

IL-12 (1)increases MMP-1, MMP-3 and MMP-13; (2)inhibits MMP-2 and MMP-9 (Ma et al., 2017; Miao et al., 2017)

IL-17 (1)up-regulates RANKL through the JAK2-STAT3 pathway;(2)promotes osteoclast differentiation (Wang Z et al., 2018; Xiong et al., 2019; Wei et al.,
2021)

IL-17a (1)recruiting neutrophils (Ferreira et al., 2016)

IL-10 (1)inhibits RANKL expression;(2)inhibits osteoclast differentiation;(3)up-regulates OPG (Duka et al., 2019; Wei et al., 2021)

IL-22 bone destruction (de Oliveira et al., 2015)

IL-34 binds to RANKL and stimulates osteoclast formation (Ma et al., 2016)

IL-33 (1)higher concentration of IL-33 up-regulates RANKL;(2)lower levels of IL-33 up-regulates OPG (Duka et al., 2019)

IL-1b bone resorption(osteoclast formation) (1)increases the levels of IL-17A,
IL-17F, IL-21, and IL-22;(2)
pathologically up-regulates the
expressions of IFN-g and GM-
CSF

(Ma et al., 2017; Veloso et al., 2020; Zhang Z et al.,
2020; Hasiakos et al., 2021)IL-6 (1)promotes the expression of RANKL;(2)promote functional

osteoclast differentiation

IL-23 stimulates osteoclast formation in LPS-induced PDL cells

IL-21 ::

IFN

IFN-g (1)up-regulates RANKL;(2)attenuates the promoting effect of IL-17 on gene expression of Alp, Runx2,
Osteocalcin, OPG and RANKL;(3)promotes early differentiation of osteoblasts, but negatively
modulates osteoblast calcification

(Wang Z et al., 2018; Wobma et al., 2018; Duka
et al., 2019)

IFN-a anti-osteoblast cytokines (Amarasekara et al., 2021)

IFN-b strong inhibitor of osteoclast formation (Zheng et al., 2017; Amarasekara et al., 2021)

IFN-l1 inhibits osteoclast formation (Chen et al., 2020)

CSF

MCSF facilitates the proliferation process of osteoclast precursor cells and
helps maintain the survival of osteoclasts

impacts macrophage (Anesi et al., 2019)

GCSF (1)increases the expression of inflammatory factors such as CXC
chemokines, interleukins (IL-1b, IL-6) and MMP-9;(2)up-regulates the
ratio of RANKL/OPG and the number of osteoclasts

(Zhang Z et al., 2020)

TNF

TNF-a (1)activates osteoclasts and inhibits collagen synthesis;(2)directly
affects osteoblast expression of osteolytic cytokines through NF-kB
signaling pathway;(3)up-regulates M-CSF to indirectly affects
osteoclast formation and activity;(4)up-regulates the release of
prostaglandin E2 from osteoblasts;(5)alleviates bone loss via up-
regulating exosome CD73 expression and inducing polarization of M2
macrophages;(6)promotes RANKL expression and promotes osteoclast
differentiation

promotes functional osteoclast
differentia -tion

(Yu et al., 2016; Wang et al., 2017; Canalis et al.,
2021; Wei et al., 2021)

TNF-b activates osteoclasts and inhibits collagen synthesis

miRNA

mir-10A-
5p

down-regulates TNF-A mRNA levels and up-regulates IL-10 (Shen et al., 2021)

mir-155 inhibits SEMA3A (Yue et al., 2016)

mir-335-
5p

(1)promotes the expression of RANKL in HPDLFs;(2)inhibits uPAR;(3)promotes osteogenic
differentiation in mice

(Yue et al., 2017; Zhang et al., 2017)

mir-200a takes parts in migration of bone marrow mesenchymal stem cells (Li et al., 2020)

mir-
181b-5p

(1)promotes osteoblast apoptosis;(2)modulates the NF-kB signaling pathway (Wang et al., 2019; Lv et al., 2020)

mir-146a negatively regulates the expression of IL-6, IL-1b and TNF-a (Lina et al., 2019)

mir-
1260b

inhibits osteoclast formation through the WNT5a-mediated RANKL pathway (Nakao et al., 2021)
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directly promote RANKL expression through the JAK2-STAT3

pathway (Wang Z et al., 2018; Xiong et al., 2019). In periapical

abscesses, IL-17a is highly expressed and responsible for the

initiation and subsequent progression of inflammation, as well

as recruitment of neutrophils to the site of infection (Ferreira

et al., 2016). In a mouse model, IL-22 deletion resulted in a

smaller periapical lesion area and lower bone destruction,

suggesting the promoting role of IL-22 in CAP (de Oliveira

et al., 2015). IL-34 may bind to RANKL and stimulate osteoclast

formation in CAP (Ma et al., 2016).
3.7.4 IFN
Interferon inhibits osteoclast formation in many chronic

inflammatory conditions and is associated with bone loss (Place

et al., 2021). IFN-g upregulates RANKL production (Duka et al.,

2019). In mesenchymal stem cell therapy, IFN-g promotes the

expression of anti-pathogenic proteins and induces the action of

mesenchymal stem cells while promoting their own survival,

resulting in the inhibition of inflammation and fibrosis (Wobma

et al., 2018). IFN-g may have a promoting effect of IL-17 on the

expression of OPG, Runx2, Alp, and RANKL (Wang Z et al.,

2018). Furthermore, IFN-g promotes the early differentiation of

osteoblasts but negatively modulates osteoblast calcification

(Wang Z et al., 2018). IFN-g is considered an osteoblast

cytokine, while both IFN-a and IFN-b are anti-osteoblast

cytokines (Amarasekara et al., 2021). IFN-b is a strong

inhibitor of osteoclast formation, as evidenced in the following

two cases. One of these is the farnesoid X receptor, whose

deletion enhances osteoclast formation by downregulating

IFN-b expression via RANKL and disrupting the downstream

JAK3-STAT1 signaling pathway (Zheng et al., 2017). The other

is Def6, which has been identified as a regulator of bone

remodeling and a key upstream regulator of IFN-b expression

(Deng Z et al., 2020). IFN-l1 prevents LPS-induced

inflammatory bone damage by suppressing osteoclast

formation and bone resorption (Chen et al., 2020).
3.8 Inflammasome

NLRP12 reduces inflammation and osteoclasts by negatively

regulating the NF-kB pathway (Taira et al., 2019). NLRP6

suppresses the production of inflammatory promoters such as

IL-6 and TNF-a in HPLCs by inhibiting the NF-kB and ERK

signaling pathways (Lu et al., 2019). NLRP3 is also associated

with AP progression and its ubiquitination is critical for ATP-

induced IL-1ß secretion and the alleviation of LPS by TRIM31

(Wu et al., 2020). Experimental results suggest that NLRP3 may

be a promising target for the prevention and treatment of

periodontal inflammation induced by Enterococcus faecalis

(Ran et al., 2021).
Frontiers in Cellular and Infection Microbiology 10
3.9 Matrix metalloproteinases

The MMP family is extensively involved in tissue destruction

during inflammation, including alveolar bone absorption during

periapical inflammation. In inflammation, the expression of

MMP-9, MMP-7, and MMP-2 is increased (Letra et al., 2013),

and the expression levels of MMP-13 and MMP-8 in MCs are

also promoted (Wang G et al., 2018). MMP-1 is a key enzyme in

initial bone resorption during periapical injury (Jain and

Bahuguna, 2015), while MMP-2 is also involved in bone

resorption (Yu et al., 2018). MMP-8 and MMP-13 are related

to the pathological response to inflammation, while MMP-9

seems to suppress inflammation (Zhang H et al., 2020), which

can reduce the expression of various inflammatory factors and

osteoclast factors induced by LPS stimulation, while also

upregulating the expression of OPG and osteocalcin (OCN).

The upregulation of MMP-9 expression levels may be related to

the inflammatory state that deregulates the methylation of DNA

in the promoter region (Ahmed et al., 2021). A clinical study has

shown that the use of calcium hydroxide as an intracanal

medication during root canal treatment can lead to lower

levels of MMP-9 synthesis (Paula-Silva et al., 2021).
4 Advances in alveolar bone
regeneration after CAP

Most endodontic treatments are successful, but in a small

percentage of cases of periapical inflammation there is

persistence of symptoms or recurrence (Sureshbabu et al.,

2020). Periapical surgery is the treatment of choice in such

cases. Bone regeneration at the newly formed wound after

endodontic surgery is an important step in periapical

restoration (Montero-Miralles et al., 2021). The application of

CGF or stem cells is an effective means to ensure a rapid and

successful recovery of the diseased periapical area after surgery

(Keranmu et al., 2021).
4.1 Traditional method: periosteum and
bone powder

The traditional method of bone regeneration for AP involves

the use of the periosteum or bone powder. The periosteum

consists mainly of heterogeneous cells, extracellular matrix

scaffolds, blood vessels, and nerves. The periosteum mainly

plays an osteogenic role through periosteum stem cells

(Debnath et al., 2018), whereas the extracellular matrix of the

periosteum plays a synergistic role in osteogenesis (Sun et al.,

2019). In addition, the blood supply to the periosteum is rich

(Lou et al., 2021), which is of great significance for the formation

of new bone. Bone powder is widely used to guide bone
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regeneration. Bio-Oss is a carbonate apatite crystal extracted

from bovine bones, with a similar structure to that of human

bone, with good biocompatibility and the ability to induce bone

regeneration; thus, it is widely used in clinical practice (Wang

et al., 2020).
4.2 Concentrated growth factors

An increasing number of clinical studies have shown that

CGFs can achieve rapid repair and regeneration of periapical

lesions, and using CGF as a substitute for the periosteum and

bone powder is considered a better strategy for periapical bone

regeneration (Sureshbabu et al., 2020). CGF, a new generation of

platelet concentrate with more abundant and thicker growth

factor content than platelet -rich fibrin (PRF), is a highly

concentrated collection of growth factors (Sureshbabu et al.,

2020). CGF is mainly composed of concentrated platelets, white

blood cells, cytokines, and fibrin with a reticular structure, and is

prepared with relation to the coagulation of blood. CGF contains

TGF-1, platelet-derived growth factor (PDGF), vascular

endothelial growth factor (VEGF), epidermal growth factor

(EGF), and insulin-like growth factor-1 (IGF-1), among others

(Keranmu et al., 2021; Vaid et al., 2021). The scaffold network

structure of CGF slows the release of the growth factors. As

VEGF has a short half-life, the slow-release effect of CGF can

alleviate the disadvantage of VEGF as a free protein, which

necessitates a large amount and carries a high cost (Stanca et al.,

2021). TGF-b1 is the most abundantly released growth factor in

CGF (Stanca et al., 2021). According to one study, the longest

release time of the factors in CGF was 28 days (Stanca et al.,

2021). The authors also found that BMP-2 was the least

abundant and released factor in CGF.

The growth factors and cytokines mentioned above

stimulate osteoblast activity (Zoltowska et al., 2021). TGF-b1
stimulates the expression of bone morphogenetic proteins and

inhibits matrix metalloproteinases (MMPs) and other enzymes

to stimulate osteoblast differentiation, while VEGF promotes

angiogenesis, which occurs before bone formation, and is key to

bone regeneration. A promising effect of sticky bone on long-

term regeneration has also been anticipated (Zoltowska et al.,

2021). An evaluation study showed that CGF can perform better

as a scaffold when used in combination with Bio-Oss (Xu Y

et al., 2019).
4.3 Mesenchymal stem cells

In the natural pathology of CAP, the tissue at the site of

inflammation has the ability to recruit stem cells (Farias et al.,

2022), but endogenous stem cells alone are not sufficient to

support tissue repair. Mesenchymal stem cells (MSCs) are widely

used in tissue engineering (Xing et al., 2019). Stem cells most
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commonly used to regenerate bone and tooth tissue are bone

marrow mesenchymal stem cells (BMSCs) (Liu et al., 2020),

adipose-derived stem cells (ADSCs) (Tobita and Mizuno, 2013),

alveolar bone periosteum stem cells (PMSCs) (Wang YL et al.,

2018),and dental mesenchymal stem cells (DSCs) (Gan et al.,

2020), including periodontal ligament stem cells (PDLSCs) (Seo

et al., 2004), dental pulp stem cells (DPSCs), dental follicle stem

cells (DFSCs) (Han et al., 2010), stem cells from deciduous teeth

(SHEDs) (Kunimatsu et al., 2018) and stem cells from the apical

papilla (SCAPs) (Kang et al., 2019), and alveolar bone-derived

mesenchymal stem cells (ABMSCs) (Matsubara et al., 2005)

Figure 2. In addition, MSCs extracted from adipose tissue have

strong differentiation and growth factor secretion potential, as

well as strong bone formation ability (Alonso-Rodriguez et al.,

2019). The strong proliferative and osteogenic differentiation

abilities of PMSCs make them ideal materials for bone tissue

regeneration (Wang YL et al., 2018). Xing et al. compared

DPSCs, PDLSCs, and gingival MSCs (GMSCs), the three most

readily available dental stem cells, for tissue regeneration (Xing

et al., 2019). The authors found that there were significant

differences in the number of passages and the ability of

osteogenic differentiation among the three types of cells,

suggesting that research should be directed to determine ways

to promote the osteogenic differentiation of GMSCs and DPSCs,

and to explore ways to increase the number of passages of

PDLSCs. Xing et al. and Zhang et al. proposed that PDLSCs have

good application prospects for bone regeneration (Zhang et al.,

2018; Xing et al., 2019). Additionally, extracellular Vesicles

(EVs) released by PDLSCs have osteogenic properties and

promote bone regeneration (Gan et al., 2020). Moreover, bone

marrow mesenchymal stem cell-derived small extracellular

vesicles (BMSC-sEVs) may regulate osteoclast function and

facilitate the migration, proliferation, and osteogenic

differentiation of hPDLCs through the OPG-RANKL-RANK

signaling pathway (Liu et al., 2021). Clinically, EVs are

considered a potential medical strategy for cell-free

regenerative therapy (Zheng et al., 2019). According to a

previous study, exosomes secreted by GMSCs pretreated with

TNF-a may also be a promising tool for the repair of

inflammatory bone loss diseases (Nakao et al., 2021). SHEDs

are likely to be a promising source of cell material for bone

regeneration therapy, as demonstrated by the experimental

results showing that SHEDs have higher proliferative activity

and higher expression of BMP-2 compared to BMSCs and

DPSCs (Kunimatsu et al., 2018). In addition, SHEDs promote

blood vessel and bone formation through exosomes via the

AMPK signaling pathway (Wu et al., 2019).
4.4 Innovative sources of MSCs

The MSCs used for periapical bone remodeling are not

necessarily derived from normal body tissues. For example,
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human periapical cysts contain numerous MSCs and immature

progenitor cells, with good osteogenic differentiation and

proliferative activity (Tatullo et al., 2019). Wisdom teeth and

lost baby teeth can be used effectively in a similar manner

(Figure 2).

MSC culture conditioned medium (MSC-CM) is a mixture

of hundreds of different cytokines, growth factors, proteins, and

enzymes based on this mechanism. Lin et al. found that MSC-

CM is safer and more effective than MSC transplantation for

periodontal tissue regeneration (Lin et al., 2021). This is reflected

in the fact that MSC-CM is expected to achieve the goal of not

using autologous or allogeneic stem cells, and the concentration

of the active ingredients in MSC-CM can be customized

as required.
4.5 Combination researches of CGF and
MSCs of osteogenic differentiation

Some progress has also been made in the cross-study of CGF

and MSCs. It has been confirmed that CGF can act on the

osteogenic differentiation of HDPSCs, BMSCs, and GMSCs

(Chen X et al., 2019; Xu F et al., 2019; Rochira et al., 2020; Li

Z et al., 2021). Interestingly, the promotion of osteogenic

differentiation of hPDLCs by CGF does not appear to be
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affected by the inflammatory microenvironment (Li et al.,

2019). CGF can directly induce osteogenic differentiation of

hBMSC (Rochira et al., 2020) and regulate osteogenic

differentiation of GMSCs (Chen X et al., 2019) and SCAPs

(Hong et al., 2018) by upregulating osteogenic differentiation-

related genes, such as RUNX2 and COL-I. It was also found that

10% CGF had the most significant promoting effect on MSC

proliferation (Chen X et al., 2019). In addition, experimental

studies revealed that human umbilical cord MSCs could

upregulate the expression of COL-1, ALP, OCN, and RUNX2

and inhibit the expression of MMP1, while CGF could promote

umbilical cord MSC-mediated tissue regeneration (Li W

et al., 2021).
5 Conclusion and outlook

The pathological process of CAP is induced by

predominantly bacterial pathogens, and studies have reported

the contribution of viruses such as: EBV (Jakovljevic et al., 2020),

varicella zoster virus (Heithersay and Chew, 2021) and other

novel pathogens to the development of periapical inflammation.

The combination of pathogenic invasion and the response

produced by the body expands the extent of the lesion. The body

releases a large number of inflammatory-associated factors in the
FIGURE 2

Source of MSCs for bone regeneration in periapical periodontitis. MSCs with different properties can be extracted from different tissues of the
human body, including SCAPs and DPSCs from teeth, PDLSCs and GMSCs from periodontal tissue, BMSCs from bone marrow, ABMSCs and
MSCs from alveolar bone, and ADSCs from adipose tissue, human milk teeth, apical cysts, while wisdom teeth can also be used as biomaterials
for obtaining MSCs.
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periapical inflammatory zone, leading to a range of inflammatory

injuries including osteolysis. Changes in the expression levels of

these inflammatory factors may be related to the DNA

methylation status of the corresponding promoter region and

the regulatory role of mRNA. In addition, the hypoxic

environment created by periapical inflamed tissue can induce

the production of reactive oxygen species and apoptosis of

osteoblasts. The increase in reactive oxygen species stimulates

RANKL to promote osteoclast differentiation for bone resorption.

The fact that periapical inflammatory tissue can recruit stem

cells important for tissue repair to the lesioned area suggests that

the body also has some self-healing function. However, this self-

healing capacity is not sufficient to compensate for the

inflammatory damage. Thus, CGFs and MSCs have become

new research and clinical focuses because of their ability to

promote tissue repair in lesions. In addition, EV and MSC-CM

seem to provide a more effective and safe means for bone

reconstruction, which deserves further exploration.

Before administering pro-repair substances, the first task is

to remove pathogenic microorganisms from the root canal and

periapical area. Due to the complex anatomy of the root canal

system, conventional root canal treatment is unable to

completely remove the pathogenic microorganisms, and the

introduction of probiotic products offers a new way of solving

this challenge.
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