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ABSTRACT

REV1 and DNA Polymerase f (REV3 and REV7) play
important roles in translesion DNA synthesis (TLS) in
which DNA replication bypasses blocking lesions.
REV1 and Polf have also been implicated in
promoting repair of DNA double-stranded breaks
(DSBs). However, the mechanism by which these
two TLS polymerases increase tolerance to DSBs
is poorly understood. Here we demonstrate that
full-length human REV1, REV3 and REV7 interact
in vivo (as determined by co-immunoprecipitation
studies) and together, promote homologous recom-
bination repair. Cells lacking REV3 were hypersen-
sitive to agents that cause DSBs including the PARP
inhibitor, olaparib. REV1, REV3 or REV7-depleted
cells displayed increased chromosomal aberrations,
residual DSBs and sites of HR repair following
exposure to ionizing radiation. Notably, cells
depleted of DNA polymerase g (Polg) or the E3
ubiquitin ligase RAD18 were proficient in DSB
repair following exposure to IR indicating that
Polg-dependent lesion bypass or RAD18-dependent
monoubiquitination of PCNA are not necessary to
promote REV1 and Polf-dependent DNA repair.
Thus, the REV1/Polf complex maintains genomic
stability by directly participating in DSB repair in
addition to the canonical TLS pathway.

INTRODUCTION

Homologous recombination (HR) is a key pathway in
mammalian cells for the repair of complex lesions
including collapsed replication forks, interstrand DNA
crosslinks and DSBs. During HR repair, the RAD51
protein forms nucleofilaments on resected 30

single-stranded DNA (ssDNA) formed at a DSB and
promotes strand invasion into a homologous stretch of
DNA, often the sister chromatid present during late S
and G2 phases of the cell cycle. The invaded strand
serves as a primer for DNA synthesis resulting in the gen-
eration of two restored duplex DNAs that are ultimately
resolved by Holliday junction processing enzymes or
through a DNA strand displacement and annealing mech-
anism referred to as ‘synthesis-dependent strand anneal-
ing’ (1,2). Cells deficient in a factor known to regulate or
carry out HR repair typically display characteristic pheno-
types indicative of genomic instability. This includes the
accumulation of chromosomal aberrations and
hypersensitivities to agents that directly or indirectly
create DSBs. Although many of the proteins that partici-
pate in the early and late steps of HR have been fairly well
characterized, the identity of the DNA polymerases
involved in duplicating the sister chromatid sequence
during HR repair have remained elusive. Genetic studies
in yeast have identified roles for both DNA polymerases
delta and epsilon (3–7). Among the TLS polymerases,
PolZ has been implicated in participating in HR repair
based on both biochemical analyses and genetic studies
performed in chicken DT40 cells (8,9). The observations
that inherited truncating mutations in PolZ are primarily
associated with photosensitivity and skin cancer, and cell
lines derived from such patients are not abnormally sen-
sitive to ionizing radiation (IR), suggest that alternative
DNA polymerases are important for HR repair in humans
(10,11).

Polz (polymerase zeta) is a leading candidate for
facilitating HR repair since cellular deficiencies in this
TLS polymerase are associated with radiosensitivity, em-
bryonic lethality in mice, and high frequencies of chromo-
somal aberrations, phenotypes similar to those exhibited
by HR repair deficient cells (12–17). In yeast and verte-
brates, the Y-family polymerase REV1 is thought to
promote Polz-dependent TLS with the latter performing
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an essential role in TLS by acting as an extension poly-
merase following the insertion of a nucleotide opposite a
wide variety of DNA lesions (18,19). Based on these ob-
servations, we tested the hypothesis that both REV1 and
Polz are important for HR repair in human cells.
Specifically, we examined whether full-length human
REV1, REV3 and REV7 associate with one another in
intact cells via co-immunoprecipitation studies and
determined the importance of each gene product in
facilitating HR repair via gene conversion. Our studies
show that depletion of human REV1, REV3 or REV7
leads to very similar defects in DNA repair after IR or a
site-specific DSB and demonstrate that REV1 and Polz
protect against IR-induced genomic instability. The fact
that cells deficient in the RAD18 E3 ligase, the primary
regulator of TLS, failed to exhibit similar deficiencies in
our model system suggests that REV1 and Polz operate in
a DSB repair pathway separate from the canonical
translesion DNA synthesis pathway.

MATERIALS AND METHODS

Cell culture, siRNA, flow cytometry and viability assays

HeLa and 293T/17 cells were obtained from the American
Tissue Culture Collection (ATCC) and cultured in
DMEM supplemented with 10% fetal bovine serum.
U2OS and SV40-immortalized human fibroblasts contain-
ing the DR-GFP reporter were obtained from Maria Jasin
and cultured in DMEM supplemented with 10% fetal
bovine serum. The human BL2 Burkitt’s lymphoma cell
lines were cultured in RPMI-1640 medium supplemented
with 10% fetal bovine serum (20). All siRNA duplexes
were purchased from Qiagen and transfected into HeLa
cells using X-tremeGENE reagent (Roche) as described
(21). The sequences of siRNA targeting REV1, REV3,
REV7, PolZ, RAD18, FANCD2 and RAD51 are
described and characterized with respect to knockdown
efficiency (Supplementary Data; Supplementary Figures
S1 and S2). Clonogenic survival assays and chromosomal
aberration analyses were performed as described (21).
Cells were irradiated at room temperature at a dose rate
of 3Gy/min using a Pantak DXT300 orthovoltage unit.
Neocarzinostatin, etoposide, camptothecin and 30%
H2O2 were purchased from Sigma. Olaparib was
purchased from LC Laboratories. For cell cycle analysis,
siRNA transfected HeLa cells were fixed in 70% ethanol,
stained with propidium iodide in the presence of RNase A,
and then analyzed on a FACSCaliber flow cytometer
(Becton Dickinson). Viability was determined by
measuring the percentage of BL2 cells excluding
propidium iodide using an Accuri C6 flow cytometer.

Antibodies

Rabbit polyclonal anti-PolZ (H-300), anti-53BP1 (H-300)
and anti-REV1 (H-300) antibodies were purchased from
Santa Cruz Biotechnology. Anti-phospho-ATM (Ser
1981, Rockland), anti-Rad51 (clone 14B4, GeneTex),
and anti-RPA p34 (Ab-1, Lab Vision/NeoMarkers) were
used for immunoflourescence. Anti-MAD2L2 (REV7)

and anti-RAD18 polyclonal antibodies were obtained
through Proteintech Group. Anti-Flag M2 monoclonal
antibody and M2 antibody-conjugated agarose were
purchased from Sigma-Aldrich. S1981P-ATM and
53BP1 immunofluorescence were performed as described
(21). For immunofluorescent staining of RAD51 foci, cells
were fixed in 3.7% para-formaldehyde supplemented with
0.5% triton-X-100, and then stained with monoclonal
antibody followed by goat anti-mouse Alexa Fluor-488
(Invitrogen). For immunofluorescent staining of RPA
p34 foci, cells were incubated in a detergent-containing
buffer (0.5% triton X-100, 20mM HEPES pH 7.4,
3mM MgCl2, 50mM NaCl and 300mM sucrose) for
5min at 4�C in order to reveal detergent extraction-
resistant RPA p34 protein. Cells were then fixed in 3.7%
para-formaldehyde supplemented with 0.5% triton-X-100
and stained as described above.

Co-immunoprecipitation assay

The plasmids used in these studies are described in the
‘Materials and Methods’ in Supplementary Data. 293T
cells (2� 106 cells/dish) were transfected with a total of
12 mg plasmid DNA (consisting of REV3-Flag alone or
in combination with GFP-REV1 or GFP-REV7 at a
8.5:1.5 ratio) using the calcium phosphate method or
X-tremeGENE siRNA Transfection Reagent to deliver
plasmid DNA and/or siRNA into the cells. Cells were
harvested 48 h later and lysed in 100-CSK buffer
(10mM PIPES [pH 6.8], 100mM NaCl, 300mM
sucrose, 3mM MgCl2, 1mM EGTA and 1mM EDTA)
containing 0.5% TX-100, 1X protease inhibitor cocktail
(Roche), 1X phosphatase inhibitor cocktails 1 and 2
(Sigma Aldrich) and 1000U of Benzonase (Sigma
Aldrich) for 45min on ice. The NaCl concentration was
then adjusted to 300mM NaCl and the samples were
further incubated for 30min on ice. After centrifugation
(15 000 rpm for 20min), the supernatant was diluted to
150mM NaCl before immunoprecipitation. Cell extracts
(equivalent to lysates obtained from eight 60mm dishes)
were pre-cleared with protein G plus/Protein A agarose
(Calbiochem) prior to incubation with anti-FLAG M2
agarose or anti-GFP monoclonal (Roche) plus Protein
G plus/Protein A for 2 h at 4�C. The beads were then
washed 3� with 0.1% TX-150mM CSK buffer. The
immunoprecipitates were denatured and separated on
SDS–PAGE gels. The proteins were transferred onto a
nitrocellulose membrane and probed with the appropriate
primary antibodies followed by secondary horseradish
peroxidase (HRP) conjugated goat anti-rabbit or mouse
antibodies (Thermo Scientific). Proteins were visualized
using SuperSignal West Pico Chemiluminiscent Substrate
(Thermo Scientific).

Homologous recombination assay

HeLa cells containing an integrated copy of the DR-GFP
reporter substrate were constructed as described (22).
DR-GFP-containing HeLa, U2OS or SV40-immortalized
human fibroblasts were transfected twice with siRNA and
then transduced with AdNGUS24i adenovirus encoding
I-SceI. Two days later, the recombination frequency was
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determined as the percentage of cells expressing GFP
protein following flow cytometry analysis on an Accuri
C6 flow cytometer.

RESULTS

REV1, REV3 and REV7 form a complex

Genetic evidence in yeast demonstrate that REV1, REV3
and REV7 are epistatic when performing lesion bypass
suggesting they operate in a linear pathway or together
as a complex (23). Consistent with this concept, yeast
Rev1 and Polz have been shown to physically interact;
however, attempts to determine interactions of human
REV3 with REV1 or REV7 have been limited to the
analysis of small protein fragments due to the difficulty
in purifying full-length REV3 (24–27). REV3 protein is
expressed at very low levels in human cell lines and our
attempts to detect endogenous REV3 with available
antibody reagents were not successful. We therefore con-
structed an epitope-tagged version of REV3 and found
that we can express Flag-tagged REV3 in 293T cells
at detectable levels following immunoprecipitation and
immunoblotting. To determine whether full length
REV3 associates with REV1 and REV7 in human
cells, we overexpressed Flag-tagged REV3 in 293T cells
along with either GFP-REV1 or GFP-REV7 and
immunopurified REV3-Flag via Flag-conjugated
agarose. Although we had difficulty detecting REV3-
Flag in the input lanes, we did observe that REV3-Flag
associates with GFP-REV1 or GFP-REV7 when
co-expressed after Flag immunoprecipitation
(Figure 1A). Furthermore, endogenous REV1 or REV7
were co-purified with REV3-Flag immunoprecipitates
when co-expressed with GFP-REV7 or GFP-REV1, re-
spectively. We were also able to detect REV3-Flag
associated with either GFP-REV1 or GFP-REV7
protein immunoprecipitated with GFP antibody in the
reverse experiment (Figure 1B).
To further examine whether endogenous REV1 and

REV7 proteins associate with REV3, we co-transfected
REV3-Flag with siRNA specific for REV1 or REV7. As
shown in Figure 1C, we observed association of endogen-
ous REV1 and REV7 with REV3-Flag in anti-Flag
immunoprecipitates, which demonstrates that REV1 and
REV7 likely associate with REV3 independently of one
another. Depletion of REV1 or REV7 does not affect
the ability of the other to associate with REV3.
Recently, Hara et al. (27) proposed that the interaction
of REV3 with REV7 occurs first and this interaction
produces a change in REV7 conformation such that a
REV1 binding site is revealed. Our results indicate
that full-length REV3 may harbor an additional binding
site for REV1 based on the fact that REV7 does not
appear to be necessary for REV3-Flag and REV1 to
co-immunoprecipitate. Together, these results suggest
that full length REV3 associates with both REV1 and
REV7 in cells forming a ternary complex, consistent
with the model that these proteins directly interact and
cooperate together to perform lesion bypass and DSB
repair (24,25).

REV1 and Polf promote radioresistance and prevent
IR-induced chromosomal instability

To investigate whether the REV1/Polz complex is
involved in promoting HR in human cells, we used
siRNA to deplete REV1, REV3 or REV7 in HeLa cells
as demonstrated in Supplementary Figure S1 (21). We
validated our system by comparing the effects depleting
REV1 or Polz have on the cellular response to UV-C. It is
well established that lesion bypass of UV-C-induced DNA
damage requires PolZ and/or REV1 and Polz for efficient
TLS (18,28–32). We therefore confirmed the effectiveness
of depleting REV1, REV3, REV7 or PolZ by showing that
HeLa cells depleted of each individual protein arrested in
S phase and accumulated g-H2AX as an indication of ex-
tensive replication fork stalling following exposure to
UV-C irradiation (Supplementary Data, Supplementary
Figure S2). We next examined whether HeLa cells defi-
cient in REV1 or Polz exhibit altered responses to IR.
HeLa cells are deficient in the G1 cell cycle checkpoint
but are proficient in establishing the G2 cell cycle check-
point �12 h after IR. By 24 h, cells recover from growth
arrest in G2 and return to a normal cell cycle distribution
(data not shown). HeLa cells transfected with REV1,
REV3 or REV7 siRNA were capable of generating an
IR-induced G2 arrest but failed to recover and re-enter
the cell cycle after 24 h suggesting a deficiency in DSB
repair and presence of residual DNA damage
(Figure 2A). The IR-induced prolonged G2 cell cycle
checkpoint was not observed in HeLa cells transfected
with either non-specific siRNA (Control) or siRNA tar-
geting the TLS polymerase PolZ. The specificity of this
effect was further confirmed by using more than one
siRNA sequence targeting each gene product. Consistent
with a role in DSB repair, depletion of REV1, REV3 or
REV7 resulted in enhanced radiosensitivity and the accu-
mulation of chromosomal gaps and breaks (predomin-
ately the chromatid type) 24 h following exposure to IR
(Figure 2B and C, respectively). Representative images
of mitotic spreads isolated from irradiated HeLa cells
are shown in Supplementary Data, Supplementary
Figure S3.

To gain additional evidence that REV1 and Polz are
important for repairing IR-induced DSBs, we measured
the induction and resolution of foci consisting of
phosphorylated ATM (S1981P-ATM) and the checkpoint
mediator protein, 53BP1. Both of these proteins localize to
sites of DSBs as visible foci following immunofluorescent
staining and are considered sensitive surrogate markers
of DSBs (33,34). Irradiation of HeLa cells with 2Gy
resulted in extensive foci formation within 15min, which
resolved by 24 h consistent with completion of DSB repair,
and the release from G2 cell cycle checkpoint control
(Figure 2A; Supplementary Data and Supplementary
Figure S4). In contrast to HeLa cells transfected with
Control siRNA, cells transfected with siRNA specific for
REV1, REV3 or REV7 failed to resolve S1981-
phosphorylated ATM foci colocalized with 53BP1 within
24 h (Figure 2D and E; Supplementary Data,
Supplementary Figure S5).
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REV1 and Polf are required for efficient homologous
recombination repair

We next tested whether HeLa cells depleted of REV1,
REV3 or REV7 were deficient in HR repair. A clonal
population of HeLa cells were established containing an
integrated DR-GFP reporter commonly used to measure
gene conversion events induced by a site-specific DSB (22)
(Figure 3A). Depleting cells of RAD51 essentially
eliminated the ability of HeLa cells to efficiently carry
out gene conversion as expected (Figure 3B;
Supplementary Data and Supplementary Figure S6).
Reduction of the principle regulator of TLS, RAD18 or
PolZ via siRNA resulted in very small decreases in HR
repair induced by the I-SceI endonuclease (Figure 3B;
Supplementary Data and Supplementary Figure S6).
Importantly, we observed a significant reduction in gene
conversion frequency in HeLa cells transfected with
several different siRNAs targeting each individual REV
protein using the DR-GFP reporter system, levels
similar to those observed when HeLa cells are depleted
of components of the Fanconi anemia pathway such as
the FANCD2 protein (35,36) (Figure 3B). We extended
this analysis to other cell lines such as U2OS osteosarcoma
cells and human SV40-immortalized fibroblasts. Again,
we found little impact on gene conversion efficiencies

when cells were deficient in either RAD18 or PolZ
(Figure 3C and D). Depletion of REV3 consistently
interfered with HR repair efficiency in all three cell lines.
Additionally, in the Hela DR-GFP cell line, co-depletion
of REV1 and REV3, REV1 and REV7 or REV3 and
REV7 did not produce additive effects on reducing gene
conversion frequencies suggesting that these proteins par-
ticipate in the same pathway to promote HR repair
(Figure 3B). Consistent with an inability to complete
HR repair of IR-induced DSBs, REV1, REV3 or REV7
siRNA transfected HeLa cells accumulated foci positive
for the RAD51 protein (Figure 3E) or replication protein
A, the latter marking resected DNA (Figure 3F). Overall,
our results demonstrate that REV1 and Polz contribute to
HR repair of a defined DSB and provide a mechanistic
explanation for the elevated numbers of DSBs (marked by
S1981P-ATM and 53BP1) observed in irradiated cells de-
ficient in these two TLS polymerases. Furthermore,
the data suggest that REV1 and Polz participate in a
late step in HR, after the association of RPA and
RAD51 at sites of DSBs, which is consistent with the
REV1/Polz polymerase complex participating in HR
repair synthesis.
Next, we wanted to differentiate whether the appar-

ent lack of DSB resolution observed in REV1, REV3

Figure 1. REV1, REV3, and REV7 form a ternary complex. 293T cells were transfected with a plasmid encoding REV3-Flag and a control plasmid
or combinations of REV3-Flag with GFP-REV1 or GFP-REV7 encoding plasmids. Cell lysates were treated with benzonase, pre-cleared, and then
subjected to immunoprecipitation and immunoblotting with the indicated antibodies. (A) REV3-Flag immunoprecipitates contain GFP-REV1 and
endogenous REV7 (left) or GFP-REV7 and endongenous REV1 (right). (B) GFP-REV1 immunoprecipitates contain REV3-Flag (left). GFP-REV7
immunoprecipites contain REV3-Flag and endogenous REV1 (right). (C) REV3-Flag immunoprecipitates contain both endogenous REV1 and
REV7. Specificity of REV1 and REV7 antibodies are demonstrated by the depletion of each protein with gene-specific siRNA co-transfected
with REV3-Flag expression vector.
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or REV7-depleted cells was due to a true deficiency in
DSB repair, as opposed to the accumulation of
replication-associated DSBs caused indirectly by the
absence of TLS in irradiated cells. RAD18 is well
characterized for its role in regulating TLS and
post-replication repair in yeast and vertebrates by
promoting the monoubiquitination of PCNA at stalled
replication forks (37). Given the role of RAD18 in
regulating REV1 and Polz-dependent TLS, we tested
whether RAD18-dependent PCNA monoubiquitination
was important for the response of HeLa cells to IR.
Depleting HeLa cells of RAD18 induced a pronounced
cell cycle arrest in S phase and intense staining with the
g-H2AX antibody 24 h after exposure to UV-C irradiation
demonstrating efficient knock down and diminished TLS
activity promoted by RAD18 (Figure 4A and C).
However, HeLa cells depleted of RAD18 did not exhibit

a prolonged G2 cell cycle checkpoint following IR
(Figure 4B). RAD18-depleted HeLa cells efficiently
resolved IR-induced foci consisting of S1981-
phosphorylated ATM and 53BP1 suggesting that the
lack of monoubiquitinated PCNA-regulated TLS per se
does not lead to the accumulation of DSBs in irradiated
cells progressing through S phase (Figure 4D and E).

Polf-deficient cells are hypersensitive to agents
that cause DSBs

To further investigate if Polz is involved in HR repair, we
tested whether human BL2 lymphoma cells deleted of the
REV3L gene were hypersensitive to stresses that cause
DSBs. Two different clones of REV3L knockout BL2
cells were examined in comparison to wild-type, PolZ
�/� and Poli�/� (polymerase iota) knockout cells. Both
REV3�/� clones displayed a significant decrease in

Figure 2. REV1 or Polz (REV3 and REV7) depletion leads to hypersensitivity to ionizing radiation and a defect in DSB repair. HeLa cells were
transfected with control siRNA (Control) or the indicated siRNAs targeting a specific DNA polymerase gene and assessed for their response to IR.
(A) Depletion of REV1, REV3, or REV7 is associated with a prolonged IR-induced G2 cell cycle checkpoint. Cells were exposed to 0 or 4Gy IR and
subjected to cell cycle analysis 24 h later by flow cytometry. (B) Sensitivity to IR was measured using a standard clonogenic survival assay. Data are
presented as the mean±S.E.M from three independent experiments. (C) siRNA transfected HeLa cells were examined for the presence of chromo-
somal aberrations (gaps and breaks) 24 h after 2 or 4Gy IR. Data from a representative experiment is expressed as the average number of gaps and
breaks per metaphase±SEM (n=50). (D) HeLa cells transfected with the indicated siRNAs were exposed to 2Gy IR and then fixed 24 h later. Cells
were immunostained with S1981P-ATM and 53BP1 to mark sites of DSBs. The percentage of cells displaying 10 or more colocalized foci is shown as
the mean±SEM from three independent experiments. Representative images are shown in (E) and additional quantification data are shown in
Supplementary Figure S5. HeLa cells transfected with RAD51-specific siRNA (HR-repair defective) are shown for comparative purposes in (C–E).
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viability following exposure to IR as expected. The PolZ
and Poli knockout BL2 cells were relatively radioresistant,
similar to wild-type BL2 cells (Figure 5). This same
trend in hypersensitivity to DNA damaging agents was
observed when REV3�/� cells were challenged with
neocarzinostatin, a radiomimetic drug that induces DNA
damage similar to IR (Figure 5). The absence of REV3 did
not confer increased sensitivity to H2O2, a chemical which
through oxygen radical formation generates predominate-
ly base lesions and ssDNA breaks but very few DSBs
(Figure 5). In contrast, BL2 cells deficient in REV3 were

hypersensitive to etoposide, a topoisomerase II poison
that induces protein-associated DSBs, and mildly sensitive
to camptothecin, a topoisomerase I directed-drug which
causes replication-associated DSBs (Figure 5). Together
these results suggest that REV3-deficient cells are particu-
larly sensitive to treatments that cause DSBs rather than
base lesions or ssDNA breaks. The fact that
REV3L-deleted cells were hypersensitive to olaparib, an
inhibitor of poly(ADP-ribose) polymerases, is consistent
with these cells having a defect in HR repair (Figure 5)
(38–40).

Figure 3. REV1 and Polz promote HR repair. HeLa cells containing the DR-GFP reporter construct (A) integrated into the genome were trans-
fected twice with the indicated siRNAs. The next day, cells were infected with adenovirus AdNGUS24i expressing the I-SceI enzyme. (B) Two days
later, cells were assessed for GFP expression by flow cytometry. Control adenovirus did not promote detectable expression of GFP protein (data not
shown). (C and D) U2OS or SV40-imortalized human fibroblasts containing the DR-GFP reporter were transfected twice with the inidicated siRNAs
and analyzed as in (B). (E and F) REV1, REV3 or REV7-depleted HeLa cells display elevated numbers of RAD51 or RPA/p34 foci 24 h after
exposure to 2Gy IR. The percentage of cells exhibiting 10 or more RAD51 foci (E) or RPA/p34 (F) is shown for each siRNA. Representative images
of cells scoring positive (REV3-2 transfected cells treated with 2Gy IR) are shown. (B through F) Data are the mean±SEM of at least three
independent experiments.

Nucleic Acids Research, 2012, Vol. 40, No. 2 687



DISCUSSION

Although yeast or chicken DT40 cells lacking Polz are
proficient in gene conversion induced by a defined DSB
(3,12,41), our data suggest that the REV1/Polz complex
participates in this specific repair pathway in human cells.
When considering DSBs induced by less specific means,
such as exogenous or endogenous chemicals, REV1 and
Polz may play an important role in replicating damaged
ssDNA formed after resection. DNA damage induced by
IR is complex and consists of single strand breaks, base
lesions, sugar damage and apurinic/apyrimidinic sites (AP
sites) (42). IR is also capable of creating clustered DNA
damage in which two or more lesions are generated within
close proximity of each other, and DSBs when lesions
occur on opposite DNA strands (43). Thus, IR-induced
DSBs are likely accompanied by additional localized base
damage. In yeast, deletion of Rev1 or Rev3 results in a
reduction of global IR-induced mutagenesis, as well as

mutagenesis associated with ssDNA formed during DSB
repair (41,44–46). We found that human cells depleted of
REV1, REV3 or REV7 are deficient in resolving DSBs
and chromosomal aberrations induced by IR. We there-
fore postulate that the mammalian REV1/Polz complex
may be necessary to bypass lesions or aberrant structures
formed in ssDNA as a product of strand resection and
HR. In this scenario, REV1/Polz-dependent DNA synthe-
sis may be necessary to alleviate replication stalling during
HR repair synthesis, including resected DNA formed sub-
sequent to a defined DSB. Interestingly, our results
suggest that REV1 and Polz perform this function inde-
pendently of RAD18 and associated PCNA
monoubiquitination.

REV3�/� BL2 cells are hypersensitive to a variety of
agents that mechanistically create DSBs in the absence
of base lesions suggesting that Polz plays a direct role in
promoting HR repair. These results are consistent with

Figure 4. REV1 and Polz promote radioresistance independently of RAD18. (A and B) HeLa cells transfected with siRNAs targeting RAD18 or
RAD51 were exposed to 4 J/m2 UV-C light or 4Gy IR as indicated. Twenty-four hours later, cells were subjected to cell cycle analysis by flow
cytometry to measure DNA content per cell. (C) HeLa cells depleted of RAD18 stain intensely for g-H2AX 24 h after exposure to UV-C irradiation
indicative of strong DNA damage response due to replication fork stalling and efficient protein knockdown. (D) RAD18-depleted HeLa cells are
proficient in resolving foci containing S1981P-ATM and 53BP1 within 24 h. Cells transfected with RAD51 siRNA were analyzed as a positive control
for HR repair deficiency. The mean percentage of cells exhibiting 10 or more co-localized foci is shown in (E). Data are the mean±SEM of three
independent experiments.
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those observed in the model system—Drosophila
melanogaster, where HR repair is also impaired in the
absence of Polz by �50% (D. Kane and M. McVey,
personal communication). Polz displays the unique
property of being able to extend mismatched primer
DNA, a property thought to contribute to overall muta-
genesis in yeast (25,47). In this model, REV1 and Polz
may directly participate in initial HR-repair synthesis, es-
pecially when the invading strand within a displacement
loop (D-loop) contains a 30 mismatch that would other-
wise impede extension by other DNA polymerases.

Mammalian REV3L encodes a protein twice the size of
yeast Rev3 and is essential for embryonic development
(23). The recent observation that conditional loss of
REV3L expression accelerates tumorigenesis in p53-null
mice is consistent with Polz playing an important role in
preserving genomic stability by facilitating DSB repair
(48). Persistence of DSBs due to REV3 deficiency can
greatly affect genomic stability and contribute to cellular
transformation. Although Polz was originally associated
with mutagenesis in yeast, these new observations made in
mice and the results reported here indicate that mamma-
lian Polz acquired additional functions serving to protect
genomic integrity in higher eukaryotes by directly
facilitating HR repair.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures S1–S7, Supplementary methods.
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