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Abstract: The accelerating pace of research in neuroscience has created a considerable 

demand for neural interfacing microsystems capable of monitoring the activity of large 

groups of neurons. These emerging tools have revealed a tremendous potential for the 

advancement of knowledge in brain research and for the development of useful clinical 

applications. They can extract the relevant control signals directly from the brain enabling 

individuals with severe disabilities to communicate their intentions to other devices, like 

computers or various prostheses. Such microsystems are self-contained devices composed 

of a neural probe attached with an integrated circuit for extracting neural signals from 

multiple channels, and transferring the data outside the body. The greatest challenge facing 

development of such emerging devices into viable clinical systems involves addressing 

their small form factor and low-power consumption constraints, while providing superior 

resolution. In this paper, we survey the recent progress in the design and the 

implementation of multi-channel neural recording Microsystems, with particular emphasis 

on the design of recording and telemetry electronics. An overview of the numerous neural 

signal modalities is given and the existing microsystem topologies are covered. We present 

energy-efficient sensory circuits to retrieve weak signals from neural probes and we 

compare them. We cover data management and smart power scheduling approaches, and 

we review advances in low-power telemetry. Finally, we conclude by summarizing the 

remaining challenges and by highlighting the emerging trends in the field. 

Keywords: implantable microsystems; neural recording; brain-computer interfaces; 

sensory circuits; data management; power scheduling; low-power biotelemetry;  

multi-channel; inductive link; ultrawide-band 
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1. Introduction 

For several decades, researchers have elaborated various types of experimental setups for studying 

the central nervous system (CNS) at the cellular level. Sixty years ago, Hodgkin and Huxley [1] 

performed intracellular recordings using glass capillary electrodes filled with seawater to characterize 

the squid giant axon. Such experiments allowed the understanding and the precise modeling of the 

generation of action potentials by neurons. During the 50s and the 60s, single cell (single unit) 

recordings performed with extracellular metal microelectrodes by Mountcastle [2] and Hubel [3] led to 

fundamental discoveries about the structure and the organization of the cerebral cortex. Such 

recordings helped in establishing the columnar organization of the visual cortex and allowed the 

understanding of the importance of biopotentials in the transmission of information in the CNS. The 

research carried out by several neuroscientists in the 80s revealed the correlation between limb 

movement and neural activity in many motor areas of the cortex. Georgopoulos demonstrated that 

while single unit recordings correlate poorly with hand motion, the combined activity of several 

neurons conveys the precise direction of movement [4]. Such results have generated a great interest in 

the simultaneous recording of the activity of several individual neurons in the cortex, i.e., multi-unit 

recordings. Since then, the multi-unit approach has been extensively used in various neuroscience 

research applications [5]. The 90s have seen a sustained research effort directed towards extracting 

neural signals and using them to control various prosthetics devices. Experimentation with  

non-human primates allowed characterization of the simultaneous firing patterns of tens of cells 

associated with limb movements in a three dimensional space [6], and the subsequent use of this neural 

activity to move a cursor on a computer screen or control a robot arm [7]. The characterization of hand 

trajectory has also been investigated [8], and the potential of neural prosthetic devices for helping 

paralyzed humans has also been clearly demonstrated [9]. 

Nowadays, neural interfacing microsystems capable of continuously monitoring large groups of 

neurons are being actively researched by leveraging the recent advancements in neurosciences, 

microelectronics, communications and microfabrication. Such microsystems are intended to directly 

tap into the source of voluntary control, the CNS, to feed prosthetic devices restoring or replacing 

sensory, motor, or cognitive functions. Cochlear implants and retinal stimulators [10] are excellent 

examples of successful neural interfacing technologies that have reached widespread clinical 

applications. Implantable neural microdevices are pursuing two critical objectives: (1) replacing 

hardwired connections with a wireless link to eliminate cable tethering and risks of infection,  

(2) enabling the local processing of neural signals on a chronic basis to avoid noise sources and 

improve signal integrity. Indeed, neural interfacing technologies that are specifically addressing 

research purposes do not necessarily need to be fully implantable, but they should provide high quality 

of data while eliminating hardwires to enable experiments with animal models that are free from any 

constraint of movement.  

A suitable interface to the cortex must enable chronic utilization and high-resolution by the 

simultaneous sampling of the activity of hundreds of neurons. Neural microsystems must feature 

several data acquisition channels, each featuring low-noise amplifiers, filters, data converters, 

biopotential detectors, wireless transmitters and receivers, and power management blocks. However, 

the requirement of eventual implantability places severe limitations on size, weight, power 
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consumption and bandwidth. Embedded circuits must dissipate very low power in order to limit heat 

and temperature rises in the surrounding tissues, but since low-power telemetry usually comes with 

narrower bandwidths, achieving intensive throughputs is difficult. Indeed, designing a telemetry unit 

for handling hundreds of independent channels, each generating around 0.3 Mbit/s (considering 10 bit 

per sample and a typical sampling frequency of 30 kHz per channel) while addressing small size,  

low-power and electromagnetic compatibility is very challenging. A significant research effort is 

presently devoted to increasing the power efficiency in neural microsystems through the development 

of low-power circuit techniques, efficient data management, smart power scheduling and the design of 

novel low-power telemetry modules. Indeed, data management techniques are researched for 

efficiently selecting only the relevant portions in the measured input signal and achieving manageable 

data rates. The design of energy-efficient circuits, smart on-chip powers saving approaches and  

low-power transmitters is fundamental in order to meet the requirements while providing high-density 

in this application.  

The implementation of neural recording microsystems is multi-disciplinary since it involves several 

aspects such as electrodes, materials, interconnects, electronics and system integration. The growing 

impact and the high significance of neural interfacing technology in multiple areas of science are 

demonstrated by the sustained number of works that are presented at international events and in 

dedicated publications [11,12]. Moreover, several exhaustive reviews covering this discipline have 

been published [13-16]. This paper presents the latest advances in neural recording technology with a 

focus on the physiological requirements, and the design of the recording and telemetry electronics. The 

paper is organized as follows: Section 2 reviews the different types of neural signal modalities and 

Section 3 presents the main microsystem interfacing approaches. Section 4 discusses several sensory 

circuit topologies for interfacing with various types of neural probes. Sections 5 and 6 survey on-chip 

data management strategies and smart power scheduling approaches. Section 7 covers the latest 

advances in low-power biotelemetry. Finally, conclusions are drawn and some future directions are 

suggested in the last section. 

2. Neural Probes and Signals Modalities 

There is a manifold of neural signal modalities that convey useful information in the CNS, both in 

the electrical and in the chemical realm. The electroencephalogram (EEG) consists of biopotentials 

that can be measured un-invasively on the scalp using surface electrodes. However, most effective 

approaches for the direct control of prosthetic devices consist of capturing the signal inside the body 

using implantable electrodes [14]. Invasive bioelectrical and neurochemical recordings are performed 

inside the body with sharp biocompatible microelectrodes. 

2.1. Bioelectrical Recording 

The bioelectrical activity that is transmitted along the axon of a neuron can either be measured 

intracellularly or extracellularly using a microelectrode. The depolarisations of the membrane of a 

neuron generate extracellular action potentials (AP), which are waveforms in the range of 100 Hz  

to 10 kHz, whose duration is of a few milliseconds. The rate of occurrence of APs varies from 10  

to 120 per second. Intracellular APs have amplitudes in the range of 70 mVpp [17], whereas 



Sensors 2011, 11                            

 

4575 

extracellular APs have weak amplitudes ranging from 50 µVpp to 500 µVpp, depending on the 

distance between the active neuron and the recording electrode [18]. Intracellular APs can be measured 

by penetrating the membrane of a neuron with a sharp glass micropipette filed with saline water. A 

metal electrode in contact with the electrolyte connects the pipette to a circuit for amplification and 

interfacing with computers. Such an approach allows establishing a very good electrical connection by 

measuring strong voltage signals. However, it causes the death of the cell within a few hours after the 

recordings. Another type of biopotentials known as local field potential (LFP) consists of  

lower-frequency neural waveforms (mHz to 200 Hz) having amplitudes ranging from 500 µVpp  

to 5 mVpp. LFPs are also recorded using extracellular microelectrodes. They likely contain important 

complementary information on neural network dynamics and are useful in brain interfacing 

applications [19,20]. 

Patch clamp recording allows measuring current flowing from a single or a few ion channels by 

creating a sealed area on the surface of a cell membrane and the tip of a glass micropipette. This 

technique is less invasive than intracellular recording, but has also a negative impact on the cell since a 

part of the cellular membrane is destroyed after removing the seal. Integrated patch clamp amplifiers 

have been demonstrated [21]. However, both intracellular microelectrodes and patch clamping have 

limited potential for chronic and implantable technologies. Indeed, they do not allow simultaneous 

recordings from several individual cells, and they are not suitable for long-term studies or chronic 

settings, but they are useful for in-vitro measurements involving cells grown in dishes. In contrast, the 

monitoring of the activity of large groups of neurons for long periods of time is reported by several 

researchers [22], which demonstrate the high potential of such an approach for chronic applications. 

The most widespread and simpler implantable electrode technologies are metal wire bundles and 

microfabricated electrode arrays. The design and the fabrication of such probes are covered in [23]. 

2.2. Neurochemical Recording 

On the other hand, measuring the neurochemical activity is an important milestone because the 

action of neurotransmitters is complementary to electrophysiology. The release or uptake of 

neurotransmitters establishes a conduction path between synapses, and determines the probability of 

whether a new action potential will be generated. Moreover, the measurement of neurotransmitters, 

such as dopamine and nitric oxide, can provide invaluable knowledge for the understanding of 

neurological disorders, like epilepsy and Parkinson’s disease. Neurotransmitters can be measured 

employing carbon fiber [24,25] or iridium oxide microelectrodes [26] by using amperometry or 

voltammetry. Indeed, fast-scan cyclic voltammetry is often preferred due to its shorter time scale 

allowing the monitoring of electro-chemical species in real time. Electrochemical analysis is based on 

the fact that certain species can undergo a chemical reaction on the surface of an electrode held at a 

characteristic potential, the redox potential. An electron-transfer reaction taking place between the 

species and the electrode generates a redox current that can be measured with three electrodes and a 

sensitive circuit. The redox potential is applied between a working electrode and a reference electrode, 

while the redox current flows from a counter electrode towards the working electrode. Knowing the 

preferred redox potential and redox current associated with a species enables to identify the 

neurochemical molecule and its concentration.  
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2.3. Summary of Recording Parameters 

Table 1 summarizes the neural recording parameters for the different signal modalities. It is shown 

that intracellular AP measurements deal with strong signals, but have very low potential for chronic 

utilization, whereas extracellular AP and LFP measurements deal with weak signals, but have high 

potential for chronic utilization. The measurement of EEG has similar parameters then for LFPs, 

however measuring the latter is highly invasive compared to the former. Besides, chemical 

measurements involve very small redox currents, but offer high potential for chronic utilization. In 

contrast, patch-clamping measurements deal with larger currents but have rather low potential for 

chronic utilization. 

Table 1. Summary of Neural Recording Parameters for Different Signal Modalities. 

Neural signal modality 
Measurement 

technique 
Amplitude Bandwidth Electrodes 

Potential for  

chronic utilization 

Extracellular action 

potentials  

Voltage 

amplification 
50 to 500 µVpp 100 Hz to 10 kHz 

Metal/silicon 

microelectrode 
High 

Intracellular action 

potentials  

Voltage 

amplification 
10 to 70 mVpp 100 Hz to 10 kHz Glass micropipette Very low 

Local field potentials 
Voltage 

amplification 
0.5 to 5 mVpp 1 mHz to 200 Hz 

Metal/silicon 

microelectrode 
High 

Electroencephalogram 
Voltage 

amplification 
1 to 10 mVpp 1 mHz to 200 Hz Surface electrode Very high 

Ionic current Patch clamping 1 to 10 nA 1 mHz to 10 kHz Glass micropipette Low 

Redox current 

Amperometry 

100 fA to 10 µA 

1 mHz to 100 Hz 
Iridium oxide/carbon 

fiber microelectrode 
High 

FSCV 1 mHz to 10 kHz 

3. Multi-Channel Recording System Architectures 

Different types of neural microsystem architectures have been demonstrated for interfacing with 

multi-channel neural probes. Devices featuring hundreds of recording channels have been 

demonstrated [27-29]. Application specific integrated circuits (ASIC) can be interconnected with 

neural probes in different ways to form self-contained devices. Requirements on form factors imply 

that the IC must ideally accommodate a silicon area as low as 0.160 mm
2
 per channel because  

a 400-µm inter-electrode spacing is commonly used for good spatial resolution in the array. Devices 

integrating processing electronics on the same substrate as a silicon microelectrode array are made 

using IC fabrication technology [16]. Such processes allow construction of three-dimensional 

arrangements by assembling several planar parts using sophisticated techniques. Hybrid devices have 

been built using flip-chip approaches where one IC is connected to a silicon microelectrodes  

array [28,29]. This strategy offers high flexibility because the array and the mounted components (IC 

and passive parts) can be fabricated separately. This monolithic configuration is intended to be placed 

under the skull, in direct contact with the cerebral cortex, like a single intra-cortical button. Techniques 

using polymer films are used for the assembly of a probe with ASICs and with other mounted 

components on the same substrate [30]. Although such an approach enables achieving more 
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complexity, it can result in bulky devices that may not be suitable for full implantability. Moreover, the 

horizontal assembly of several components can prohibit integration of a system within a prescribed 

area. Indeed, large surfaces that can be in direct contact with cortical tissues for lengthy periods can 

induce harmful effects such as inflammations and cortical œdema [31]. The approaches proposed 

in [32,33] circumvent such drawbacks by means of distributed configurations consisting of a front-end 

intra-cortical device that is interfaced with a cortically inserted probe, which is hardwired to a  

back-end cranial module atop of the skull. While such an approach enables relaxing constraints on the 

back-end module, any tethering in the interconnections could be harmful, and needs therefore to be 

addressed. The vertical integration of a multi-chip microsystem for increasing the complexity of an 

intra-cortical button-type neural microsystem along the z-axis is proposed in [31]. The interaction with 

the aforementioned tissue layers are therefore minimized in this configuration, given that the height of 

the stacked structure is kept within the intracranial space (2–3 mm) to limit any rise of the implant 

above the cortex and provide clearance. 

The recording electronics in the ASICs are based on different system-level approaches. Figure 1 

presents three different neural microsystem system-level architectures. A widespread approach consists 

in sharing a fast digitizer between the multiple sensory channels. The sensory channels are directed 

toward the analog-to-digital-converter (ADC) employing time-division multiplexing (TDM) in the 

analog domain. The challenge with such an approach is how to minimize power consumption from the 

ADC and from the several unity-gain buffers needed to drive the ADC at high rate and isolate channels 

from each other. Moreover, the analog multiplexer must be designed carefully in order to avoid 

excessive crosstalk. An example of such a type of implementation is presented in [32]. Another 

approach consists in providing one low-power low-rate ADC for each sensory channel and performing 

TDM in the digital domain instead. The main benefits of such an approach are that it avoids the need 

for several power-consuming unity gain buffers and it eliminates inter-channel crosstalk. However, 

great care must be taken in the design of the ADC in order to minimize the chip area. Such a type of 

implementation is presented in [31]. A third approach consists in performing digitization off the chip 

to save power and chip area. Digitization is performed in two phases. A first phase consists of 

converting the multiplexed analog sensory output to time duration, known as analog-to-time 

conversion (ATC). Then, such an ATC signal is transmitted outside the body, to a remote base station 

where power and size are not so highly constrained for performing time-to-digital conversion (TDC). 

This approach requires performing TDM in the analog domain first, which promotes crosstalk, but it 

has the advantage of not requiring any clock signals. Such an approach is presented in [34]. 

Besides, implantable microsystems dedicated to the measurement and the detection of 

neurotransmitters from single or multiple electrodes have been demonstrated [25,35,36]. 

Electrochemical measurements from multiple electrodes are very attractive because they offer a 

distributed view of the release of several types of highly diffusive neurotransmitters. Moreover, a  

two-electrode electro-analysis approach is normally employed in a neurochemical recording 

microsystem format since the very small redox current involves negligible ohmic drop in the reference 

electrode. Thus, the reference electrode is commonly being short-circuited to the counter  

electrode [24,25]. 
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Figure 1. Block diagrams showing different neural recording microsystem architectures. 

(a) This approach is employing analog TDM and is sharing a fast ADC between channels. 

(b) This approach is employing digital TDM and is using one ADC per channel. (c) This 

approach is employing analog TDM and is transferring digitization on the remote station 

side by using ATC in the implanted part, followed by TDC in the external part. 

 

(a) 

 

(b) 

 

(c) 

4. Neural Sensory Circuits 

Extracellular electrodes generate weak analog signals that need to be amplified, filtered and 

digitized to be transferrable to the world of computing for further processing and storage. Such 

functions are conducted in dedicated circuits often referred to as the analog front-end. The low-noise 

amplifier (LNA) is the main building block of such front-ends. Also referred to as a neural amplifier, 

the LNA must amplify and filter the neural waveforms in order to remove any DC offset seen across a 

pair of differential electrodes. Indeed, it must provide sufficient gain, appropriate bandwidth, high  

signal-to-noise ratio (SNR), excellent linearity, high common mode and power supply rejection ratios 

(CMRR and PSRR), in order to provide the required signal quality. In the case of a multi-channel 

interface, one such sensory circuit is needed for each electrode. Therefore, a neural amplifier must 

present low-power and small size, and be scalable to multiple parallel channels. Furthermore, it is 

essential to optimize the design for very low-power operation through a dedicated circuit design 
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methodology, like in [37]. The noise efficiency factor (NEF) has been widely adopted as a main figure 

of merit to assess the performance of neural amplifiers and compare the several existing topologies 

together. Most effective neural amplifier designs achieving NEF values between 2 and 6.  

In addition to low-noise and low-power optimization, suppressing the DC input voltage while 

leaving the broadband neural signal (from 1 mHz to 10 kHz) untouched represents a considerable 

circuit design challenge in an integrated device, because it requires the implementation of a very  

low-cutoff frequency. Except for specific designs that address extremely low-power [38] or  

very-low-noise requirements [39], the design of reliable integrated neural amplifiers has progressed 

from opened-loop to closed-loop topologies. Early approaches consist in loading the recording site 

with a high-value resistor, implemented either with a reverse-biased diode [13], or with subthreshold 

transistors forming a highpass filter with the electrode capacitance [40]. In present devices, closed-loop 

DC suppression schemes have replaced opened-loop approaches. A popular approach, depicted in 

Figure 2(a), consists of forming a closed-loop gain along with a low-frequency pole using a capacitive 

feedback networks and a highly resistive MOS-bipolar element [37]. Since the equivalent resistor of a 

MOS-bipolar element can reach several thousands of giga-Ohms for small voltages, it is sufficient to 

use a small integrated capacitors of a few tens of pico-Farad in the feedback network for implementing 

a low-frequency cutoff that is in the mHz range. The feedback loop is normally built around a  

low-noise operational transconductor amplifier (OTA) which implementation varies.  

Figure 2. (a) Schematic of a capacitive-feedback neural amplifier. (b) Schematic of an 

active-feedback neural amplifier.  

 

(a)     (b) 

 

The current mirror OTA [34,41-43] [Figure 3(a)] and the two-stage opamp [22,44,45] [Figure 3(b)] 

are the most widespread topologies for the low-noise OTA. Other implementations have employed 

folded cascode opamps [46] [Figure 3(c)], telescopic cascode amplifiers [29,47] [Figure 3(d)], or  

fully-differential self-biased OTAs [48] [Figure 3(e)] to reduce the power overhead and noise coming 

from the second stage of an OTA. Moreover, the capacitive network-based topology proposed in [46], 

the schematic of which is depicted in Figure 3(c), improves the NEF by means of source degeneration 

resistors employed in the active load of the differential pair M1-M2. Using a source-degenerated load 

(M5-M6 and R1-R2) instead of a regular active load allows to make the bias current of the transistors 

in the folded branch a small fraction of the current in the differential pair, making the noise 

contribution of this branch negligible compare to that of M1-M2.  
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Figure 3. (a) Current-mirror OTA. (b) Miller OTA. (c) Folded OTA with source 

degeneration. (d) Telescopic OTA. (e) Self-biased OTA. 

  

(a)       (b) 

  

(c)       (d) 

 

(e) 

Moreover, the noise contribution from the source-degenerated load comes mainly from the 

degeneration resistors, which noise is essentially thermal, whereas MOSFETs in a regular active load 

contribute a large amount of 1/f noise. Table 2 summarizes the design parameters of low-noise OTA 

topologies. Expressions are given for the open loop gain and for the input referred noise density. The 

open loop gain of an OTA is obtained by calculating the product GmRo, where Gm and Ro are the overall 

transconductance and the output resistance of the OTA, respectively. The Miller OTA and the 
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telescopic cascode OTA yield smaller noise densities than other topologies as fewer transistors in their 

implementation contribute to the total noise. 

Table 2. Summary of Low-Noise OTA Parameters 
1
. 

Opamp topology Open loop gain (GmRo) Input-referred noise density 

Current-mirror OTA 

[Figure 3(a)]  
                            

    

    
 

               

Miller OTA  

[Figure 3(b)]  
                     

    

    
 

          

Folded OTA with  

source degeneration  

[Figure 3(c)] 
2
 

                        

                   

    

    
      

 

  
       

Telescopic OTA  

[Figure 3(d)] 
                          

    

    
 

          

1 Note that gm and ro represent the transconductance and the output resistance of a MOS device, respectively, 

while k is the Boltzman constant and T is the temperature. 2 Parameter α in the open loop gain of the Folded 

OTA depends on the impedance looking into the sources of M7-M8 and can be calculated as detailed in [46]. 

 

Besides, achieving small silicon area in a neural amplifier is becoming critical as the number of 

recording channels is continuously growing. However, a capacitive feedback network can often be area 

consuming. An alternate solution to such topology is proposed in [49]. This design [Figure 2(b)] 

employs an active feedback loop implemented with a Miller integrator using a MOS-bipolar element 

and a small-integrated capacitor to cancel any systematic offset and drift at the electrode-tissue 

interface. In addition to providing a competitive NEF and consuming low-power, such an approach 

enables a very small chip area since it is using only one small integrated capacitor compared to two big 

plus two smaller integrated capacitors needed for the capacitive-feedback network-based configuration. 

Adapted versions of the neural amplifier designs introduced above are widely used to extract  

lower-frequency signal modalities such as EEG and LFPs [37]. In addition to that, some designs are 

employing active approaches like Chopper stabilization to attenuate 1/f noise [50,51], which is 

dominant in the low-frequency range (between 1 mHz and a few hundred Hz) for CMOS integrated 

devices. Besides, circuits that allow capturing multimodal information have been demonstrated. Such 

amplifiers can select between several types of biopotentials by accommodating different frequency 

ranges [18,34,44,46,52]. Different bandwidth settings can be obtained by: (1) tuning resistive values in 

a filter, (2) selecting different capacitors values from an array, or (3) changing the operating points of a 

circuit. In several designs, the high-cutoff is changed by varying the gate voltage of a  

pseudo-resistor [46,53], or that of a weakly inverted MOSFET [40,54]. In contrast, the low-cutoff is 

changed by varying the operating point of the low-noise OTA directly [37], or by changing its 

capacitive load through the selection of different output capacitors [55].  

However, most of these designs present significant distortion and lead to variation of the  

high-cutoff, since the resistance of the MOS devices is highly dependent on the voltage level of the 

output signal. A MOS resistor exhibits asymmetric and nonlinear resistance when the voltage across it 

varies. It is also highly dependent on process variations. Approaches have been proposed to linearize 

MOS resistors by implementing dedicated linearization circuit performing appropriate biasing of the 
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gate of the MOS devices [34,56]. Such approaches have been extended further in [57] by replacing the 

current mirrors and the source followers by closed-loop opamps, which allow reaching high-linearity 

above 74 dB within ±200 mV, and enabling process-independent frequency cut-off values. In this 

work, the pseudo-resistor of a lowpass filter is linearized by reporting any voltage variations in the 

input voltage right at its gate, with unity gain. This maintains the gate voltage of the pseudo-resistor at 

a constant value, cancelling any non-linearity, while providing adequate DC biasing to set the desired 

cut-off frequency in a preferred range. A Switch-capacitor neural amplifier with tunable characteristics 

was recently demonstrated in [58] as an alternate means for multimodal measurements. In addition to 

provide low-noise and satisfactory gain, this amplifier can accommodate LFPs and APs through tuning 

of its clocking frequency, implementing different low- and high-cutoff frequencies in a  

straightforward fashion. 

On the other hand, assessing neurochemicals requires sensitive potentiostat circuits that can 

measure very small redox currents. Since the typical concentrations of neurotransmitters are of the 

order of nanomolar and lower, a potentiostat needs to measure currents on the order of nanoamperes 

down to picoamperes. The role of the potentiostat is to measure a current at a fixed potential. Such a 

system functions by maintaining the potential at the working electrode at a constant level, with respect 

to the reference electrode, by forcing a current through the counter electrode. In addition, a potentiostat 

must provide high gain, excellent linearity and wide dynamic range in order to associate a small redox 

current with a concentration by following a linear relationship. Integrated potentiostats have been 

demonstrated for the measurement and the detection of neurochemical species, and they were 

integrated in multi-channel system formats. Early implementations employed direct current to voltage 

converters made from opamps and resistor networks [35,59]. In other designs, the input current is 

integrated on a capacitor and the output voltage is sampled across it [60]. Recent designs are 

employing a delta-sigma modulator (ΔΣM) to directly convert the analog input current into a serial  

bit-stream. With the action of oversampling, a ΔΣM modulator reliably converts the small redox 

current directly into digital data with high resolution, without the need for additional building blocks 

performing current amplification. A switched-capacitor first-order single-bit ΔΣM is implemented  

in [36] for performing amperometric measurements. Such a potentiometric system provides sensitivity 

down to 100 fA for a power consumption of 3.4 μW per channel. It has latter been integrated in  

a 16-channel microsystem [25]. A continuous-time current-input second-order ΔΣM is presented  

in [24]. Such a potentiostat allows measurements in both FSCV and amperometry modes, and features 

a frequency-shift-keying transmitter operating near 433 MHz for transferring the measured data to a 

base station at 1.8 Mb/s. 

5. On-Chip Data Management 

Data management strategies have been introduced as a means to reduce data transfer rates and 

power consumption that would otherwise be prohibitive in neural recording microsystems. In such 

schemes, on-chip circuitry performs the identification and the extraction of the incoming neural 

waveforms, so the system only focuses on relevant portions instead of the entire raw neural signal. 

Such an approach offers huge savings opportunities since neural recordings present very low duty 

cycles in the range of 2% to 20% [31,61], representing a maximum reduction factor of 50. Applying 
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such a huge reduction factor results in a data rate of only 6 kbit/s per channel, assuming ideal signal 

detection rate. Hence, this would drastically increase the channel count from 16 channels to nearly a 

thousand in some proposed wireless telemetry links. When detecting a neural event, it is essential to 

capture multiple waveshape features in order to further utilize the extracted biopotential in subsequent 

processing steps, like in waveforms sorting. For instance, the time of occurrence, the maximum 

amplitude value and the minimum amplitude value are essentials waveform features that need to be 

known in order to associate a biopotential with a specific neuron. Indeed, it is worth mentioning that 

the best performance arises when complete waveshape representations are available [62,63]. Data 

management is usually performed after passing the signal into the neural amplifier, so it occupies a 

larger voltage range and it is less sensitive to noise. Automatic biopotential detectors that locate and 

extract neural waveforms in real time have been demonstrated. A simple and inexpensive scheme 

consists in passing the signal through a unique threshold detector for determining the biopotentials 

locations [64,65]. Detection occurs when the biopotentials amplitude crosses a specified voltage 

threshold. Implementing such scheme is straightforward and represents very low overhead, both in 

digital and analog formats. However, it can only measure the portion of an AP that is above the 

positive threshold, losing the major portion of the waveform that is below the threshold value. 

Moreover, accurate detection using this scheme is only possible for high signal-to-noise ratios  

(SNRs) [66]. Indeed, the threshold value must be carefully chosen for optimizing the detection rate 

according to the level of noise measured in the channel. Such noise comprises background neural 

noise, Johnson noise and 1/f noise. A similar, but more effective technique, consists in using a bilateral 

threshold to cover both positive and negative signal polarities [31,44,47,67,68]. Such bilateral 

threshold function along with basic feature extraction is illustrated in Figure 4.  

Figure 4. A data reduction scheme employing a bilateral threshold function. In such 

scheme, action potentials are detected upon threshold crossing and then tagged with their 

respective time of occurrence.  

 

 

For instance, the bilateral threshold-based detector in [31] allows capturing complete waveshapes 

by means of SRAM data buffering blocks. Data buffering allows capturing the incoming waveform 

samples ahead of detection, which is preventing the system from truncating any biopotential. Indeed, 

using a bilateral threshold is equivalent to employing a squared-signal pre-processor prior to a unique 

threshold detector. Pre-processors are additional building blocks that are employed in the detector to 

improve the SNR before passing the transformed waveform into the threshold function. Such  

pre-processor can increase the detection rate by accentuating the waveshapes and attenuating the noise 



Sensors 2011, 11                            

 

4584 

for achieving high detection rate under low SNR. Figure 5 illustrates the principle of a pre-processor 

based detector. Several types of pre-processor-based detectors have been implemented in analog and 

mixed-signal formats. The detector in [54] can locate APs and measure the peak-to-trough differences, 

which are employed as a means for basic on-chip feature extraction. The circuit proposed in [69] 

employs two lowpass filters, one generating a moving average and a second filtering the input signal, 

to create a dynamic thresholding system. Such a design employs current-mode circuits with 

subthreshold-operated transistors presenting sub-microwatt energy consumption. A variance-based  

pre-processor detector and sorting system is proposed in [70]. An energy-based pre-processor 

implemented within low-power current-mode circuits in [71] allows superior detection rates, while 

occupying a small chip area and consuming low-power, below 1 μW. This latter design was further 

augmented with a dual-threshold decision function in [72]. 

Figure 5. Block diagram of a signal detector employing a pre-processor. 

 

 

Adaptive thresholds are often employed in the decision function of a detector to maximize the 

detection rate [69,73-76]. In such schemes, the value of the detection threshold is dynamically adjusted 

based on the SNR of the input signal and its background noise. An analog implementation of such 

scheme is proposed in [74]. In this work, a low-power subthreshold-based current-mode local 

averaging filter is employed to adaptively adjust the value of the detection threshold represented by a 

voltage in the decision function. 

Digital signal processors have also been implemented to perform detection, feature extraction, data 

compression, as well as spike sorting. A wavelet-based digital processor based on a lifting scheme 

allows the detection and the compression of 32 channels of input neural data [77]. This processor 

implemented in a 0.18-μm CMOS process consumes 76 μW and presents a chip area of 0.22 mm
2
. A 

polyphase-based discrete-time wavelet processor is proposed in [78]. This latter work is also covering 

the implementation of continuous-time wavelets in hardware. A real-time neural spike sorter based on 

a low-complexity and adaptive digital neural signal processor is employed in [79] to minimize the 

bandwidth and the overall power dissipation in a neural recording microsystem. Such a processor 

extracts basic AP parameters such as the Euclidian distance, frequency of spike occurrences and the 

total number of spikes, and stores such information in a cache entry. A template-matching algorithm 

allows assigning the detected APs to specific clusters for speeding up the classification of waveforms 

off the chip. Similarly to a CMOS imager, a switched-capacitor delta read-out data compression circuit 
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is employed in [80] to compress neural waveforms related to epileptic seizures. By trading recording 

accuracy for the output data rate, this system allows compression factors as high as 800. A digital 

energy-based processor is employed in [55] to perform on the fly-feature extraction in a 128-channel 

neural recording microsystem. Such a processor allows identifying spikes and processing them with a 

digital frequency-shaping filter. Such an operator is capturing a subset of samples containing the 

necessary information for clustering the data off the chip, and reducing the payload that has to be 

transmitted via a RF link. The processor can handle a single channel among 128 and consumes 0.1 mW. 

6. Smart Power Scheduling 

Power scheduling mechanisms are employed to decrease the power consumption in dense 

implantable microsystems featuring power hungry modules such as low-noise sensory circuits, data 

converters or data transmitters. Such approaches consist in powering up the building blocks only when 

necessary. Current-supply modulation [34,43] and duty cycling [34,55,57] are power scheduling 

techniques consisting in switching specific building blocks between an active and an idle state with 

low duty cycle. The shorter the duty cycling period is, the lower the power dissipation in the circuits is. 

The difference between both techniques is that the former uses low-level bias current in the idle state, 

whereas the latter has zero current in such state for further increasing power savings. A duty cycling 

period that is too short can potentially degrade in the reading accuracy of a neural recording channel, 

because fast intermittent monitoring requires circuits featuring larger bandwidth, thus letting more 

noise entering. The battery-powered sensor interface presented in [57] addresses this tradeoff by 

providing different levels of accuracy and lifetime through the utilization of a programmable low-pass 

filter. Such a filter allows selecting between different input-referred noise levels and duty cycle 

lengths, which determines the overall accuracy and power consumption. The power-scheduling 

mechanism employed in [34] consists in putting most of the neural amplifiers that are not being 

sampled in sleep mode with a fraction of their active current consumption (0.5 μA). Indeed, not turning 

the neural amplifiers completely off lets time for the neural amplifiers to reach their active state faster 

ahead of each sampling. This scheme allows one to decrease power consumption by 18% in the  

multi-channel front-end block. Besides, the multiplexing of several electrodes towards one neural 

amplifier has been demonstrated as a means to save power and silicon area. Time division 

multiplexing of four electrodes towards a single neural amplifier is achieved in [79]. Such time 

multiplexed topology shares a single LNA between four independent input electrodes to decrease the 

power consumption per channel by one fourth. The LNA is based on a capacitive-feedback low-noise 

OTA featuring multiple feedback networks. Each feedback network belongs to a specific channel. 

During time multiplexing and throughout a sampling period, each channel operates either in track or 

hold modes. During tracking, a set of MOS switches connects a specific capacitive network in the 

feedback loop of the LNA to enable recording from an associated input channel with a closed-loop 

gain of 40 dB. The implementation of such a scheme results in a similar system-level architecture as 

shown in Figure 1(a), but with the analog multiplexer relocated before the sensory channels building 

blocks. A frequency-division multiplexing scheme is implemented in [81] where the amplitudes of the 

neural activity seen at each individual electrode is modulated and directed towards a single wideband 

neural amplifier. It is shown in [81] that the maximum number of electrodes that can be multiplexed 
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towards one single amplifier is limited by the summation of the thermal noise from each site at the 

input node of the wideband neural amplifier, which is in the range of 5 to 10 for typical cases. 

Activity-based schemes exploit the transient characteristics of neural signals to maximize 

efficiency. Adaptive sampling [82,83] is an activity-based technique that allows a significant decrease 

in the data rate by an order of magnitude. Such an asynchronous data-sampling scheme dynamically 

varies the sampling rate of the data converter based on the input signal activity. Reduction factors  

of 7 are reported with this scheme. The algorithm requires the implementation of the 2nd derivative of 

the signal within a dedicated circuit to measure the rate of change of the input signal. Other  

activity-based schemes exploit the intermittent nature of neural recordings along with their low duty 

cycles by powering up the building blocks only when neural events occur. Such a strategy requires the 

utilization of accurate signal detectors along with a power scheduling strategy. In such schemes, most 

building blocks remain in an idle state between occurrences of neural events, draining practically no 

power. In [84], a low-overhead analog detector is employed to locate neural events and triggering up 

the recording electronics. Indeed, the approach proposed in [61] is using low-overhead analog delay 

elements that are implemented within ultralow-power linear-delay filters in order to waking up the 

recording circuits ―ahead‖ of biopotential occurrences, whose functionality is critical to avoid 

truncated waveforms. Adaptive mechanisms have been proposed for achieving high-power efficiency. 

In such approaches, the DC operating points of a circuit are adjusted dynamically by employing 

feedback. A neural amplifier using adaptive biasing is demonstrated in [85]. Such closed-loop scheme 

is directly adjusting the SNR of an LNA by changing its bias current in order to set the input  

referred-noise of the amplifier right above the noise floor of the input electrode, which scheme is 

avoiding any waste of energy. 

7. Low-Power Telemetry and Wireless Power Supply 

In contrast with head mounted research devices that operate externally to the body, most 

implantable microsystems cannot use batteries as primary sources of energy. Instead, power must be 

delivered wirelessly across the skin through an inductive link formed by a pair of coils. Inductive 

coupling is among the safest method to power up implants because it avoids the biological risks and 

encumbrance associated with transcutaneous wires. In such a link, a power amplifier drives an external 

coil (the primary) to deliver energy to an implanted coil (the secondary) through inductive coupling. A 

voltage rectifier and a voltage regulator follow the secondary for delivering an adequate supply voltage 

and current to the implanted circuits. This concept has been demonstrated in several applications [86-89]. 

Maximizing the wireless power transfer efficiency is critical to reduce the size of the energy source, 

heating of the tissues and interference with other devices. However, the effect of the surrounding 

environment and the presence of parasitic components are known to largely influence the resulting 

efficiency [90]. On the other hand, resonance-based wireless power delivery has recently received a lot 

of attention. This efficient approach allows one to transfer power over longer distances using a four-

coil coupling system in which the adverse effects resulting from a low coupling coefficient between 

the primary coil and the secondary coil can be compensated by using high-quality factor coils [87]. 

Wireless telemetry has traditionally been combined with a wireless power supply on a same  

near-field inductive link using amplitude-shift-keying (ASK) or on-off-keying (OOK) modulation 
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schemes for the uplink, while using back telemetry through Load-Shift-Keying (LSK) modulation for 

the downlink [85,88,91]. In back telemetry, the variations induced in the load at the secondary coil 

(implanted) are sensed at the primary (external) coil by a controller. Data rates up to 5.8 Mbps have 

been reported with such a technique [85]. Later, power and data have been separated in multiple 

independent links using multi-carrier approaches [23,32,92,93]. Such a multi-carrier interface is 

illustrated in Figure 6.  

Figure 6. Block diagram of an implantable neural recording microsystem and its  

multi-carrier wireless interface. 

 

 

In such a scheme, the power link is typically operated at lower carrier frequency (at a few 

megahertz) to limit absorption in biological tissues, while maximizing power transfer efficiency, 

whereas the uplink and downlink are pushed at higher frequencies to increase the data rate, while 

minimizing crosstalk and interference. In accordance with such a design philosophy, there is a high 

interest in low-power transmitters that stream data in the far field for enabling short-range monitoring 

at high rate. In such schemes, the uplink is operated at much higher frequencies than the power carrier 

and the downlink center frequency. Several neural recording devices employing RF transmitters have 

been developed with components off-the-shelf (COTS) [42,67,94]. For instance, HermesD is a  

COTS-based battery-powered neural recording system that allows the transmission of 32 channels of 

neural data using frequency-shift keying (FSK) modulation, with an adjustable carrier frequency 

between 3.7 to 4.1 GHz [94]. A COTS transmitter allows a data rate of 24 Mb/s within a range extending 

over 20 m. In [67], a COTS transmitter is transferring 96 channels of neural data from a single chip 

neural recording microsystem over a range of 2 m, using amplitude-shift-keying (ASK) modulation. 

But, despite the high data rate achieved, the significant power consumption of these COTS transmitters 

(>100 mW) prevents their utilization in fully implantable or battery-less systems. 

Custom integrated transmitters have been designed for operating within a power budget  

below 10 mW. Early integrated wireless transmitters have employed analog modulation schemes.  

In [95], frequency-modulation (FM) is employed for transmitting the neural activity from a 4-channel 
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neural microsystem in the band of 94–98 MHz over a distance of 0.5 m. Wireless EEG recordings 

were performed in untethered rodents with an inductively powered neural microsystem employing an 

FM transmitter featuring a 3.2 GHz carrier [96]. The utilization of neural microsystems in sensitive 

locations prompted the implementation of low-power biotelemetry systems that comply with 

international regulations. Such transmitters preferably operate in the low-overhead unlicensed ISM 

bands, with center frequencies of 433.92 MHz, 915 MHz and 2.45 MHz, or in the MICS band  

between 402 MHz and 405 MHz, specifically defined for bi-directional communication with medical 

implants. This latter band allows a maximum transmitted power of 25 μW. An integrated FM 

transmitter operating near 433 MHz and consuming less than 0.5 mW is reported in [97] for 

transferring a single recording channel. More recently, several low-power integrated RF transmitters 

employing digital modulation schemes have been reported to transmit bioelectrical and neurochemical 

activity from multiple channels [24,28,32,34,47]. Such RF transmitters typically employ  

frequency-shift-keying (FSK) and can achieve data rates reaching 10 Mb/s. They normally require the 

implementation of voltage-controlled oscillators, a power amplifier and an LC tank that drives a small 

antenna. The 100-channel system reported in [28] employs a 902–928 MHz FSK transmitter achieving 

a data rate of 345.6 kb/s within a range of a few centimeters, without using a transmitting antenna. This 

microsystem is inductively powered from a 2.765 MHz carrier and a microfabricated printed coil for 

the secondary. In [34], a head-mounted recording system dedicated to research applications is 

inductively powered at 13.56 MHz and is transmitting a 915-MHz FSK-encoded asynchronous  

PWM-TDM signal. This system allows transferring 32 channels of multiplexed neural data at a 

maximum rate of 710 kS/s within 1.2 m of range, and it employs a miniature wideband monopole 

transmitting antenna. This latter system enjoys a digitizer-less architecture avoiding the need for an  

on-chip data-converter, thus saving considerable power. Besides, the reader must note that these works 

are reporting in-air performances. 

In contrast with carrier-based transmitters, carrier-less transmitters that rely on edge-combining 

frequency multiplication have been demonstrated. A sub-milliwatt MICS-band and 433-MHz  

ISM-band compliant transmitter using such a scheme is presented in [98]. This transmitter  

provides 100 kb/s for a consumption of 0.4 mW. Its operating principle is based on a delay locked loop 

and edge combining frequency multiplication. A 405-MHz carrier frequency is generated by 

combining nine equally spaced edges of a 44.6-MHz clock provided by a crystal reference oscillator. 

The edge combiner behaves like a non-linear power amplifier that drives an off-chip LC tank matching 

an antenna. Besides, a novel carrier-less near-field telemetry modulation scheme is proposed in [99]. 

Pulse Harmonic Modulation (PHM) is a novel wideband modulation technique for achieving high data 

rate transmissions over inductive links. Data rates above 5 Mb/s are reported with this technique.  

On the other hand, ultrawide-band (UWB) communications in the regulated 3.1-to-10.6 GHz band 

are actively researched as a low-power wireless short-range technology, enabling data rates of several 

tens of Mb/s [100]. Unlike conventional narrow-band communications, impulse-radio (IR) UWB uses 

short-duration pulses in the time domain to convey information, which promotes a low-duty cycle, low 

interference, and better immunity to multipath fading. Two main techniques are employed for pulse 

synthesis. A first architecture consists in generating a pulse at baseband and up-converting it in the 

UWB band using a mixer and a local oscillator [101]. A second architecture consists in generating 

pulses that directly fall into the UWB band by using pulse combination, without any up-conversion, 
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similarly to the case of carrier-less narrow-band transmitters [102]. A passive off-chip LC filter can be 

employed to shape the output spectrum of the transmitter according to the regulation for indoor UWB 

emission. Such pulse shaping approach has allowed data rates up to 15 Mb/s [103] and 90 Mb/s [55], 

for power consumption of 4.85 mW in a 0.5-μm CMOS process, and 1.6 mW in a 0.35-μm CMOS 

process, respectively. Modulation schemes such as OOK or Pulse-position modulation (PPM) are 

typically employed for low-power UWB communications. Carrier-less IR-UWB transmitters can have 

simple architectures, allowing low-power and small chip area in CMOS technology, whereas complex 

receivers can be easily built using COTS, since the power budget and the footprint of the remote base 

station is not crucial.  

Besides, optical telemetry is employed for the uplink in [14,33] as an effective means to achieve 

high data rate and low interference. Such multi-modal wireless interface is based on an embedded 

high-efficiency vertical-cavity surface-emitting laser diode allowing the transmission of the neural data 

that are measured on 16 channels. This head-mounted recording system is inductively powered and 

achieves a peak optical output of 2 mW. This microsystem is consuming a total power of 12 mW and 

is currently being used to collect in-vivo data from the primary motor cortex of behaving rhesus 

monkeys. Moreover, microwave-based energy recovery has been proposed for a wireless switch circuit 

dedicated to an implantable endoscope capsule in [104]. In such design, a multi-stage rectifier is used 

to convert the received 915 MHz RF power into a DC voltage supply stored on a 300 pF on-chip 

capacitor. A simple voltage regulator following the rectifier is used to stabilize this DC voltage supply 

and retrieve a few micro-amperes, which is limiting such an approach for utilization in very low supply 

current applications. 

8. Conclusions and Outlook 

While wireless microsystems have been used to successfully retrieve the neural data in untethered 

animals, there are still several technical issues that need to be addressed before development of 

clinically viable prosthetic devices or mature research applications will be possible. The challenges fall 

into two categories. First, the next generation of neural devices will need to provide a better reliability 

and long lifetime for enabling safe chronic utilization. Long-term stability requires microsystems 

achieving perfect biocompatibility. In such case, the interaction with the biological tissue layers must 

be minimized in order to avoid any foreign body responses, like adhesion with the dural tissue [31]. 

Designing better coating materials and new hermetical sealing techniques is of great interest. Secondly, 

neural interfacing devices are brought to provide increasing resolutions and multi-modal sensing. In 

fact, reaching better resolution and higher quality of data across multiple realms, and with different 

signal modalities, is an important milestone. Thus, the next generations of neural microsystems may 

certainly need to cope with overwhelming densities, requiring novel approach and techniques for 

meeting the requirements. Reaching high power efficiency in implantable ICs will remain an  

important issue. 

Besides, neural recording devices will need to provide accurate selectivity to isolate a given signal 

modality or to discriminate between specific responses from the CNS. Such flexibility is a requisite for 

addressing several modalities in a simultaneous fashion, and for extracting a relevant information 

content on-chip to reduce a complex dimensionality into a small data set that can be handled by  
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low-power telemetry. The implementation of such functions will require significant advances in the 

design of dedicated sensory circuits and in the implementation of efficient signal processing algorithms.  

The design of low-power miniaturized biotelemetry transmitters is of constant relevance. Future 

systems will need to address sensitivity issues related to interference, component parasitics and 

surrounding biological tissues in near-field and far-field wireless links. Moreover, as the complexity of 

microsystems is scaled up while their size is scaling down, an important issue will arise from the fact 

that implantable devices may come to a point where they will need much more energy within a much 

smaller footprint. A solution to such an issue consists in diversifying power sources. For instance, 

photovoltaic energy converters are used in combination with inductive power delivery in [14,105]. 

In addition, designing high-resolution microsystems providing a bidirectional access to several 

individual neurons of the cortex through electrical stimulation and neural recording capabilities in the 

same device is challenging, but very much needed. Such systems will render it possible to interact with 

groups of neurons in closed loop, i.e., to use electrical stimulation in conjunction with neural recording 

to activate specific neural networks and retrieve instantaneous feedback information on their status. 

Having access to such bidirectional neural interfaces will have considerable impact on experimental 

brain research and on the development of new assistive technologies to treat chronic diseases and 

neural disorders like Parkinson, epilepsy, dystonia and dysphasia. Moreover, combining 

neurochemical sensing, drug delivery and microfluidics together within such bidirectional interfacing 

device is among future challenges. The development of alternate neural recording and 

microstimulation approaches should also attract more attention. For instance, an imaging-based neural 

recording technique in presented in [106].  

In conclusion, neural interfacing technology has recently seen tremendous progress, but its 

development into viable clinical systems still faces important technological challenges. There  

are presently several open multidisciplinary directions that are being investigated for  

subsequent development. 
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