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Abstract

Phylostratigraphy is a method for estimating gene age, usually applied to large numbers of genes in order to detect nonrandom age-

distributions of gene properties that could shed light on mechanisms of gene origination and evolution. However, phylostratigraphy

underestimates gene age with a nonnegligible probability. The underestimation is severer for genes with certain properties, creating

spurious age distributions of these properties and those correlated with these properties. Here we explore three strategies to reduce

phylostratigraphic error/bias. First, we test several alternative homology detection methods (PSIBLAST, HMMER, PHMMER, OMA,

and GLAM2Scan) in phylostratigraphy, but fail to find any that noticeably outperforms the commonly used BLASTP. Second, using

machine learning, we look for predictors of error-prone genes to exclude from phylostratigraphy, but cannot identify reliable

predictors. Finally, we remove from phylostratigraphic analysis genes exhibiting errors in simulation, which by definition minimizes

error/bias if the simulation is sufficiently realistic. Using this last approach, we show that some previously reported phylostratigraphic

trends (e.g., younger proteins tend to evolve more rapidly and be shorter) disappear or even reverse, reconfirming the necessity of

controlling phylostratigraphic error/bias. Taken together, our analyses demonstrate that phylostratigraphic errors/biases are refrac-

tory to several potential solutions but can be controlled at least partially by the exclusion of error-prone genes identified via realistic

simulations. These results are expected to stimulate the judicious use of error-aware phylostratigraphy and reevaluation of previous

phylostratigraphic findings.
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Introduction

Phylostratigraphy is a method for estimating the evolutionary

age of a gene. It uses homology detection programs, typically

the BLAST (Basic Local Alignment Search Tool) suite of algo-

rithms, to identify homologs of a query gene in a target data-

base, most often a subset of the NCBI nonredundant database

that is sometimes combined with additional sequences

(Domazet-Lo�so and Tautz 2003; Domazet-Lo�so et al. 2007;

Neme and Tautz 2013; Domazet-Lo�so et al. 2017). The age

of the query gene is the time since the most recent common

ancestor between the query and its most distant homolog

detected. When phylostratigraphy is applied to a large set of

genes, one can analyze phylostratigraphic trends by correlating

various gene properties with the estimated gene age; these

trends have been used to infer mechanisms of gene emergence

and evolution (Alb�a and Castresana 2005; Domazet-Lo�so and

Tautz 2008; Prat et al. 2009; Wolf et al. 2009; Cai and Petrov

2010; Domazet-Lo�so and Tautz 2010; Carvunis et al. 2012;

Hemmrich et al. 2012; Sestak et al. 2013).

However, because homology detection programs use se-

quence similarity to approximate homology, errors are inevi-

table. A false negative error causing underestimation of gene

age occurs when a distant homolog is missed due to the

undetectably low sequence similarity between the homolog

and query. Extensive computer simulations showed that such

phylostratigraphic errors are nonnegligible, occurring in at

least 5–14% of genes (Elhaik et al. 2006; Alb�a and

Castresana 2007; Moyers and Zhang 2015, 2016, 2017).

More worrisome than the precise amount of error is the

fact that error is nonrandom; higher error rates are associated

with certain gene properties such as higher evolutionary rates

and shorter sequence lengths (Moyers and Zhang 2015). So

long as nonnegligible errors are nonrandom, observed phy-

lostratigraphic trends may be attributable in whole or in part

to phylostratigraphic error (Moyers and Zhang 2015, 2016,

2017). Even gene properties having no apparent direct impact

on phylostratigraphic error can be influenced due to their

association with gene properties that affect the performance
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of phylostratigraphy (Moyers and Zhang 2016). Although syn-

teny could help in gene age estimation (McLysaght and Hurst

2016), its utility is usually limited due to the decay of synteny

in long-term evolution. Consequently, phylostratigraphy

remains the most widely used method.

There is therefore a pressing need to reduce the amount

and effects of phylostratigraphic error. At least three broadly

applicable approaches have the potential to reduce phylostra-

tigraphic error. In this work, we explore these three

approaches. First, there is an abundance of tools for homol-

ogy detection, some of which may outperform the existing

pipeline. Although BLASTP (Altschul et al. 1990) is used most

commonly in phylostratigraphy, there are a number of other

tools including, for example, PSIBLAST (Position-Specific

Information BLAST) (Altschul et al. 1997), PHMMER and

HMMER (Finn et al. 2011), the MEME (Multiple Em for

Motif Elicitation) suite of algorithms (Bailey et al. 2009),

PSIPRED (PSI-blast based secondary structure PREDiction)

(Buchan et al. 2013), and HHSEARCH (Söding 2005).

Additionally, each of these tools has several parameters to

tune the performance of the program which may produce

more accurate results. We apply a set of these programs to

simulated sequences and identify an ideal set of parameters

for each. In addition to measuring the error rates, it is also

important to determine whether or not these programs have

the same biases as BLASTP; so we assess the correlation be-

tween homology detection error and various sequence fea-

tures to determine if any of the methods is unbiased. Second,

one may assess, a priori, a gene’s propensity for homology

detection error based on its sequence and evolutionary fea-

tures. We investigate multiple machine learning methods to

determine if there is a sufficiently sensitive and precise

method to identify error-prone genes. Third, one could eval-

uate the error-prone status of a gene through realistic simu-

lation, and then remove error-prone genes from

phylostratigraphic analysis. Although previous researchers

have claimed to do so (Domazet-Lo�so et al. 2017), we dem-

onstrated recently that their method for control is insufficient

(Moyers and Zhang 2017). Error-aware phylostratigraphic

analysis should be applied to only those genes shown not

to produce error in simulation rather than all genes except

those shown to produce error, because a sizable fraction of

genes is not amenable to realistic simulation. We use this

error-aware methodology to reexamine some previously

reported phylostratigraphic trends.

In addition to false negative errors, phylostratigraphy is also

subject to false positive errors, which cause overestimation of

gene age when a nonhomolog is detected as a homolog due

to sequence similarity caused by convergent sequence evolu-

tion or chance. However, because false positives owing to

chance sequence similarity are avoidable by using stringent

E-value cutoffs and those owing to rampant convergent

sequence evolution (Li et al. 2010) are rarely known, false

positive errors are generally believed negligible in

phylostratigraphy. Nevertheless, this belief requires validation,

which we now provide in the context of BLASTP and other

homology detection tools. Following convention, we use

phylostratigraphic error to refer to false negative error unless

mentioned.

Materials and Methods

Sequence Acquisition

We acquired from OrthoMaM (Ranwez et al. 2007) 4,942

human sequences with one-to-one orthologs in 14 mammalian

species diverged �90 mya (Hedges et al. 2006). The species

were Homo sapiens, Pan troglodytes, Gorilla gorilla, Pongo

pygmaeus, Nomascus leucogenys, Macaca mulatta, Callithrix

jacchus, Tarsius syrichta, Otolemur garnettii, Microcebus mur-

inus, Rattus norvegicus, Mus musculus, Dipodomys ordii, and

Cavia porcellus. We also collected all human sequences avail-

able in OrthoMaM, regardless of conservation level. Separately,

we acquired a full database of human protein sequences from

Ensembl, current as of September 20, 2016, available at http://

ftp.ensembl.org/pub/current_fasta/homo_sapiens/pep/, last

accessed August 6, 2018.

Estimating Evolutionary Rates

From the orthologs of 14 mammalian species, we employed

TreePuzzle (Schmidt et al. 2002) to infer evolutionary rate

information including average evolutionary rate and among-

site rate heterogeneity patterns of each of the 4,942 human

proteins, using the JTT–f matrix (Jones et al. 1992) with a

discrete gamma model with 16 rate heterogeneity categories.

Most proteins have one or more long series of conserved sites,

a feature that most homology detection programs rely upon.

Parameters in Computer Simulation

We simulated three sets of proteins. In set I, we simulated the

evolution of 4,942 human proteins, using the evolutionary

rate and rate heterogeneity parameters estimated above. To

start the simulation, we shuffled the amino acid residues

within each human protein (without shuffling site-specific

substitution rates) to destroy any remaining paralogy among

proteins, ensuring a set of truly unrelated sequences.

In set II, we randomly picked 4,942 proteins from all hu-

man proteins downloaded from Ensemble and used their

lengths in the simulation of 4,942 proteins. For each protein,

its amino acid sequence is randomly constructed by assigning

a random amino acid to each site, with the probability of a

given amino acid appearing being equal to the frequency of

that amino acid across all proteins in set I. We assigned evo-

lutionary rate and rate heterogeneity information using a

sampling method described previously (Moyers and Zhang

2016). Briefly, we computed the absolute evolutionary rate

at each site of each of the 4,942 proteins from set I. We then
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concatenated the 4,942 evolutionary rate strings into a large

ring structure. Then, for each of the 4,942 proteins of set II,

we sampled a continuous string of sites equal to the length of

the protein in question as their site-specific evolutionary rates,

requiring that the sampled string does not have all sites with

the same rate.

In set III, we sought to investigate more extreme models of

evolution. Because all rates were sampled from 4,942 proteins

with full conservation across 14 mammals examined, it is

highly likely that these evolutionary rates are not representa-

tive of those of all human proteins. We therefore created a set

of proteins with higher evolutionary rates by using the exact

same methodology as described for our set II, but multiplying

all site-specific rates by a factor of five.

Simulation of Sequence Evolution

We simulated sequence evolution along the tree in fig. 1A;

the branch lengths are based on average divergence times of

the relevant species listed in TimeTree (Hedges et al. 2006).

ROSE (Stoye et al. 1998) was used for the simulation, allowing

the evolutionary rate for each site to be set by the user. We

determined insertion and deletion thresholds based upon ob-

served indel counts in our initial alignments of 4,942 mam-

malian sequences, according to the methodology described in

Moyers and Zhang (2016). For each protein, we simulated

evolution using a JTT–f matrix with observed amino acid fre-

quencies from the alignment. Details of the simulation were

previously described in Moyers and Zhang (2015, 2016,

2017).

Overview of the Homology Detection Programs Used

We performed phylostratigraphy using six programs: BLASTP,

PSIBLAST, PHMMER, HMMER, OMA, and GLAM2Scan. We

here provide a brief introduction to each of them, and refer

readers to the corresponding original papers for deeper

descriptions.

BLAST (Altschul et al. 1990, 1997) is a heuristic algorithm

for homolog detection that relies on both overall sequence

similarity between a query and a database entry and multiple

high-scoring matches. BLAST begins its homolog search by

taking “words” of a user-defined length from the query se-

quence and searching for high-scoring matches to these

words among the entries in the database. All database entries

containing a user-defined (default ¼ 3) number of high-

scoring matches with individual words are further investigated

by extending the alignment and using a dynamic programing

algorithm to score the alignment. If the score drops below a

threshold, the comparison is stopped. Once the full score is

determined, the algorithm compares the realized score with a

distribution of scores based on the expected maximum score

obtained from a search using a randomized query. If the re-

alized score is sufficiently far on the right tail of this extreme

value distribution, it is classified as a hit. BLASTP is one of the

BLAST programs for which queries and database entries are

both protein sequences.

PSIBLAST (Altschul et al. 1997) is a modification of the

BLAST algorithm in which a set of homologs is used to con-

struct a position-specific scoring matrix (PSSM). This PSSM is

then used as the query to a database to detect further homo-

logs, operating under the same fundamental process that

FIG. 1.—Simulation for the assessment of phylostratigraphic error. (A) The phylogenetic tree along which simulation of protein sequence evolution was

performed. Branch lengths follow TimeTree estimates of divergence times from the human. (B) Comparison of maximum-likelihood genetic distance

determined by TreePuzzle between human and rat real and simulated proteins (Pearson’s r¼ 0.61, P¼ 2.2� 10�316, slope¼ 0.85). Each circle represents

one pair of orthologous proteins. Because the slope is< 1, the simulation apparently under-evolved the sequences, making our estimate of the false negative

rate of phylostratigraphy conservative.
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BLAST uses. The additional homologs can then be incorpo-

rated into the PSSM for further runs, if the user desires. The

logic of this method is that by accounting for sites with greater

variation, the program can detect more distant homologs.

The potential danger is that by accounting for variant sites,

one might include a hit which is not a true homolog into the

PSSM. This has the risk of inflating the false positive rate.

PHMMER (Finn et al. 2011) is typically used as a sequence

similarity search tool that generates homologs that can then

be used as inputs to the HMMER algorithm described below.

Using a substitution matrix to determine the score of an align-

ment, PHMMER searches a target database for matches to a

query. The manual describes the algorithm as “BLASTP-like”.

Based on the query sequence offered, PHMMER creates a

hidden Markov model (HMM) which uses a pre-defined sub-

stitution matrix to parameterize the model. This HMM is then

used as a query for searching the database.

HMMER (Finn et al. 2011) is an iterative, profile-based al-

gorithm that searches a target database using an HMM query.

The algorithm compares query sequences to target sequences

to produce an E-value, which is the log-odds score for the full

alignment between the target and query. Like PSIBLAST, this

method can then be used to incorporate new sequences into

the HMM and the algorithm can be run again with a new

query.

OMA (Train et al. 2017) is a method for orthology infer-

ence based on sequence similarity. The program begins by

performing an all-against-all Smith-Waterman alignment of

the provided proteins. Then, for each protein it determines

mutually best-scoring proteins. It then performs clustering to

create ortholog groups of the proteins provided.

We chose to test one additional program, GLAM2Scan.

GLAM2Scan is part of the MEME suite of algorithms (Bailey

et al. 2009) and was not designed as a tool for homolog

detection. Instead, its purpose is to identify sequences in a

target database which most closely match a user-defined mo-

tif. This is useful for identifying particular signal sequences or

other commonly occurring amino acid strings. It offers a po-

tential benefit in terms of homology detection in that it fo-

cuses only on well-conserved strings of amino acids. Because

it does not directly incorporate more variant sites into the

alignment, we reasoned that this method may be worth in-

vestigating as a potential tool in phylostratigraphy. The algo-

rithm itself finds among a target database a user-defined

number of alignments between a motif and target sequences.

It further reports the number of exact matches to the motif.

Users can trim the reported alignments based on the total

similarity to the motif of interest.

Phylostratigraphy of Simulated Sequences Using Various
Programs

Phylostratigraphy was conducted using several programs, in-

cluding BLASTP, PSIBLAST, PHMMER, HMMER, OMA, and

GLAM2Scan. In all cases, the simulated human sequences

were used as the query, whereas all other simulated extant

sequences in the tree of fig. 1A were combined into a single

target database.

For BLASTP, in addition to using the default parameters,

we also performed phylostratigraphic runs wherein we varied

independently several parameters including Gap Extension

and Gap Opening (using all possible combinations allowed

by the program, as outlined in the BLASTP Manual),

Composition based statistics (setting to 0 and to 1),

Threshold (testing values of 8 through 15), window size (test-

ing 0), and word size (testing 2 through 6). In total, 30 phy-

lostratigraphic runs were performed for BLASTP for each of

the three protein sets. For all runs we set the E-value to 100,

which allowed us to progressively restrict E-value from 100 to

1E-10 for each run and observe the results.

For PHMMER, in addition to using default parameters, we

also performed phylostratigraphic runs wherein we modified

three parameters. We tested values of gap extension penalties

from 0.0 to 0.9 in steps of 0.1. For each extension penalty, we

varied gap opening penalty from 0.0 to 0.4 in steps of 0.1. We

also varied the matrix used by PHMMER, testing all matrices

allowed by the program. In total, we performed 60 phylos-

tratigraphic runs using PHMMER for each of the three protein

sets. The same E-values as in the BLASTP analysis were used.

For each of PSIBLAST and HMMER, we ran the initial

BLASTP and PHMMER searches using the optimal parameters

as determined from each of BLASTP and PHMMER. Using

these starting points, we tested default parameters for each

of PSIBLAST and HMMER using from 1 to 5 iterations of the

programs. In total, we performed 5 phylostratigraphic runs for

each of these programs for each of the three protein sets. The

same E-values as in the BLASTP analysis were used.

For OMA (Train et al. 2017), we used the default param-

eters, supplying a species tree to guide the clustering of

sequences. OMA’s low speed prohibited us from examining

other parameter settings. Based on the overall performance

of OMA at its default parameters, which are presumably near

the optimum, OMA is unlikely to outperform other methods

appreciably.

For GLAM2Scan, we first used default BLASTP settings to

identify homologs of a gene in the target database. Once such

sequences were identified, we used the MEME algorithm

(Bailey et al. 2009) to identify motifs in the alignment of

hits. We chose the top motif and used GLAM2Scan to find

matches to the motif in the target database, returning 36 hits

which ensured that at least some false positives would arise in

each scan. From there, for each protein we determined the

age of a protein based on the hits that remained when we

required that at least 10% of amino acid alignments were

identical, 20% were identical, and so on until requiring 100%

of amino acids were identical. We reasoned that requiring

more identical hits would, to a point, exclude false positive

hits in the database, and would with further restriction begin
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to exclude true positive hits as well. In total, we performed 10

phylostratigraphic runs using GLAM2Scan for each of the

three protein sets.

Identification of Optimal Parameters

In order to identify the optimal parameters under a particular

simulation and homology detection program, we first identi-

fied the lowest false positive rate achieved among the set of

parameters and E-value cutoffs. Because false positive rates

were not found to be time-dependent, we used the presence

of a false positive hit in bacteria as a measure for the false

positive rate for a given parameter set at a given E-value cut-

off. For each program, once a group of parameter sets and

E-value cutoffs were identified as having the lowest achieved

false positive rate, we compared among all of these to identify

the set that had the lowest false negative rate, as defined by

ability to correctly identify the bacterial homolog. Whichever

parameter set had the lowest degree of false negatives was

selected as the optimal parameter set.

Real Phylostratigraphy

We performed real phylostratigraphic analysis using the fol-

lowing three protein sets. First, we performed phylostratigra-

phy using the 4,942 human proteins acquired from

OrthoMaM that have one-to-one orthologs in 13 other mam-

mals examined (Ranwez et al. 2007). Second, we performed

phylostratigraphy of the protein sequences of 4,942 randomly

chosen human genes available from OrthoMaM. Finally, we

performed phylostratigraphy using 4,942 randomly chosen

proteins from the Ensembl collection of human proteins. For

all phylostratigraphic runs, we used the BLASTP algorithm

with default parameters and an E-value of 0.001. The target

database was the NCBI nonredundant protein database. We

identified the species represented by each hit, and determined

which phylostratum each gene fell into based on species lists

taken from NCBI which represented the following clades:

Primate, Euarchontoglires, Boreoeutheria, Eutheria,

Mammalia, Amniota, Tetrapoda, Craniata, Vertebrata,

Chordata, Protostomia, Cnidaria, Eumetazoa, Eukaryota,

and Bacteria.

Statistical Analyses

All statistical analyses were performed using R version 3.2.3.

For the creation of support vector machines (SVMs), we used

the R packages “MASS” and “e1071” (Venables and Ripley

2002). For the creation of random forests, we used the R

package “randomForest” (Liaw and Wiener 2002).

Hypergeometric tests were performed using the methodology

previously described in Rivals et al. (2007).

Results

General Procedure for Assessing False Negative and False
Positive Rates of Phylostratigraphy

To identify all false negative and false positive errors in eval-

uating the performance of homology detection tools, one

must have a set of genes for which all true homologous

relationships are known. Therefore, computer simulation is

the only reliable approach. To this end, we generate a random

protein sequence at the common ancestor of bacteria and

eukaryotes, and simulate its evolution along the tree in

fig. 1A until a protein ortholog is generated for each extant

species in the tree. We then estimate the age of each simu-

lated human protein by phylostratigraphy. If the human pro-

tein is found younger than its true age in the simulation, a

false negative error is recorded. If the human protein hits a

nonortholog, a false positive error is recorded.

To represent different classes of proteins and different

kinds of challenges that a homology detection tool might

face, we simulated the evolution of three sets of proteins

(see Materials and Methods). Briefly, in set I, we simulated

the evolution of all 4,942 human proteins that have detect-

able one-to-one orthologs in each of 13 examined placental

mammals that last shared a common ancestor �90 mya, us-

ing parameters estimated from orthologous protein sequence

alignments (see Materials and Methods). Obviously, these

proteins do not unbiasedly represent all human proteins, be-

cause of the exclusion of proteins lacking detectable orthologs

in any of the 13 mammals. In set II, we simulated the evolution

of 4,942 artificially constructed proteins based on the length

distribution of all human proteins and the evolutionary rate

distribution of the 4,942 proteins used in set I (see Materials

and Methods). Because short proteins are more likely than

long proteins to lack detectable homologs, proteins in set II

are expected to be on average shorter than those of set I. In

addition, because rapidly evolving proteins tend to miss

homologs in BLASTP searches (Moyers and Zhang 2015),

the 4,942 proteins in set I are expected to evolve slower

than randomly chosen human proteins. Hence, in set III, we

simulated protein evolution as in set II except that the evolu-

tionary rate of each protein is five times that in set II. The three

protein sets varied in two important parameters influencing

the performance of phylostratigraphy: protein length and

evolutionary rate (supplementary figs. S1 and S2,

Supplementary Material online). Protein set I and the other

two sets also have small differences in the maximum length of

the most conserved block of amino acids (supplementary fig.

S3, Supplementary Material online). We confirmed that our

simulation was overall conservative because our simulated

sequences in set I have lower divergences than those of the

corresponding real sequences (fig. 1B). We note that protein

sets II and III have two qualities often suggested to belong to

“young genes”: they are shorter, and they are faster-evolving.

Because these protein sets include either a representation of
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shorter proteins or a combination of shorter and faster evolv-

ing proteins, they offer some insight into what error trends we

would expect to see if we could simulate the evolution of

apparently young genes.

Identifying the Optimal Parameter Set

We wish to determine if there is a better approach to phylos-

tratigraphy than using the BLASTP algorithm with default

parameters. If another method has a much lower false neg-

ative error rate than BLASTP without having a substantially

higher false positive error rate, it should be further considered

for use in phylostratigraphy. Additionally, homology detection

tools have a wide array of parameters that can be altered, and

alteration of these parameters might improve performance.

For a fair assessment of each of these tools, we should com-

pare each of their best performances with one another.

We assessed six different tools for homology detection,

which we briefly describe here. For a more thorough over-

view, see Materials and Methods. Tools were selected based

on the following three criteria: (i) applicability to our method-

ology, (ii) relevance to phylostratigraphy, and (iii) usage in the

biological community. We were restricted in tool selection by

the qualities that our simulation of evolution respects. For

instance, tools such as HHSearch (Söding 2005) and

PSIPRED (Buchan et al. 2013) could not be tested because

they require comparison of query and target sequences to

established databases for which protein structural information

is available but our sequences have no meaningful relation to

those databases. The eggNOG method (Jensen et al. 2008)

could not be included because it presumes an enormous set

of clustered sequences from over 2,000 genomes, to which

our simulated data bears no relation. There are many tools

that might address questions of gene similarity possibly due to

homology, but they are distinct from the phylostratigraphic

approach of classifying genes on the basis of detectable ho-

mology. Such methods include, for example, the one in which

genes are clustered based on functional similarity (Yi et al.

2007). Finally, tool selection was prioritized based on their

relevance to the biological community. Although other tools

may exist and prove useful for this problem, the selected tools

are well-known, well-characterized, and have seen wide us-

age in relevant communities.

The BLASTP algorithm (Altschul et al. 1990, 1997), de-

scribed as the “workhorse of phylostratigraphy” (Domazet-

Lo�so et al. 2017), uses a heuristic algorithm to extend small

“words” of potential homology to create a sufficiently high-

scoring alignment to mark two sequences as homologs. An

expansion on the BLAST algorithm, PSIBLAST (Altschul et al.

1997) employs iterative BLAST searches using a PSSM as the

query, where the matrix is updated at each iteration to incor-

porate new putative homologs. This additional iteration has

been argued to find more distantly related homologs than

does BLASTP, but may pose problems of falsely identifying

nonhomologs as homologs (i.e., false positives). PHMMER

and HMMER (Finn et al. 2011) are algorithms that use an

HMM approach to identifying homologs, differing largely in

the query input—PHMMER takes a single sequence as input,

while HMMER takes multiple homologous sequences as input

from which an HMM is built. Our primary interest was in

HMMER’s use of an HMM and its application of an overall

probability of alignment, as opposed to the extreme-value-

distribution-based assignment of E-values to alignments

found in the BLAST suite of algorithms. PHMMER was in-

cluded because it is a prerequisite to the use of HMMER,

and it was instructive to compare the performance of

PHMMER against that of BLAST given that both are based

on a single sequence but have different scoring methods.

OMA (Train et al. 2017) offers an example of an exhaustive

protein comparison via Smith-Waterman alignment followed

by clustering of sequences based on similarity profiles. It is

described as an orthology-based program, but this orthology

is based wholly on sequence similarity and clustering of

sequences. Finally, GLAM2Scan is part of the MEME suite of

algorithms (Bailey et al. 2009) and is designed to find instan-

ces of a given motif within a database rather than to produce

large alignments between two sequences. Because this tool

de-emphasizes surrounding sequences, we reasoned that it

might be able to detect homologs with small, highly

conserved segments among more rapidly evolving sequences.

We separately applied the six homology detection pro-

grams (BLASTP, PSIBLAST, PHMMER, HMMER, OMA, and

GLAM2Scan) to our three simulated protein sets. For each

simulation set and each program, we determined the optimal

set of parameters that minimizes first false positives and then

false negatives (supplementary figs. S4–S8, Supplementary

Material online). To identify the optimal parameter set, we

first determined the minimum false positive rate of all param-

eter sets at each E-value when considering false hits in bacte-

ria. For the set of runs which reached this minimum false

positive rate, we chose the combination of parameter set

and E-value cutoff that produced the lowest false negative

rate. This allowed us to identify the optimal parameter set for

each tool under each simulation. It should be noted that some

tools had different optimal parameter sets under different

contexts (supplementary figs. S4–S8, Supplementary

Material online), implying that in a real phylostratigraphic ex-

periment there may be no single optimal parameter set that

reduces homology detection error uniformly.

No Tool Substantially Outperforms BLASTP

On the basis of their ability to detect homologs in each phy-

lostratum, we compared the five tools under their respective

optimal parameters as well as BLASTP and OMA under default

parameters (fig. 2, supplementary fig. S9, Supplementary

Material online). We note first that GLAM2Scan appears to

be unsuited for this kind of analysis due to high false positives
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and false negatives (supplementary fig. S9, Supplementary

Material online), which is not surprising given that it was never

intended for this purpose; we therefore do not discuss its

results further. Similarly, while OMA outperforms all other

tools in terms of false negative rate for closely related species,

the false negative rate becomes much higher than other

programs for distantly related species under all evolutionary

models. It is therefore not discussed further. Among the other

programs, we note that the dynamics of performance depend

at least partially on the qualities of the protein set under con-

sideration, as is clear when comparing a given tool’s perfor-

mance between simulations. We also note that, generally

FIG. 2.—False negative and false positive error rates in phylostratigraphy using BLASTP default parameters and the optimal parameters of five programs.

False negative (A) and positive (B) rates for protein set I. False negative (C) and positive (D) rates for protein set II. False negative (E) and positive (F) rates for

protein set III. GLAM2Scan is not shown, but can be seen in relation to other programs in supplementary fig. S9, Supplementary Material online.
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speaking, HMMER and PSIBLAST tend to outperform BLASTP

in terms of false negative rate, whereas BLASTP tends to have

the lowest false positive rate. However, these differences tend

to be generally marginal, suggesting that default BLASTP may

be the preferred workhorse under most conditions.

Unsurprisingly, a more realistic protein size distribution

increases false negative errors substantially (fig. 2C), as does

increased evolutionary rates (fig. 2E), but these increases in

error also slightly change the dynamics of comparative tool

performance. Although BLASTP outperforms PHMMER for

protein set I, this difference virtually disappears under protein

set II and III (fig. 2A vs. 2C and 2E). It is also interesting to note

that under some conditions the ideal program in terms of

false negative rate changes depending on the divergence

time under consideration (fig. 2C), with PSIBLAST outperform-

ing other tools in detection of homologs in bacteria,

Arabidopsis, and fungi but being outperformed in other phy-

lostrata. In closely related species, PSIBLAST has substantially

higher false negative error rates than does BLASTP, PHMMER,

or HMMER. Generally, HMMER outperforms other tools, but

this becomes clearer the higher the error rates become

(fig. 2A vs. 2E). Finally, we find that false positive rate, while

it differs among programs, is generally negligible (<1%), ex-

cept when using PSIBLAST in the case of fast-evolving proteins

(fig. 2F).

In terms of the absolute error rate, we note that the false

negative error rate falls between 5% and 10% for our protein

set I, depending on the program used (fig. 2A). However, the

false negative error approaches 25% for protein set II and

50% for set III (fig. 2E). These error rates refer to the percent-

age of genes missing a homolog in bacteria despite that each

gene has a bacterial homolog simulated. Error rises with in-

creasing divergence time for all programs, from �0.02%

when searching for homologs in rat to 2.5% in fungi and

�3.3% in Arabidopsis when BLASTP is used on protein set

I. In protein set II, these numbers are 0.7%, 6.5%, and 7.4%;

in protein set III, they are 1.5%, 22.1%, and 24.3%. The

amount of error in BLASTP is well correlated with the amount

of time which has passed since the most recent common

ancestor of these species with human (Spearman’s rho ¼
0.991, 0.998, 1.00 for protein sets I–III, respectively).

False Negative Errors Are Biased in All Tools

The above results show that using other homology detection

tools does not appreciably reduce the error when compared

with the standard practice of using BLASTP under default

parameters. Nevertheless, there is a separate question of

whether the errors are random or biased. We therefore de-

termined the correlation of estimated gene age with se-

quence length, evolutionary rate, and the maximum length

of conserved block for each of BLASTP, PSIBLAST, PHMMER,

and HMMER in each of our three protein sets. We find that, in

almost all cases, homology detection error creates spurious

correlations between the estimated gene age and the three

gene properties examined (table 1), showing that no program

is without bias because all of these trends are, by definition,

due exclusively to error. Furthermore, the spurious correlations

createdbydifferentprogramshavethesamedirectionalthough

the magnitude of the correlation varies (table 1). Because any

reduction in error is generally joined with a substantially in-

creasedcomputational load,weseenoreasontousealternative

homology detection programs. Hence, BLASTP is as reasonable

a choice for phylostratigraphy as other tools are.

Predictive Models of Propensity for Error

Another possible way to remove the effects of homology de-

tection error in phylostratigraphy is the application of a model

that identifies a priori those genes likely to be subject to homol-

ogy detection error and exclude them from phylostratigraphic

analysis.We reasoned that ifwecouldconstruct amodel that is

able to identify 90% or more of error-prone genes without

removing a substantial proportion of nonerror-prone genes,

this would be an effective model. Here, error-prone genes

are defined as those whose estimated ages differ from the

true ages simulated. We therefore used the BLASTP-

estimated gene ages of the three sets of simulated proteins

to construct SVM and random forest models. We used 10-fold

cross-validation to determine the average sensitivity, specific-

ity, and precision of each model, where sensitivity is the num-

berofcorrectly identifiederror-pronegenesdividedbythetotal

number of error-prone genes, specificity is the number of cor-

rectly ignored nonerror-prone genes divided by the total num-

ber of nonerror-prone genes, and precision is the number of

correctly identifiederror-pronegenesdividedby the total num-

ber of genes identified as being error-prone. We tried all com-

binations of the three parameters (protein length, evolutionary

rate, and maximum length of conserved block) as predictors

Table 1

Spurious Correlations (Spearman’s q) between Estimated Gene Age and

Biological Features

BLASTP PSIBLAST PHMMER HMMER

Protein set I

Protein length 0.14** 0.16** 0.03 0.11**

Evolutionary rate �0.37*** �0.36*** �0.02 �0.34***

Block lengtha 0.35*** 0.35*** 0.03* 0.32***

Protein set II

Protein length 0.31*** 0.30*** 0.28*** 0.27***

Evolutionary rate �022*** �0.08** �0.22*** �0.22***

Block lengtha 0.37*** 0.28*** 0.37*** 0.33***

Protein set III

Protein length 0.32*** 0.36*** 0.29*** 0.28***

Evolutionary rate �0.12** �0.12** �0.13** �0.13**

Block lengtha 0.41*** 0.44*** 0.42*** 0.38***

aLength of the longest block of conserved residues.

*P < 0.05; **P < 1 � 10�10; ***P < 1 � 10�100.
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and used error measured by a missed bacterial homolog as a

response variable. We then determined which set of predictors

produced the model with the greatest sensitivity.

We found that none of the models were sufficiently sensi-

tive, though random forests performed better than SVM mod-

els (table 2). We also created models wherein the response

variable was whether or not a homolog was found in fungi.

This, however, did not change the results (supplementary table

S1, Supplementary Material online). Hence, we consider ma-

chine learning unsuccessful in predicting error-prone genes.

Error-Aware Phylostratigraphy

Having investigated several methods to remove the effects of

error and found none, we are left with only one method:

removal of error-prone genes identified by simulation of

gene evolution. Here, error-prone genes are those exhibiting

any amount of homology detection error in a realistic simu-

lation of evolution. In the context of simulation, removing

error-prone genes results in an error-free data set, because

all remaining genes have correctly estimated ages. Because

not all genes are amenable to realistic simulation, we empha-

size that, in applying this method in phylostratigraphy, one

should restrict to genes that can be realistically simulated and

are not found error-prone (Moyers and Zhang 2017). Here we

investigate if using this method alters any previously observed

phylostratigraphic trend. To that end, we performed a real

phylostratigraphic analysis of the 4,942 human genes that

have one-to-one orthologs in each of 13 other mammals ex-

amined, against the NCBI nonredundant protein database.

We then removed 323 genes found by default BLASTP in

our simulation of protein set I to be subject to homology de-

tection error. The remaining 4,619 error-free genes still have a

substantial variation in estimated age (supplementary fig. S10,

Supplementary Material online).

We examined the correlation between estimated gene age

and 2 traits (protein length and evolutionary rate) in the 4,619

genes. Surprisingly, we observed a significantly negative corre-

lation between gene age and protein length (table 3), which is

opposite to what was previously reported from phylostratigra-

phy that did not remove error-prone genes (Carvunis et al.

2012). We confirmed that indeed a significant positive corre-

lation is observed in a random set of 4,942 genes from the

Ensembl human genome (table 3). This correlation disappears

for a random set of 4,942 human genes from OrthoMaM,

becomes significantly negative for the 4,942 human genes

with orthologs in all of the 13 other mammals examined, and

is even more negative upon the removal of error-prone genes

(table 3). Previous phylostratigraphic studies also reported a

significant negative correlation between gene age and protein

evolutionary rate (Alb�a and Castresana 2007), which is also

present in our 4,942 genes (table 3). But, when only the

error-free genes are considered, the correlation becomes pos-

itive, albeit not statistically significantly (table 3). These findings

suggest that the previous phylostratigraphic findings were arti-

facts. In the past, phylostratigraphic findings of similar absolute

strength were used to derive models of gene maturation

(Carvunis et al. 2012; Abrus�an 2013). Our discovery that these

trends disappear or reverse to a similar absolute strength in

error-aware phylostratigraphy casts doubts on these models.

Table 2

Performances of the Best-Performing Machine Learning Models in Identifying Error-Prone Genes for Each Protein Set by SVM and Random Forest Methods

SVM Random Forest

Protein Set I Protein Set II Protein Set III Protein Set I Protein Set II Protein Set III

Best-performing modela Error � LþEþB Error � LþEþB Error � L*E*B Error � LþEþB Error � LþEþB Error � B

Sensitivity 0.504 0.253 0.512 0.711 0.629 0.633

Specificity 0.987 0.984 0.863 0.967 0.900 0.730

Precision 0.768 0.718 0.653 0.519 0.360 0.336

aL ¼ protein length; E ¼ evolutionary rate; B ¼ maximum length of conserved block.

Table 3

Spearman’s Correlation between Gene Age and Gene Properties in Real Phylostratigraphy

Gene Properties

Correlated

4,942 Proteins

Randomly Chosen

from Ensembl

4,942 Proteins

Randomly Chosen from

OrthoMaM

4,942 Proteins Used

in Simulation

4,619 Nonerror-Prone

Proteins

Protein length and age 0.16** �0.010 �0.09** �0.12**

Evolutionary rate and age NA �0.18** �0.05* 0.002

*P < 0.05; **P < 1 � 10�10; ***P < 1 � 10�100.

N/A, not applicable because the evolutionary rate cannot be estimated for some genes due to the lack of detectable orthologs.
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Discussion

We have reconfirmed here that false negative error is preva-

lent in phylostratigraphy and demonstrated that the severity

of this problem is greater than what was previously shown via

conservative simulations. Although the 4,942 human genes

with one-to-one orthologs in 13 other mammals (protein set I)

have only a moderate degree of error (6.5% of genes missed

their bacterial homolog in our simulation), this error rate is an

underestimate because these genes are necessarily less prone

to error given that their homologs are identified from 13 other

mammals. Even changing length distributions to be more re-

alistic (protein set II; supplementary fig. S1, Supplementary

Material online) without substantially changing evolutionary

rate or rate heterogeneity properties (supplementary figs. S2

and S3, Supplementary Material online) produces greatly in-

creased error. We observed that 14.3% of genes could not

find a bacterial homolog in our protein set II. When higher

evolutionary rates are introduced (protein set III), we find that

this error rate can be substantially increased, with 33.4%

missing a bacterial homolog. Note that there are other sub-

stitution patterns such as those described by the covarion

model that would further increase the error rate (Moyers

and Zhang 2015). For two reasons, we have chosen not to

include such a model in this study. First, the precise degree of

covariation is not clear, because current estimates are based

on extremely conserved proteins (Wang et al. 2009). Thus,

estimates of covarion rates suffer from a similar problem as

other phylostratigraphic findings: those proteins with high

rates of covariation are theoretically unlikely to have enough

information for estimating covarion rates. Therefore, inclusion

of the covarion model here would have questionable applica-

bility. Second, the general findings of including a covarion

model in our simulation are predictable: it would increase

the amount of false negative error, as has been observed in

BLASTP (Moyers and Zhang 2015). Fundamentally, a covarion

model breaks regions of conservation among homologs by

allowing highly conserved sites to become less well conserved

in a subset of branches. All methods relevant to phylostratig-

raphy rely on sequence similarity, so it is expected that intro-

duction of a covarion model would increase false negative

error for all programs.

It is true that missing a bacterial homolog does not guar-

antee that a human gene will also miss a homolog in a more

closely related species, but this kind of error still does occur.

We observed 0.02%, 0.74%, and 1.5% error in detecting rat

homologs in gene sets I, II, and III, respectively. Because genes

that appear to be restricted to closely related species tend to

be shorter and fast-evolving, these genes are expected to be

more subject to error, and some fraction of them appear

young specifically because of this kind of error. This is in con-

cordance with the results of Domazet-Loso et al. (2017), who

reevaluated the species-specific status of 15 ORFs (as assigned

by phylostratigraphy) and found that one third of them were

falsely classified as species-specific. It is also shown by inno-

vative new tools recently introduced (Mart�ın-Dur�an et al.

2017).

We found that other homology-detection tools do not no-

ticeably outperform the standard BLASTP in terms of produc-

ing false negative errors. Any concerns surrounding false

positive error are not well-supported by our results.

Although we find that profile-based homology detection pro-

grams (PSIBLAST and HMMER) generally have a higher degree

of false positive error than does BLASTP, this error is small

(<1% of genes) except for small, fast-evolving genes using

PSIBLAST (fig. 2F). Moreover, we find that false positive error

is not time-dependent whereas false negative error is. False

positive error is therefore less likely to introduce spurious

trends with gene evolution when it does occur. It may be

argued that proteins from distinct families sometimes bear

regions of homology to one another. Because our simulation

does not retain precise amino acid sequence of existing genes

and does not include such patterns, one might argue that it is

therefore underestimating the false positive rate. We reject

this argument on the grounds that such shared sequence

identity is the result of true homology—that is, derivation

from the same ancestral sequence. This can occur through

nonhomologous recombination or the same general model of

divergence that produces false negative error, with sequence

identity retained in a subset of proteins. Both of these explan-

ations were found for example in a study of archaeal restric-

tion endonucleases (Sukackaite et al. 2007). Inclusion of such

a model in our simulations would overestimate rates of false

positive error.

We have here demonstrated that error-aware phylostratig-

raphy is not merely a conservative approach to phylostratig-

raphy, but can provide novel biological insights. For instance,

the previously reported negative correlation between gene

age and evolutionary rate that ignited the initial suspicion

about phylostratigraphy (Elhaik et al. 2006) disappears

when only nonerror-prone genes are analyzed (table 3).

More strikingly, the positive correlation between protein

length and gene age even becomes reversed when only non-

error-prone genes are considered (table 3). Although it may

appear that these trends—both the original trends and those

seen only in error-aware phylostratigraphy—are relatively

weak, much has been made of them. Trends of similar

strength have been used to suggest that young genes evolve

quickly and are shorter in several studies. One study (Abrus�an

2013) presented associations corresponding to similar corre-

lation strength between gene age and properties as diverse as

number of transcription factors regulating a gene and the

percentage of protein sequence present in alpha helices to

argue for a model of gene integration into network with age.

The finding here that some of these trends disappear weak-

ens evidence for these claims. Our finding that some of these

trends change direction suggests alternative models of gene
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maturation with evidence of comparable strength found in

previous studies.

Future work should investigate alternative methods for

identifying error-prone genes. Our simulation set is inappropri-

ate for use with certain homology detection methods. This is

partially due to the fact that our simulation does not take into

account such properties as protein structure, and partially be-

cause some tools are applicable to nucleotide sequences and

wecannotaccurately simulate themorecomplicatedevolution

ofprotein-codingnucleotidesequences. If anewsimulationset

can be performed that captures such features as structural

evolution and other sequence evolution constraints, the phy-

lostratigraphic effects of homology detection error may be re-

duced. The error-prone status of genes might be further

probed by using a larger number of genes for simulation

with their native, as opposed to sampled or simulated, prop-

erties. There is an inherent problem here, because simulation

requires inference of evolutionary parameters and inference of

evolutionary parameters requires detectable homologs. Thus,

there is a setofgeneswhich,bydefinition, cannotbe simulated

according to their native parameters—those which have no

detectable homologs. Additionally, for those genes with few

detectable homologs (or when using fewer homologs to infer

evolutionary parameters), issues of stochasticity become

greater and simulations are more likely to be inaccurate.

Therefore, error-aware phylostratigraphy may have a neces-

sary limitation in which sequences it can evaluate. We hope

that prior phylostratigraphic findings will be reevaluated in this

context, and that future work will account for phylostrati-

graphic error in inferring evolutionary mechanisms.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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