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Abstract: Nonlinear transverse free vibrations of porous functionally-graded (FG) Bernoulli–Euler
nanobeams in hygrothermal environments through the local/nonlocal stress gradient theory of
elasticity were studied. By using the Galerkin method, the governing equations were reduced to a
nonlinear ordinary differential equation. The closed form analytical solution of the nonlinear natural
flexural frequency was then established using the higher-order Hamiltonian approach to nonlinear
oscillators. A numerical investigation was developed to analyze the influence of different parameters
both on the thermo-elastic material properties and the structural response, such as material gradient
index, porosity volume fraction, nonlocal parameter, gradient length parameter, mixture parameter,
and the amplitude of the nonlinear oscillator on the nonlinear flexural vibrations of metal–ceramic
FG porous Bernoulli–Euler nano-beams.
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1. Introduction

Nanostructures made of temperature-dependent functionally graded materials (FGMs)
have played a key role in the advancement of nanotechnologies for the design of devices
such as nanoswitches, nanosensors, nanoactuators, and nanogenerators, as well as nano-
electromechanical systems (NEMS), for use even under extreme temperature and humidity
conditions [1–8]. Recent studies have also shown that, by managing some fabrication
parameters during the manufacture of FGMs, different kinds of porosity distributions
can be obtained within their structure to further improve the physical and mechanical
characteristics of the material [9–19].

Therefore, it is necessary to research theoretical models that can capture the small
effects in the overall mechanical response of the porous FG structure and the hygrothermal
ones that cause damage due to the expansion of the material and the initial stresses induced
by the hygrothermal conditions. It is well-known that the size-dependent behavior of
nanostructures, observed in experimental nanoscale tests and atomistic simulations [20],
cannot be captured by the classical constitutive law that does not include size effects. In
order to overcome the complexity of the experimental tests at nanoscale and the high
computational cost of the atomistic simulations, several higher-order continuum mechanics
theories have been developed in the last years. The two milestones on this topic are
Eringen’s strain-driven nonlocal integral model (Eringen’s StrainDM) [21,22] and Lim’s
nonlocal strain gradient theory (Lim’s NStrainGT) [23], which have been widely used in
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a large number of investigations, respectively, in [24–29] and [30–35], due to their simply
differential formulation.

As widely argued in [36] for Eringen’s StrainDM and in [37] for Lim’s NStrainGT, both
theories have been declared ill-posed since the constitutive boundary conditions are in
conflict with equilibrium requirements. Their inapplicability was bypassed by using other
theories such as the local-nonlocal mixture constitutive model [38], the coupled theories [39],
or resorting the stress-driven nonlocal integral model (StressDM) [40]. More recently, based
on a variational approach, the local/nonlocal strain-driven gradient (L/NStrainG) and
local/nonlocal stress-driven gradient (L/NStressG) theories were used by Romano and
Sciarra in [41,42] to examine the size-dependent structural problems of nano-beams via a
mathematically and mechanically consistent approach.

Although several studies were used to assess small effects both in the static and
dynamic behavior, as well as in the buckling response of a nanobeam in hygrothermal
environments, to the best of the authors’ knowledge the research on the mechanical be-
havior of nanobeams in extreme conditions is not sufficient. In order to help fill some
knowledge gaps on this topic, based on the nonlocal elasticity theory, the hygrothermal
static behavior [43] and the vibration and buckling response of an FG sandwich nanobeam
were analyzed in [44].

Recent studies were developed using innovative L/NStrainG and/or the L/NstressG
theories. In detail, the bending response and the free linear vibration of porous FG
nanobeams under hygrothermal environments were analyzed by the same authors of
this paper in [45,46]. Moreover, the dynamic response of Bernoulli–Euler multilayered poly-
mer functionally graded carbon nanotubes-reinforced composite nano-beams subjected to
hygro-thermal environments was investigated in [47]. In addition, in [48], the L/NStrainG
theory was adopted to study the effect of a hygrothermal environment on the buckling
behavior of 2D FG Timoshenko nanobeams.

The main aim of this study is to help fill these gaps by proposing an application of the
higher-order Hamilton approach [49–57] to the nonlinear free vibrations analysis of porous
FG nano-beams in a hygro-thermal environment based on the L/NStressG model.

In particular, the nonlinear transverse free vibrations of a Bernoulli–Euler nano-beam
made of a metal–ceramic functionally graded porous material in a hygrothermal envi-
ronment, with von Kármán type nonlinearity were studied employing the local/nonlocal
stress-driven integral model. By using the Galerkin method, the governing equations were
reduced to a nonlinear ordinary differential equation. The closed form analytical solution
of the nonlinear natural flexural frequency was then established using the higher-order
Hamiltonian approach to nonlinear oscillators.

Finally, a numerical investigation was developed to analyze the influence of different
parameters both on the thermo-elastic material properties and the structural response, such
as material gradient index, porosity volume fraction, nonlocal parameter, gradient length
parameter, mixture parameter, and the amplitude of nonlinear oscillator on the nonlinear
flexural vibrations of metal–ceramic FG porous Bernoulli–Euler nano-beams.

2. Functionally Graded Materials

Considering a porous functionally graded (FG) nano-beam with length “L” made of a
ceramic (Si3N4)/metal (SuS3O4) material and subjected to hygrothermal loadings as shown
in Figure 1, in which y’ and z’ are the principal axes of the geometric inertia originating
at the geometric center O of its rectangular cross-section, Σ(x), having thickness “h” and
width “b”.
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Figure 1. Coordinate system and configuration of a porous FG Bernoulli–Euler nano-beam.

As already shown in [46], the effective value of the FG material generic property, f (z′),
can be obtained as a combination of the corresponding thermo-elastic and physical proper-
ties of ceramic, fc, and metal, fm, by using the following rule of mixture equation

f
(
z′
)
= fm + ( fc − fm)

(
1
2
+

z′

h

)k

− ζ

2
( fc + fm) (1)

where k (k ≥ 0) and ζ (ζ << 1) are the gradient index and the porosity volume fraction of
the FG material, respectively.

The characteristic values, P0, of the thermo-elastic properties of the two constituent
materials, in terms of the Young’s modulus, Ec and Em, mass density, ρc and ρm, ther-
mal expansion coefficient, αc and αm, and moisture expansion coefficient, βc and βm, are
summarized in the following Table 1.

Table 1. Characteristic values of thermo-elastic properties ( fc, fm) of ceramic (Si3N4) and metal
(SuS3O4) [46].

Material Properties (fc, fm) Unit P0

Ceramic (Si3N4)

Ec [GPa] 348.40
ρc [kg/m3] 2325
αc [K−1] 5.87 × 10−6

βc [wt.% H2O]−1 0

Metal (SuS3O4)

Em [GPa] 201.04
ρm [kg/m3] 8011
αm [K−1] 1.233 × 10−5

βm [wt.% H2O]−1 5 × 10−4

It is well-known that the temperature dependence of the generic elastic property,
P = P(T), is taken into account with the following nonlinear expression:

P(T) = P0

(
1 + X−1 T−1 + X1 T + X2 T2 + X3 T3

)
(2)

being X−1, X1, X2, and X3 the coefficients of the material phases for ceramic and metal
(Table 2).
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Table 2. Coefficients of material phases (X−1, X1, X2, X3) for ceramic (Si3N4) and metal (SuS3O4).

Ceramic (Si3N4) Metal (SuS3O4)

Coefficients Unit Ec ρc αc βc Em ρm αm βm

X−1 [K] 0 0 0 0 0 0 0 0
X1 [K−1] −3.07 × 10−4 0 9.095 × 10−4 0 3.079 × 10−4 0 8.086 × 10−4 0
X2 [K−2] 2.160 × 10−7 0 0 0 −6.534 × 10−7 0 0 0
X3 [K−3] −8.946 × 10−11 0 0 0 0 0 0 0

Moreover, by evaluating the thermo-elastic material properties with respect to the
elastic Cartesian coordinate system (Figure 1), originating at the elastic center C, whose
position, z′c, is expressed as

z′c =

∫
Σ E(z′, T)z′dΣ∫
Σ E(z′, T)dΣ

(3)

the bending–extension coupling, due to the variation of the functionally graded material,
is eliminated.

3. Governing Equations

Under the assumption of Bernoulli–Euler beam theory, the only nonzero Cartesian
components of the displacement field can be expressed by

ux(x, z, t) = u(x, t)− z
∂w
∂x

(x, t) (4)

uz(x, z, t) = w(x, t) (5)

being ux(x, z, t), uz(x, z, t) the displacement components along x and z directions, and u(x, t),
w(x, t) the axial and transverse displacements of the elastic centre C, at time t, respectively.

According to conventional Von-Kármán geometrical nonlinearity, which includes
small strains but moderately large rotation, the elastic axial strain is given as

εxx = εxx(x, t) =
∂u
∂x

+
1
2

(
∂w
∂x

)2
− z

∂2w
∂x2 = ε(vK) − z χ (6)

where the “Von-Kármán” strain, ε(vK), and the geometrical curvature, χ, have the follow-
ing expressions

ε(vK) =
∂u
∂x

+
1
2

(
∂w
∂x

)2
(7)

χ =
∂2w
∂x2 (8)

In the case of free vibrations, the nonlinear equations of motion are derived by using
the Hamilton’s principle

∂N(x, t)
∂x

= Aρ
∂2u(x, t)

∂t2 (9)

∂2M
∂x2 +

∂

∂x

(
N

∂w
∂x

)
−
(

NT + NC
)∂2w

∂x2 = Aρ
∂2w
∂t2 − Iρ

∂4w
∂x2 ∂t2 (10)

with the corresponding boundary conditions at the nano-beam ends:

u(x, t) or N(x, t) (11)

− ∂w(x, t)
∂x

or M(x, t) (12)
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w(x, t) or V(x, t) =
∂M(x, t)

∂x
−
(

NT + NC
)∂w(x, t)

∂x
(13)

where N(x, t), M(x, t), and V(x, t) denote the local axial force, the bending moment re-
sultant and the equivalent shear force, respectively. In Equations (9) and (10), Iρ and Aρ

are, respectively, the temperature-dependent rotary inertia and the effective cross-sectional
mass of the porous FG nano-beam, expressed as follows

Iρ = b
∫ h

2−z′c

− h
2−z′c

ρ(z, T)z2dz (14)

Aρ = b
∫ h

2−z′c

− h
2−z′c

ρ(z, T)dz (15)

and NT and NC denote the hygro-thermal axial force resultants, respectively, defined as

NT = NT(z, T) =
∫
Σ

E(z, T) α(z, T) ∆Tdz (16)

NC = NC(z, T) =
∫
Σ

E(z, T) β(z, T) ∆Cdz (17)

in which ∆T and ∆C are the increments of the temperature and moisture concentration,
respectively. In the following, we will also denote E(z, T) = E.

4. Local/Nonlocal Stress Gradient (NStressG) Model of Elasticity

As shown in [46], by using the local/nonlocal stress gradient integral formulation, the
elastic axial strain, εxx, can be expressed by the following constitutive mixture equation

εxx = ξ1
σxx(x)

E
+

(1− ξ1)

E

∫ L

0
ΦLc(x− ξ, Lc ) σxx(ξ)dξ − 1

E
L2

l
∂

∂x

∫ L

0
ΦLc(x− ξ, Lc )

∂σxx(ξ)

∂x
dξ (18)

being: x and ξ the position vectors of the points of the domain at time t; σxx and ∂σxx
∂x

the
axial stress component and its gradient, respectively; ξ1 the mixture parameter; ΦLc the
scalar averaging kernel; Lc and Ll the length-scale and the gradient length parameters,
respectively.

By choosing the bi-exponential function for the kernel ΦLc as

ΦLc(x, Lc) =
1

2Lc
exp (−|x|

Lc
) (19)

the integro-differential relation of Equation (18) admits the following solution

εxx − L2
c

∂2εxx

∂x2 =
σxx

E
− L2

c
E

(
ξ1 +

L2
l

L2
c

)
∂2σxx

∂x2 (20)

with x ∈ [0, L], if and only if the following two pairs of constitutive boundary conditions
(CBCs) are satisfied at the nano-beam ends

∂εxx(0)
∂x − 1

Lc
εxx(0) = − 1

E
ξ1
Lc

σxx(0) + 1
E

(
ξ1 +

L2
l

L2
c

)
∂σxx(0)

∂x

∂εxx(L)
∂x + 1

Lc
εxx(L) = 1

E
ξ1
Lc

σxx(L) + 1
E

(
ξ1 +

L2
l

L2
c

)
∂σxx(L)

∂x

(21)
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5. Nonlinear Transverse Free Vibrations (NStressG)

Following the mathematical derivations summarized in Appendix A, we obtain the
nonlinear transverse free vibrations equation based on a local/nonlocal stress gradient
model of elasticity

−IE
∂4w(x,t)

∂x4 + IEL2
c

∂6w(x,t)
∂x6 + L2

c

(
ξ1 +

L2
l

L2
c

)
∂2

∂x2

(
Aρ

∂2w(x,t)
∂t2 − Iρ

∂4w(x,t)
∂x2 ∂t2

− ∂
∂x

((
AE
L
∫ L

0

(
1
2

(
∂w(x,t)

∂x

)2
− L2

c
∂2

∂x2

(
1
2

(
∂w(x,t)

∂x

)2
))

dx
)

∂w(x,t)
∂x

)
+
(

NT + NC) ∂2w(x,t)
∂x2

)
=

(
Aρ

∂2w(x,t)
∂t2 − Iρ

∂4w(x,t)
∂x2 ∂t2 − ∂

∂x

((
AE
L
∫ L

0

(
1
2

(
∂w(x,t)

∂x

)2
− L2

c
∂2

∂x2

(
1
2

(
∂w(x,t)

∂x

)2
))

dx
)

∂w(x,t)
∂x

)
+
(

NT + NC) ∂2w(x,t)
∂x2

) (22)

By introducing the following dimensionless quantities

x̃ = x
L ; w̃(x̃, t) = w(x,t)

L ; λc =
Lc
L ; λl =

Ll
L ; Ãρ =

Aρ L4

IE
;

g̃2 = 1
L2

Iρ

Ãρ
; r̃2 = L2 AE

IE
; ÑT = L2

IE
NT ; ÑC = L2

IE
NC; Ñ = L2

IE
N̂; ω̃2 = ω2 Ãρ

(23)

in which AE and IE are the axial and bending stiffnesses of an FG nano-beam, respectively,
defined as

IE = b
∫ h

2−z′c

− h
2−z′c

E(z, T)z2dz (24)

AE = b
∫ h

2−z′c

− h
2−z′c

E(z, T)dz (25)

Equation (22) can be rewritten as

− ∂4w̃(x̃,t)
∂x̃4 + λ2

c
∂6w̃(x̃,t)

∂x̃6 + Ãρλ2
c

(
ξ1 +

λ2
l

λ2
c

)(
∂4w̃(x̃,t)
∂x̃2∂t2 − g̃2 ∂6w̃(x̃,t)

∂x̃4∂t2

)
−λ2

c

(
ξ1 +

λ2
l

λ2
c

)(
r̃2 ∂3

∂x̃3

(
Ñ ∂w̃(x̃,t)

∂x̃

)
−
(

ÑT + ÑC
)

∂4w̃(x̃,t)
∂x̃4

)
= Ãρ

(
∂2w̃(x̃,t)

∂t2 − g̃2 ∂4w̃(x̃,t)
∂x̃2∂t2

)
−
(

r̃2 ∂
∂x̃

(
Ñ ∂w̃(x̃,t)

∂x̃

)
−
(

ÑT + ÑC
)

∂2w̃(x̃,t)
x̃2

)
(26)

Finally, by imposing the dimensionless term r̃2 equal to zero, on which the nonlinear
nature of the equations depends, from the previous equation, we obtain the linear transverse
free oscillations equation

λ2
c

∂6w̃(x̃,t)
∂x̃6 − ∂4w̃(x̃,t)

∂x̃4 + λ2
c

(
ξ1 +

λ2
l

λ2
c

)((
ÑT + ÑC

)
∂4w̃(x̃,t)

∂x̃4

)
−
((

ÑT + ÑC
)

∂2w̃(x̃,t)
x̃2

)
= Ãρ

(
∂2w̃(x̃,t)

∂t2 − g̃2 ∂4w̃(x̃,t)
∂x̃2∂t2

)
−Ãρλ2

c

(
ξ1 +

λ2
l

λ2
c

)(
∂4w̃(x̃,t)
∂x̃2∂t2 − g̃2 ∂6w̃(x̃,t)

∂x̃4∂t2

) (27)

6. Higher-Order Hamiltonian Approach to Nonlinear Free Vibrations:
Solution Procedure

Natural frequencies and mode shapes of flexural vibrations can be evaluated by employing the
classical separation of the spatial and time variables

w̃(x̃, t) = W(x̃) eiωt (28)

being ω the natural frequency of flexural vibrations. Enforcing the separation of the variables
Equation (28) to the differential condition of dynamic equilibrium, the governing equation of the
linear flexural spatial mode shape for the NStressG model, W(x̃), is obtained as

λ2
c

∂6W(x̃)
∂x̃6 +

∂4W(x̃)
∂x̃4

(
ω̃2 (λ2

c ξ1 + λ2
l
)

g̃2 +
(
λ2

c ξ1 + λ2
l
)(

ÑT + ÑC
)
− 1
)

− ∂2W(x̃)
x̃2

(
ω̃2(λ2

c ξ1 + λ2
l
)
+ g̃2ω̃2 +

(
ÑT + ÑC

))
+ ω̃2W(x̃) = 0

(29)
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The analytical solution of the governing equation of the flexural spatial mode shape Equation (29)
can be expressed by

W(x̃) =
6

∑
k=1

qkex βk (30)

wherein βk are the roots of the characteristic equation, and qk are six unknown constants to be
determined by imposing the standard boundary conditions and the constitutive boundary conditions
associated with NStressG.

Equation (26) describes the nonlinear free vibrations in the NStressG model of elasticity and
in a hygrothermal environment. On the basis of the Galerkin method, the transverse displacement
function w̃(x̃, t) in Equation (26) can be defined by

w̃(x̃, t) =
N

∑
i=1

Wi(x̃) Wi(t) (31)

where Wi(x̃) is the i-th test function which depends on the assigned boundary conditions (Equation (30))
and Wi(t) is the unknown i-th time-dependent coefficient.

In this study, we assume the test function form to be equal to the NStressG linear modal shape
(i = 1)

w̃(x̃, t) = W1(x̃) W1(t) (32)

6.1. First-Order Hamiltonian Approach
Based on the First-order Hamiltonian approach introduced by [49], the time base function,

W1(t), is given by the following approximate cosine solution

W1(t) = Awcos(ω1t) (33)

being ω1 the first nonlinear vibration frequency, Aw the amplitude of the nonlinear oscillator; more-
over W1(x̃) is assumed to be equal to the linear spatial mode based on the NStressG model of elasticity

W1(x̃) = q1e−x̃β1 + q2ex̃β1 + q3e−x̃β2 + q4ex̃β2 + q5e−x̃β3 + q6ex̃β3 (34)

Now, substituting Equation (32) into Equation (27) and multiplying the resulting equation with
the fundamental vibration mode W1(x̃), then integrating across the length of the nanobeam, leads to
the following equation

δ0 + δ1W1(t) + δ2W2
1 (t) + δ3W3

1 (t) + W1
′′ (t) = 0 (35)

where δ0, δ1, δ2, and δ3 are four coefficients obtained by splitting up the terms.
Finally, in agreement with Hamiltonian approach to nonlinear oscillators [49], it is easy to

establish a variational principle for Equation (35) [50]

H =

T
4∫

0

(
δ0W1(t) +

1
2

δ1W2
1 (t) +

1
3

δ2W1(t) +
1
4

δ3W1(t)−
1
2

W1
′(t)2

)
dt (36)

where T is the period of the nonlinear oscillator.
The frequency–amplitude relationship can be obtained from the following equation

∂

∂Aw

(
∂H
∂ 1

ω1

)
= 0 (37)

which gives the approximate nonlinear fundamental vibration frequency of a porous FG nano-beam

ω1 =

√
−48δ0 − 12πAwδ1 − 32A2

wδ2 − 9πA3
wδ3

2
√

3π
√
Aw

(38)

Note that the linear vibration frequency of a porous FG nano-beam can be determined from the
previous Equation (38) by setting Aw = 0.
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6.2. Second-Order Hamiltonian Approach
In order to find the Second-order approximate solution and frequency, we assume that a Second-

order trial solution can be expressed by

W1(t) = A1cos(ω1t) +A2cos(3ω1t) (39)

with the following initial condition
Aw = A1 +A2 (40)

Applying the mathematical resolution method previously introduced for the First-order Hamil-
tonian approach [51], we obtain the following system of equations

∂
∂A1

(
∂H
∂ 1

ω1

)
= 0

∂
∂A2

(
∂H
∂ 1

ω1

)
= 0

(41)

Solving Equations (40) and (41) simultaneously, and assuming Equation (39), one can obtain the
Second-order solution and the approximate frequency ω1 according to the Hamiltonian approach.

6.3. Third-Order Hamiltonian Approach
The accuracy of the results will be further improved by consider the following equation as the

response of the system

W1(t) = A1cos(ω1t) +A2cos(3ω1t) +A3cos(5ω1t) (42)

where the initial condition is
Aw = A1 +A2 +A3 (43)

By using the same procedure explained above (§ 6.2), the following system of equations follows

∂
∂A1

(
∂H
∂ 1

ω1

)
= 0

∂
∂A2

(
∂H
∂ 1

ω1

)
= 0

∂
∂A3

(
∂H
∂ 1

ω1

)
= 0

(44)

Similarly, by solving Equation (44) simultaneously with Equation (43), the amplitude-frequency
relation up to the Third-order approximation is obtained.

7. Convergence and Comparison Study
In order to validate the accuracy and reliability of the proposed approach, three numerical

examples are presented in this paragraph.
To this purpose, both a uniform temperature rise, T(z′) = Tb +∆T, and a moisture concentration,

C(z′) = Cb + ∆C, between the bottom (z’ = −h/2) and the top surface (z′ = +h/2) of the nano-beam
cross-section, are considered (Figure 1), Tb = 305 [K] and Cb = 0 [wt.%H2O] being the reference
values of the temperature and moisture concentration at the bottom surface, respectively, and ∆T, ∆C
their increments.

In the first two comparison examples, the normalized frequency ratio between the dimension-
less nonlocal fundamental frequency, ω̃, and the dimensionless local natural frequency, ω̃loc, of a
clamped–clamped (C–C) porous FG nano-beam in a hygrothermal environment, were compared
(Tables 3 and 4), with the results obtained by Penna et al. in [46] for λc = 0.2 and assuming: λl = 0.0
or 0.10; ξ1 = 0.0 or 0.5; ∆T = 0, 50, and 100 [K].
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Table 3. Linear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-beam
(Aw = 0, λc = 0.20, ξ1 = 0.0).

λl

ξ1 = 0.0

Present
Approach Ref. [46] Present

Approach Ref. [46] Present
Approach Ref. [46]

∆T = 0 ∆T = 50 ∆T = 100

0.00 1.83226 1.83226 1.82706 1.82706 1.82313 1.82313
0.10 1.57333 1.57333 1.56718 1.56718 1.56254 1.56254

Table 4. Linear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-beam
(Aw = 0, λc = 0.20, ξ1 = 0.5).

λl

ξ1 = 0.5

Present
Approach Ref. [46] Present

Approach Ref. [46] Present
Approach Ref. [46]

∆T = 0 ∆T = 50 ∆T = 100

0.00 1.23148 1.23148 1.22424 1.22424 1.21876 1.21876
0.10 1.13883 1.13883 1.13089 1.13089 1.12487 1.12487

In the third example (Table 5), the present approach is compared with the model proposed by
Barretta et al. in [42] for a C–C porous FG nano-beam in absence of hygrothermal loads for λl = 0.1,
varying λc, in the set {0.0+, 0.2, 0.4, 0.6, 0.8, 1.0} and assuming ξ1 = 0.0 or 0.5, and the gyration radius,
g̃, equal to 1/20.

Table 5. Linear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-beam
(Aw = ∆T = 0, g̃ = 1

20 , λl = 0.10).

λc

ξ1 = 0.0 ξ1 = 0.5

Present
Approach Ref. [42] Present

Approach Ref. [42]

0.0+ 0.89165 0.89165 0.88416 0.88416
0.20 1.58127 1.58127 1.14531 1.14531
0.40 2.57577 2.57577 1.28946 1.28946
0.60 3.61940 3.61940 1.34633 1.34633
0.80 4.67784 4.67784 1.37237 1.37237
1.00 5.74258 5.74258 1.38608 1.38608

Moreover, Tables 6–8 summarize the linear frequency values assuming Aw = 0.

Table 6. Linear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-beam
for ξ1 = 0.0.

Aw = 0 ξ1 = 0.0

λc
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

0.10 1.33333 1.15406 1.32613 1.14551 1.32070 1.13904
0.20 1.84414 1.58369 1.83894 1.57754 1.83504 1.57291
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Table 7. Linear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-beam
for ξ1 = 0.5.

Aw = 0 ξ1 = 0.5

λc
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

0.10 1.12891 1.01093 1.12085 1.00166 1.11477 0.99464
0.20 1.23896 1.14585 1.23170 1.13789 1.22623 1.13187

Table 8. Linear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-beam
for ξ1 = 1.0.

Aw = 0 ξ1 = 1.0

λc
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

0.10 0.99999 0.91331 0.99115 0.90336 0.98444 0.89581
0.20 1.11740 0.94718 1.13331 0.93774 1.14511 0.93058

From these comparison examples, the accuracy of the higher order Hamiltonian approach to
the nonlinear oscillators here employed is validated.

8. Results and Discussion
The effects of the hygrothermal loads on the nonlinear dynamic behavior of a C–C Bernoulli–

Euler porous FG nano-beam is discussed here, varying the nonlocal parameter, λc, the gradient length
parameter, λl, the mixture parameter, ξ1, and the nonlinear oscillator amplitude, Aw .

In particular, the dimensionless nonlocal fundamental frequency has been evaluated assuming
k = 0.3 and ζ = 0.15 with a temperature increment ∆T ranging in the set {0, 50, 100 [K]} and considering
C = 2 [wt.%H2O]. Moreover, we have also investigated the effects of the porosity volume fraction,

ζ, the gradient index, k, and temperature rise on the dimensionless bending stiffness,
(

IE = IE
IEc

)
,

the dimensionless axial stiffness,
(

AE = AE
AEc

)
, the dimensionless effective cross sectional mass,(

Aρ =
Aρ

Aρc

)
, and the dimensionless rotary inertia,

(
Iρ =

Iρ

Iρc

)
. Note that IEc and AEc represent the

bending and axial stiffness of a non-porous purely ceramic nano-beam, respectively, while Aρc ,
Iρc are the effective cross-sectional mass and rotary inertia of a non-porous purely ceramic nano-
beam, respectively.

8.1. Influence of Porosity Volume Fraction and Gradient Index
The combined effects of both the gradient index, k, and the porosity volume fraction, ζ, on

the thermo-mechanical properties of the porous FG nanobeam under investigation are presented
in Figures 2–4. It can be noted how the dimensionless bending and axial stiffnesses, as well as the
dimensionless rotary inertia and effective cross-sectional mass, decrease as the porosity volume
fraction increases, while they increase as the material gradient index increases.
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Figure 2. Combined effects of the gradient index (k) and the porosity volume fraction (ζ) on the
dimensionless bending stiffness IE (a) and axial stiffness AE (b) under uniform temperature rises
(∆T = 0, 25, 50, 75, 100 [K]).

Figure 3. Combined effects of the gradient index (k) and the porosity volume fraction (ζ) on the
dimensionless rotary inertia Iρ under uniform temperature rises (∆T = 0, 25, 50, 75, 100 [K]).
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Figure 4. Combined effect of the gradient index (k) and the porosity volume fraction (ζ) on the
dimensionless effective cross-sectional mass Aρ.

8.2. Influence of Hygrothermal Loads
In this subsection, the influence of hygrothermal loads on the normalized fundamental flexural

frequency is discussed. Firstly, as can be observed from Tables 9–17, the values of the normalized
linear fundamental flexural frequency (Aw = 0), based on a local/nonlocal stress-driven gradient
theory of elasticity, always decrease as the temperature rise increases. Moreover, in the range of
values here considered, an opposite trend is obtained for the normalized nonlinear fundamental
flexural frequency as Aw and ∆T increase.

Table 9. Nonlinear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-
beam for ξ1 = 0.0 in the case of First-Order Hamiltonian Approach.

ξ1 = 0.0 Aw
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

λc = 0.1

0.00 1.33333 1.15406 1.32613 1.14551 1.32070 1.13904
0.01 1.33469 1.15575 1.32761 1.14769 1.32236 1.14117
0.05 1.36706 1.19553 1.36270 1.19886 1.36164 1.19121
0.10 1.46359 1.31211 1.46697 1.34630 1.47766 1.33554

λc = 0.2

0.00 1.84414 1.58369 1.83894 1.57754 1.83504 1.57291
0.01 1.84464 1.58430 1.83950 1.57821 1.83564 1.57364
0.05 1.85680 1.59886 1.85269 1.59406 1.85004 1.59117
0.10 1.89429 1.64355 1.89333 1.64262 1.89435 1.64471

Table 10. Nonlinear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-
beam for ξ1 = 0.5 in the case of First-Order Hamiltonian Approach.

ξ1 = 0.5 Aw
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

λc = 0.1

0.00 1.12891 1.01093 1.12085 1.00166 1.11477 0.99464
0.01 1.13040 1.01267 1.12250 1.00362 1.11666 0.99695
0.05 1.16559 1.05373 1.16131 1.04952 1.16128 1.05087
0.10 1.26930 1.17279 1.27499 1.18153 1.29082 1.20390

λc = 0.2

0.00 1.23896 1.14585 1.23170 1.13789 1.22623 1.13187
0.01 1.23965 1.14660 1.23247 1.13872 1.22711 1.13284
0.05 1.25622 1.16447 1.25082 1.15865 1.24806 1.15590
0.10 1.30663 1.21862 1.30650 1.21884 1.31137 1.22516
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Table 11. Nonlinear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-
beam for ξ1 = 1.0 in the case of First-Order Hamiltonian Approach.

ξ1 = 1.0 Aw
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

λc = 0.1

0.00 0.99999 0.91331 0.99115 0.90336 0.98444 0.89581
0.01 1.00161 0.91514 0.99296 0.90544 0.98658 0.89832
0.05 1.03951 0.95786 1.03544 0.95401 1.03662 0.95670
0.10 1.14994 1.08052 1.15820 1.09195 1.17937 1.11968

λc = 0.2

0.00 1.11740 0.94718 1.13331 0.93774 1.14511 0.93058
0.01 1.11837 0.94804 1.13444 0.93872 1.14645 0.93176
0.05 1.14139 0.96837 1.16110 0.96200 1.17811 0.95983
0.10 1.21050 1.02932 1.24073 1.03137 1.27198 1.04266

Table 12. Nonlinear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-
beam for ξ1 = 0.0 in the case of Second-Order Hamiltonian Approach.

ξ1 = 0.0 Aw
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

λc = 0.1

0.00 1.33333 1.15406 1.32613 1.14551 1.32070 1.13904
0.01 1.33469 1.15575 1.32761 1.14769 1.32236 1.41117
0.05 1.36699 1.19542 1.36263 1.19868 1.36154 1.19103
0.10 1.46272 1.31073 1.46596 1.34421 1.47644 1.33352

λc = 0.2

0.00 1.84414 1.58369 1.83894 1.57754 1.83504 1.57291
0.01 1.84464 1.58430 1.83950 1.57821 1.83564 1.57364
0.05 1.85679 1.59885 1.85268 1.59405 1.85003 1.59115
0.10 1.89418 1.64338 1.89320 1.64241 1.89421 1.64447

Table 13. Nonlinear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-
beam for ξ1 = 0.5 in the case of Second-Order Hamiltonian Approach.

ξ1 = 0.5 Aw
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

λc = 0.1

0.00 1.12891 1.01093 1.12085 1.00166 1.11477 0.99464
0.01 1.13040 1.01267 1.12250 1.00362 1.11666 0.99695
0.05 1.16550 1.05359 1.16199 1.04935 1.16133 1.05064
0.10 1.26817 1.17121 1.27364 1.17962 1.28911 1.20143

λc = 0.2

0.00 1.23896 1.14585 1.23170 1.13789 1.22623 1.13187
0.01 1.23965 1.14660 1.23247 1.13872 1.22711 1.13284
0.05 1.25620 1.16445 1.25080 1.15862 1.24802 1.15585
0.10 1.30635 1.21828 1.30616 1.21842 1.31904 1.22461
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Table 14. Nonlinear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-
beam for ξ1 = 1.0 in the case of Second-Order Hamiltonian Approach.

ξ1 = 1.0 Aw
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

λc = 0.1

0.00 0.99999 0.91331 0.99115 0.90336 0.98444 0.89581
0.01 1.00161 0.91514 0.99296 0.90544 0.98658 0.89832
0.05 1.03939 0.95769 1.03529 0.95380 1.03641 0.95640
0.10 1.14854 1.07872 1.15650 1.08974 1.17716 1.11674

λc = 0.2

0.00 1.11740 0.94718 1.13331 0.93774 1.14511 0.93058
0.01 1.11837 0.94804 1.13444 0.93872 1.14645 0.93176
0.05 1.14135 0.96833 1.16105 0.96195 1.17804 0.95975
0.10 1.20955 1.02882 1.24003 1.03073 1.27104 1.04178

Table 15. Nonlinear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-
beam for ξ1 = 0.0 in the case of Third-Order Hamiltonian Approach.

ξ1 = 0.0 Aw
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

λc = 0.1

0.00 1.33333 1.15406 1.32613 1.14551 1.32070 1.13904
0.01 1.33469 1.15575 1.32761 1.14769 1.32236 1.14117
0.05 1.36699 1.19542 1.36262 1.19867 1.36154 1.19102
0.10 1.46271 1.31070 1.46595 1.34416 1.47642 1.33347

λc = 0.2

0.00 1.84414 1.58369 1.83894 1.57754 1.83504 1.57291
0.01 1.84464 1.58430 1.83850 1.57821 1.83564 1.57364
0.05 1.85679 1.59885 1.85268 1.59405 1.85003 1.59115
0.10 1.89417 1.64337 1.89319 1.64241 1.89420 1.64446

Table 16. Nonlinear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-
beam for ξ1 = 0.5 in the case of Third-Order Hamiltonian Approach.

ξ1 = 0.5 Aw
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

λc = 0.1

0.00 1.12891 1.01093 1.12085 1.00166 1.11477 0.99464
0.01 1.13040 1.01267 1.12250 1.00362 1.11666 0.99695
0.05 1.16550 1.05359 1.16199 1.04935 1.16113 1.05087
0.10 1.26815 1.17117 1.27362 1.17958 1.28907 1.20390

λc = 0.2

0.00 1.23896 1.14585 1.23170 1.13789 1.22623 1.13187
0.01 1.23965 1.14660 1.23247 1.13872 1.22711 1.13284
0.05 1.25620 1.16445 1.25080 1.15862 1.24802 1.15585
0.10 1.30634 1.21827 1.30615 1.21841 1.31093 1.22460

With reference to the influence of the temperature on the thermo-mechanical properties of the
porous FG nanobeam, it can be observed (Figure 2) that the dimensionless bending stiffness and
dimensionless axial stiffness decrease as ∆T increases. In addition, the curves of Figure 3 show that
the dimensionless rotary inertia increases as the temperature increases, although the hygrothermal
effect is noticeable when k > 1.
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Table 17. Nonlinear dimensionless natural frequencies of porous FG clamped–clamped (C–C) nano-
beam for ξ1 = 1.0 in the case of Third-Order Hamiltonian Approach.

ξ1 = 1.0 Aw
∆T = 0 ∆T = 50 ∆T = 100

λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10 λl = 0.00 λl = 0.10

λc = 0.1

0.00 0.99999 0.91331 0.99115 0.90336 0.98444 0.89581
0.01 1.00161 0.91514 0.99296 0.90544 0.98658 0.89832
0.05 1.03939 0.95769 1.03529 0.95380 1.03641 0.95640
0.10 1.14851 1.07868 1.15646 1.08968 1.17711 1.11665

λc = 0.2

0.00 1.11740 0.94718 1.13331 0.93774 1.14511 0.93058
0.01 1.11837 0.94804 1.13444 0.93872 1.14645 0.97176
0.05 1.14135 0.96833 1.16105 0.96195 1.17804 0.95975
0.10 1.20954 1.02881 1.24002 1.03072 1.27103 1.04176

8.3. Influence of Nonlocal Parameter, Gradient Length Parameter, and Mixture Parameter
From Tables 9–17, on one hand, it can be seen that an increase in the values of λc results in

an increase of the frequency ratio, ω̃/ω̃loc, but on the other, it can be found that as λl increases, the
values of the aforementioned frequency ratio decrease. It is also possible to note that the ratio ω̃/ω̃loc,
decreases by increasing the mixture parameter ξ1.

8.4. Influence of Higher-Order Hamilton Approach
Finally, the nonlinear dimensionless natural frequencies of the porous FG nano-beam under

investigation corresponding to the First-, Second-, and Third-order approximate solutions are summa-
rized in Tables 9–17, varying the oscillator amplitude in the set {0.0, 0.01, 0.05, 0.10}. From these tables,
it can be seen that the aforementioned flexural frequency always increase as the amplitude of the
nonlinear oscillator increases, while they decrease as the order of the Hamiltonian approach increases.

The above parametrical analysis assumes relevance in the study of the nonlinear vibrations of
porous FG nano-beams because their behavior is influenced by the dimensionless term r̃2, which is
proportional to the ratio between the axial and the bending stiffness of the nanobeam cross-section,
both depending on the porosity distribution of the structure of the nano-beam material and on the
temperature increment and the material gradient index. Moreover, the term r̃2 allows us to take into
account the nonlinear response due to the mid-plane stretching effect introduced in the following
Appendix A.

9. Conclusions
In this paper, the nonlinear dynamic behavior of a Bernoulli–Euler nano-beam made of a metal–

ceramic functionally graded porous material in a hygrothermal environment, with von Kármán type
nonlinearity, was studied, employing the local/nonlocal stress-driven integral model.

The governing equations have been reduced to a nonlinear ordinary differential equation by
using the Galerkin method. Then, the higher-order Hamiltonian approach to nonlinear oscillators
was employed.

In view of the numerical results obtained in the present study, the following main conclusions
may be formulated:

(1) the flexural frequency always increases with the increase of the nonlocal parameter;
(2) the flexural frequency decreases always by increasing the gradient length parameter;
(3) an increase in the values of the mixture parameter always leads to a decrease in the flexural

frequency;
(4) the flexural frequency always increases as the amplitude of the nonlinear oscillator increases,

while they decrease as the order of the Hamiltonian approach increases.

In conclusion, the results obtained in this study show that the proposed approach is capable of
capturing the nonlinear dynamic behavior of porous Bernoulli–Euler functionally graded nano-beams
in a hygrothermal environment and represent a valuable reference point for engineers and researchers
to validate different numerical methods, as well as for the practical design of nano-scaled beam-like
components of nano electromechanical systems (NEMS).
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Appendix A

In this appendix, we report the mathematical steps taken to arrive at the equation that governs
the problem of nonlinear transverse free vibrations of the nano-beam studied.

By manipulating Equation (6) and substituting into Equations (19)–(21), then multiplying by
(1, z), the integration over the nano-beam cross section provides the following NStressG equations in
terms of axial and transverse displacement

ε(vK)(x, t)− L2
c

∂2 ε(vK)(x, t)
∂x2 =

NNStressG(x, t)
AE

− L2
c

AE

(
ξ1 +

L2
l

L2
c

)
∂2NNStressG(x, t)

∂x2 (A1)

− χ(x, t) + L2
c

∂2χ(x, t)
∂x2 =

MNStressG(x, t)
IE

− L2
c

IE

(
ξ1 +

L2
l

L2
c

)
∂2 MNStressG(x, t)

∂x2 (A2)

with the following constitutive boundary conditions (CBC)

∂ε(vK)

∂x
(0, t)− 1

Lc
ε(vK)(0, t) = − 1

AE

ξ1
Lc

NNStressG(0, t) +
1

AE

(
ξ1 +

L2
l

L2
c

)
∂NNStressG(0, t)

∂x
(A3)

∂ε(vK)

∂x
(L, t) +

1
Lc

ε(vK)(L, t) =
1

AE

ξ1
Lc

NNStressG(L, t) +
1

AE

(
ξ1 +

L2
l

L2
c

)
∂NNStressG(L, t)

∂x
(A4)

− ∂χ

∂x
(0, t) +

1
Lc

χ(0, t) = − 1
IE

ξ1
Lc

MNStressG(0, t) +
1
IE

(
ξ1 +

L2
l

L2
c

)
∂MNStressG(0, t)

∂x
(A5)

− ∂χ

∂x
(L, t)− 1

Lc
χ(L, t) =

1
IE

ξ1
Lc

MNStressG(L, t) +
1
IE

(
ξ1 +

L2
l

L2
c

)
∂MNStressG(L, t)

∂x
(A6)

By manipulating the nonlinear equations of motion (Equations (9) and (10)), as well as
Equations (A1) and (A2), we obtain the expression of nonlocal axial force and moment resultant
in the NStressG model of elasticity

NNstressG(x, t) = L2
c

(
ξ1 +

L2
l

L2
c

)
Aρ

∂3u
∂x∂t2 + AE

(
ε(vK) − L2

c
∂2

∂x2 ε(vK)
)

(A7)

MNstressG(x, t) = −IE χ + IEL2
c

∂2χ

∂x2 + L2
c

(
ξ1 +

L2
l

L2
c

)(
Aρ

∂2w
∂t2 − Iρ

∂4w
∂x2∂t2 −

∂

∂x

(
NNstressG ∂w

∂x

)
+
(

NT + NC
) ∂2w

∂x2

)
(A8)
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Moreover, by substituting Equations (A7) and (A8) into Equations (9) and (10), the following
stress gradient equations of motion can be derived

AE

(
∂εvK

∂x
− L2

c
∂3εvK

∂x3

)
= Aρ

∂2u
∂t2 − L2

c

(
ξ1 +

L2
l

L2
c

)
Aρ

∂4u
∂x2∂t2 (A9)

∂2

∂x2

(
−IE χ + IEL2

c
∂2χ
∂x2 + L2

c

(
ξ1 +

L2
l

L2
c

)(
Aρ

∂2w
∂t2 − Iρ

∂4w
∂x2∂t2 − ∂

∂x

(
NNstressG ∂w

∂x

)
+
(

NT + NC) ∂2w
∂x2

))
= Aρ

∂2w
∂t2 − Iρ

∂4w
∂x2 ∂t2 − ∂

∂x

(
NNstressG ∂w

∂x

)
+
(

NT + NC) ∂2w
∂x2

(A10)

Employing the axial and flexural kinematic compatibility, the differential condition of dynamic
equilibrium governing the vibrations of NStressG nano-beams is given by

AE

(
∂2u
∂x2 +

∂

∂x

(
1
2

(
∂w
∂x

)2
) )
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−IE
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(
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(
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) (A12)

with the following natural boundary conditions at the nano-beam ends (x = 0, L)

NNstressG(x, t) = N (A13)

Iρ
∂3w(x, t)

∂x ∂t2 −
(

NT + NC
) ∂w

∂x
+

∂MNstressG(x, t)
∂x

= V (A14)

MNstressG(x, t) = M (A15)

being N, M and V the assigned generalized forces acting at the nano-beam ends together and with
the constitutive boundary conditions at the nano-beam ends given by Equations (A3)–(A6) which can
be rewritten as a function of the displacement components
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∂

∂x

(
∂u(L, t)

∂x
+

1
2

(
∂w(L, t)

∂x

)2
)
+

1
Lc

(
∂u(L, t)

∂x
+

1
2

(
∂w(L, t)

∂x

)2
)

=
1

AE

ξ1

Lc
NNstressG(L, t) +

1
AE

(
ξ1 +

L2
l

L2
c

)
∂NNstressG(L, t)

∂x
(A17)

− ∂3w
∂x3 (0, t) +

1
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− ∂3w
∂x3 (L, t)− 1
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Furthermore, if in Equation (A7) we neglect the axial inertia term, Aρ
∂2u
∂t2 , we obtain

NNstressG(x, t) = AE
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= N̂ (A20)

wherein N̂ is a constant.
Note that, for a nano-beam with immovable ends ( u|x=0 = u|x=L = 0 and w|x=0 = w|x=L = 0),

by integrating both sides of Equation (A20) over the domain [0, L] yields to the following expression

N̂ =
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L
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c
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)2
))

dx (A21)

which coincides with the “mid-plane stretching effect” introduced in [45].
Based on this assumption, from Equation (A12), it follows

−IE
∂4w(x,t)

∂x4 + IEL2
c

∂6w(x,t)
∂x6 +

(
ξ1 +

L2
l

L2
c

)
∂2

∂x2

(
Aρ

∂2w(x,t)
∂t2 − Iρ

∂4w(x,t)
∂x2 ∂t2 − ∂

∂x

(
N̂ ∂w(x,t)

∂x

)
+
(

NT + NC) ∂2w(x,t)
∂x2

)
=
(

Aρ
∂2w(x,t)

∂t2 − Iρ
∂4w(x,t)
∂x2 ∂t2 − ∂

∂x

(
N̂ ∂w(x,t)

∂x

)
+
(

NT + NC) ∂2w(x,t)
∂x2

) (A22)

Now, by substituting Equation (A21) into Equation (A22), we obtain
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which describes the nonlinear transverse free vibrations of nano-beams in a hygrothermal environment.
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5. Qiu, L.; Zhu, N.; Feng, Y.; Michaelides, E.E.; Żyła, G.; Jing, D.; Zhang, X.; Norris, P.M.; Markides, C.N.; Mahian, O. A review of
recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys. Rep. 2020, 843, 1–81. [CrossRef]

6. Imani, A.; Rabczuk, A.; Friswell, T.; Ian, M. A finite element model for the thermo-elastic analysis of functionally graded porous
nanobeams. Eur. J. Mech. A Solids 2019, 77, 103767.

7. Barretta, R.; Feo, L.; Luciano, R. Some closed-form solutions of functionally graded beams undergoing nonuniform torsion.
Compos. Struct. 2015, 123, 132–136. [CrossRef]

8. Huang, K.; Yao, J. Beam Theory of Thermal–Electro-Mechanical Coupling for Single-Wall Carbon Nanotubes. Nanomaterials
2021, 11, 923. [CrossRef]

9. Ebrahimi, F.; Jafari, A. A Higher-Order Thermomechanical Vibration Analysis of Temperature-Dependent FGM Beams with
Porosities. J. Eng. 2016, 2016, 9561504. [CrossRef]

10. Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a
liquid-crystal template mechanism. Nature 1992, 359, 710–712. [CrossRef]

11. Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.;
McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc.
1992, 114, 10834–10843. [CrossRef]

12. Velev, O.; Jede, T.A.; Lobo, R.F.; Lenhoff, A. Porous silica via colloidal crystallization. Nature 1997, 389, 447–448. [CrossRef]
13. Alizada, A.N.; Sofiyev, A.H. Modified Young’s moduli of nano-materials taking into account the scale effects and vacancies.

Meccanica 2010, 46, 915–920. [CrossRef]
14. Wang, Y.Q. Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state.

Acta Astronaut. 2018, 143, 263–271. [CrossRef]
15. Chai, Q.; Wang, Y.Q. Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a

spinning motion. Eng. Struct. 2021, 252, 113718. [CrossRef]
16. Wang, Y.Q.; Zu, J.W. Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal

environment. Aerosp. Sci. Technol. 2017, 69, 550–562. [CrossRef]
17. Wang, Y.Q.; Ye, C.; Zu, J.W. Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets.

Aerosp. Sci. Technol. 2018, 85, 359–370. [CrossRef]
18. Alibakhshi, A.; Dastjerdi, S.; Malikan, M.; Eremeyev, V.A. Nonlinear Free and Forced Vibrations of a Hyperelastic Mi-

cro/Nanobeam Considering Strain Stiffening Effect. Nanomaterials 2021, 11, 3066. [CrossRef]
19. Ye, C.; Wang, Y.Q. Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells:

Internal resonances. Nonlinear Dyn. 2021, 104, 2051–2069. [CrossRef]
20. Pelliciari, M.; Tarantino, A.M. A nonlinear molecular mechanics model for graphene subjected to large in-plane deformations.

Int. J. Eng. Sci. 2021, 167, 103527. [CrossRef]
21. Eringen, A. Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 1972, 10, 425–435. [CrossRef]
22. Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys.

1983, 54, 4703–4710. [CrossRef]
23. Lim, C.; Zhang, G.; Reddy, J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation.

J. Mech. Phys. Solids 2015, 78, 298–313. [CrossRef]
24. Ebrahimi, F.; Barati, M.R. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal

environment. Appl. Phys. A 2016, 122, 792. [CrossRef]
25. Ebrahimi-Nejad, S.; Shaghaghi, G.R.; Miraskari, F.; Kheybari, M. Size-dependent vibration in two-directional functionally graded

porous nanobeams under hygro-thermo-mechanical loading. Eur. Phys. J. Plus 2019, 134, 465. [CrossRef]

http://doi.org/10.1038/ncomms11249
http://www.ncbi.nlm.nih.gov/pubmed/27080018
http://doi.org/10.1016/j.ymssp.2018.11.046
http://doi.org/10.1016/j.ijengsci.2019.01.007
http://doi.org/10.1016/j.ijengsci.2016.09.008
http://doi.org/10.1016/j.physrep.2019.12.001
http://doi.org/10.1016/j.compstruct.2014.12.027
http://doi.org/10.3390/nano11040923
http://doi.org/10.1155/2016/9561504
http://doi.org/10.1038/359710a0
http://doi.org/10.1021/ja00053a020
http://doi.org/10.1038/38921
http://doi.org/10.1007/s11012-010-9349-1
http://doi.org/10.1016/j.actaastro.2017.12.004
http://doi.org/10.1016/j.engstruct.2021.113718
http://doi.org/10.1016/j.ast.2017.07.023
http://doi.org/10.1016/j.ast.2018.12.022
http://doi.org/10.3390/nano11113066
http://doi.org/10.1007/s11071-021-06401-7
http://doi.org/10.1016/j.ijengsci.2021.103527
http://doi.org/10.1016/0020-7225(72)90050-X
http://doi.org/10.1063/1.332803
http://doi.org/10.1016/j.jmps.2015.02.001
http://doi.org/10.1007/s00339-016-0322-2
http://doi.org/10.1140/epjp/i2019-12795-6


Nanomaterials 2022, 12, 2098 19 of 20

26. Dastjerdi, S.; Malikan, M.; Dimitri, R.; Tornabene, F. Nonlocal elasticity analysis of moderately thick porous functionally graded
plates in a hygro-thermal environment. Compos. Struct. 2020, 255, 112925. [CrossRef]

27. Ashoori, A.; Salari, E.; Vanini, S.S. Size-dependent thermal stability analysis of embedded functionally graded annular nanoplates
based on the nonlocal elasticity theory. Int. J. Mech. Sci. 2016, 119, 396–411. [CrossRef]

28. Samani, M.S.E.; Beni, Y.T. Size dependent thermo-mechanical buckling of the flexoelectric nanobeam. Mater. Res. Express
2018, 5, 085018. [CrossRef]

29. Salari, E.; Vanini, S.S. Investigation of thermal preloading and porosity effects on the nonlocal nonlinear instability of FG
nanobeams with geometrical imperfection. Eur. J. Mech. A/Solids 2020, 86, 104183. [CrossRef]

30. Ebrahimi, F.; Barati, M.R. Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain
gradient theory. Compos. Struct. 2017, 159, 433–444. [CrossRef]

31. Chu, L.; Dui, G.; Zheng, Y. Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded
flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory. Eur. J. Mech. A/Solids 2020, 82, 103999.
[CrossRef]

32. Karami, B.; Janghorban, M.; Rabczuk, T. Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in
thermal environment using nonlocal strain gradient theory. Compos. Part B Eng. 2019, 182, 107622. [CrossRef]

33. Cornacchia, F.; Fabbrocino, F.; Fantuzzi, N.; Luciano, R.; Penna, R. Analytical solution of cross- and angle-ply nano plates with
strain gradient theory for linear vibrations and buckling. Mech. Adv. Mater. Struct. 2021, 28, 1201–1215. [CrossRef]

34. Akgöz, B.; Civalek, Ö. Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control
2012, 20, 606–616. [CrossRef]

35. Akgöz, B.; Civalek, Ö. A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech.
2015, 226, 2277–2294. [CrossRef]

36. Romano, G.; Barretta, R.; Diaco, M.; Marotti de Sciarra, F. Constitutive boundary conditions and paradoxes in nonlocal elastic
nano-beams. Int. J. Mech. Sci. 2017, 121, 151–156. [CrossRef]

37. Zaera, R.; Serrano, Ó.; Fernández-Sáez, J. On the consistency of the nonlocal strain gradient elasticity. Int. J. Eng. Sci. 2019, 138,
65–81. [CrossRef]

38. Eringen, A.C. Theory of Nonlocal Elasticity and Some Applications. Princet. Univ. Nj Dept. Civ. Eng. 1984, Technical Report No. 62, 1–65.
[CrossRef]

39. Gurtin, M.E.; Murdoch, A.I. A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 1975, 57, 291–323.
[CrossRef]

40. Romano, G.; Barretta, R. Nonlocal elasticity in nanobeams: The stress-driven integral model. Int. J. Eng. Sci. 2017, 115, 14–27.
[CrossRef]

41. Barretta, R.; Marotti de Sciarra, F. Variational nonlocal gradient elasticity for nano-beams. Int. J. Eng. Sci. 2019, 143, 73–91.
[CrossRef]

42. Pinnola, F.; Faghidian, S.A.; Barretta, R.; de Sciarra, F.M. Variationally consistent dynamics of nonlocal gradient elastic beams.
Int. J. Eng. Sci. 2020, 149, 103220. [CrossRef]

43. Jouneghani, F.Z.; Dimitri, R.; Tornabene, F. Structural response of porous FG nanobeams under hygro-thermo-mechanical
loadings. Compos. Part B Eng. 2018, 152, 71–78. [CrossRef]

44. Aria, A.; Friswell, M. Computational hygro-thermal vibration and buckling analysis of functionally graded sandwich microbeams.
Compos. Part B Eng. 2019, 165, 785–797. [CrossRef]

45. Penna, R.; Feo, L.; Lovisi, G. Hygro-thermal bending behavior of porous FG nano-beams via local/nonlocal strain and stress
gradient theories of elasticity. Compos. Struct. 2021, 263, 113627. [CrossRef]

46. Penna, R.; Feo, L.; Lovisi, G.; Fabbrocino, F. Hygro-thermal vibrations of porous FG nano-beams based on local/nonlocal stress
gradient theory of elasticity. Nanomaterials 2021, 11, 910. [CrossRef]

47. Penna, R.; Lovisi, G.; Feo, L. Dynamic Response of Multilayered Polymer Functionally Graded Carbon Nanotube Reinforced
Composite (FG-CNTRC) Nano-Beams in Hygro-Thermal Environment. Polymers 2021, 13, 2340. [CrossRef]

48. Wang, S.; Kang, W.; Yang, W.; Zhang, Z.; Li, Q.; Liu, M.; Wang, X. Hygrothermal effects on buckling behaviors of porous
bi-directional functionally graded micro-/nanobeams using two-phase local/nonlocal strain gradient theory. Eur. J. Mech. A Solids
2022, 94, 104554. [CrossRef]

49. He, J.-H. Hamiltonian approach to nonlinear oscillators. Phys. Lett. A 2010, 374, 2312–2314. [CrossRef]
50. He, J.-H. Variational approach for nonlinear oscillators. Chaos Solitons Fractals 2007, 34, 1430–1439. [CrossRef]
51. Ismail, G.; Cveticanin, L. Higher order Hamiltonian approach for solving doubly clamped beam type N/MEMS subjected to the

van der Waals attraction. Chin. J. Phys. 2021, 72, 69–77. [CrossRef]
52. Akbarzade, M.; Kargar, A. Application of the Hamiltonian approach to nonlinear vibrating equations. Math. Comput. Model.

2011, 54, 2504–2514. [CrossRef]
53. Nawaz, Y.; Arif, M.S.; Bibi, M.; Naz, M.; Fayyaz, R. An effective modification of He’s variational approach to a nonlinear oscillator.

J. Low Freq. Noise Vib. Act. Control 2019, 38, 1013–1022. [CrossRef]
54. Askari, H.; Nia, Z.S.; Yildirim, A.; Yazdi, M.K.; Khan, Y. Application of higher order Hamiltonian approach to nonlinear vibrating

systems. J. Theor. Appl. Mech. 2013, 51, 287–296.

http://doi.org/10.1016/j.compstruct.2020.112925
http://doi.org/10.1016/j.ijmecsci.2016.10.035
http://doi.org/10.1088/2053-1591/aad2ca
http://doi.org/10.1016/j.euromechsol.2020.104183
http://doi.org/10.1016/j.compstruct.2016.09.092
http://doi.org/10.1016/j.euromechsol.2020.103999
http://doi.org/10.1016/j.compositesb.2019.107622
http://doi.org/10.1080/15376494.2019.1655613
http://doi.org/10.1177/1077546312463752
http://doi.org/10.1007/s00707-015-1308-4
http://doi.org/10.1016/j.ijmecsci.2016.10.036
http://doi.org/10.1016/j.ijengsci.2019.02.004
http://doi.org/10.21236/ada145201
http://doi.org/10.1007/BF00261375
http://doi.org/10.1016/j.ijengsci.2017.03.002
http://doi.org/10.1016/j.ijengsci.2019.06.016
http://doi.org/10.1016/j.ijengsci.2020.103220
http://doi.org/10.1016/j.compositesb.2018.06.023
http://doi.org/10.1016/j.compositesb.2019.02.028
http://doi.org/10.1016/j.compstruct.2021.113627
http://doi.org/10.3390/nano11040910
http://doi.org/10.3390/polym13142340
http://doi.org/10.1016/j.euromechsol.2022.104554
http://doi.org/10.1016/j.physleta.2010.03.064
http://doi.org/10.1016/j.chaos.2006.10.026
http://doi.org/10.1016/j.cjph.2021.04.016
http://doi.org/10.1016/j.mcm.2011.06.012
http://doi.org/10.1177/1461348419829372


Nanomaterials 2022, 12, 2098 20 of 20

55. Sadeghzadeh, S.; Kabiri, A. Application of Higher Order Hamiltonian Approach to the Nonlinear Vibration of Micro Electro
Mechanical Systems. Lat. Am. J. Solids Struct. 2016, 13, 478–497. [CrossRef]

56. Penna, R.; Feo, L.; Fortunato, A.; Luciano, R. Nonlinear free vibrations analysis of geometrically imperfect FG nano-beams based
on stress-driven nonlocal elasticity with initial pretension force. Compos. Struct. 2020, 255, 112856. [CrossRef]

57. Penna, R.; Feo, L. Nonlinear Dynamic Behavior of Porous and Imperfect Bernoulli-Euler Functionally Graded Nanobeams Resting
on Winkler Elastic Foundation. Technologies 2020, 8, 56. [CrossRef]

http://doi.org/10.1590/1679-78252557
http://doi.org/10.1016/j.compstruct.2020.112856
http://doi.org/10.3390/technologies8040056

	Introduction 
	Functionally Graded Materials 
	Governing Equations 
	Local/Nonlocal Stress Gradient (NStressG) Model of Elasticity 
	Nonlinear Transverse Free Vibrations (NStressG) 
	Higher-Order Hamiltonian Approach to Nonlinear Free Vibrations: Solution Procedure 
	First-Order Hamiltonian Approach 
	Second-Order Hamiltonian Approach 
	Third-Order Hamiltonian Approach 

	Convergence and Comparison Study 
	Results and Discussion 
	Influence of Porosity Volume Fraction and Gradient Index 
	Influence of Hygrothermal Loads 
	Influence of Nonlocal Parameter, Gradient Length Parameter, and Mixture Parameter 
	Influence of Higher-Order Hamilton Approach 

	Conclusions 
	Appendix A
	References

