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Background: Recently, the neurite outgrowth inhibitor-B (Nogo-B) receptor

has been reported as a novel candidate gene for Parkinson’s disease (PD).

Nogo-B receptors need to combine with soluble Nogo-B to exert their

physiological function. However, little is known about the relationship between

serum soluble Nogo-B and PD.

Methods: Serum levels of sNogo-B and α-Synuclein (α-Syn) were measured

in a cohort of 53 patients with PD and 49 healthy controls with the ELISA kit

method.

Results: Serum sNogo-B level is significantly lower in the PD group than

that in healthy controls and is negatively correlated with UPDRS-III score (p

= 0.049), H&Y stage (p = 0.0108) as well as serum α-Syn level (p = 0.0001).

The area under the curve (AUC) of serum sNogo-B in di�erentiating patients

with PD from controls was 0.801 while the AUC of serum α-Syn was 0.93.

Combining serum sNogo-B and α-Syn in di�erentiating patients with PD from

HC presented higher discriminatory potential (AUC = 0.9534).

Conclusion: Decreased serum sNogo-B may be a potential biomarker for PD.

Lower Nogo-B level reflects worse motor function and disease progression of

PD. Serum sNogo-B is of added value to serum α-Syn panel in distinguishing

PD from controls. Future studies are needed to confirm in larger samples and

di�erent populations.
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Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders.

It has affected over 1% of people beyond 65 years old around the world

(Tanner, 1996; Langston, 1998). PD is pathologically characterized by abnormal

accumulation of α-Synuclein (α-Syn) in dopaminergic neurons from the substantia
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TABLE 1 Demographic and clinical features of patients with PD and healthy control.

PD group (n = 53) HC group (n = 49) p-value

Age (years) 58.14± 10.82 56.88± 10.17 0.255

Age of onset (years) 54.68± 12.65 – –

Disease duration (years) 3.17± 2.93 – –

sNogo-B (pg/ml), mean± SD 107.12± 27.62 291.57± 27.44 <0.0001

α-Syn (pg/ml), mean± SD 4,664.36± 1,049.91 2,354.27± 1,177.95 <0.0001

UPDRS III score, mean± SD 34.63± 18.77 – –

Hoehn and Yahr stage, mean± SD 2.12± 0.89 – –

MMSE score, mean± SD 28.84± 1.61 28.83± 0.99 0.163

NMSS score, mean± SD 25.00± 15.683 – –

Levodopa equivalent dose (mg/d), mean± SD 324.78± 37.92 – –

PD, Parkinson’s Disease; HC, healthy controls; SD, Standard deviation; UPDRS III, Unified Parkinson’s Disease Rating Scale III; MMSE, Mini-Mental State Examination; NMSS,

Non-Motor Symptoms Scale.

nigra of the midbrain (Wong and Krainc, 2017). The

diagnosis of PD mainly relies on clinical characteristics

at present, but pathological examination results in a

post-mortem study demonstrated only 76% accuracy in

the clinical diagnosis of PD (Hughes et al., 1992), which

raises concern that clinical diagnosis of PD may lead to

many misdiagnoses and delays the early identification

of PD.

Nowadays, there are many studies on diagnostic biomarkers

of PD such as blood (Zhao et al., 2018), cerebrospinal

fluid (Parnetti et al., 2019), and imaging (Pyatigorskaya

et al., 2014; Satue et al., 2016). A typical biomarker is

α-Syn, but the results are inconsistent due to the presence

of α-Syn in various body fluids and tissue together with

the presence of many α-Syn variants (Atik et al., 2016).

Therefore, there is still a lack of effective biomarkers

for early diagnosis of PD and there is an urgent need

to identify novel, sensitive, and reliable biomarkers in

order to discover new diagnostic methods for patients

with PD.

Recently reported as a novel candidate gene for PD,

the NUS1 codes the Neurite outgrowth inhibitor-B (Nogo-B)

receptor (Guo et al., 2018; Chen et al., 2020). Functional

studies in Drosophila have shown that loss of NUS1 reduces

the fly’s motor function, dopamine levels as well as the number

of dopaminergic neurons, and induces apoptosis in the fly’s

brain (Guo et al., 2018). In addition, studies have shown

that Nogo-B is involved in many key cellular processes such

as cholesterol transportation (Harrison et al., 2009), dolichol

synthesis and protein N-glycosylation (Harrison et al., 2011),

vascular remodeling and genesis, tumorgenesis (Wang et al.,

2013; Pula et al., 2014; Zhao et al., 2015) and especially

neural development (Guo et al., 2018; Zhang et al., 2020).

Nogo-B is supposed to inhibit the growth and reconnection of

synapses and affect the expression of proinflammatory cytokine

derived frommicroglia in central nervous system diseases (Fang

et al., 2015). Furthermore, the amino terminus of Nogo-B is

a soluble peptide (soluble Nogo-B or sNogo-B) which can be

secreted into body fluids like serum and CSF (Rodriguez-Feo

et al., 2007; Hernandez-Diaz et al., 2019) and is capable of

binding to the Nogo-B receptor (Zhang et al., 2020). However,

little is known about the relationship between serum soluble

Nogo-B and PD. In this study, we aimed to investigate the

role of serum sNogo-B for PD and its association with PD’s

severity, especially motor symptoms. Moreover, serum α-Syn

levels were measured to explore its association with sNogo-

B. We also tested if serum sNogo-B can differentiate PD

from healthy controls as a single marker or combining with

serum α-Syn.

Materials and methods

Participants

We recruited 53 patients with PD (including early and

advanced patients) and 49 age-and sex-matched healthy

controls from the Department of Neurology of First Affiliated

Hospital of Guangxi Medical University between August 2017

and September 2019. PD’s diagnostic criteria followed the

United Kingdom PD Society Brain Bank (Hughes et al., 1992).

Exclusion criteria were: other neurological diseases except for

PD, accompanied by tumor or acute infectious diseases, severe

cognitive impairment (MMSE score < 24), or other conditions

that may interfere with the clinical evaluation. Every patient was

diagnosed by two professional neurologists. The demographic

and clinical characteristics of all subjects are shown in Table 1.

The study was approved by the ethics committee of The First

Affiliated Hospital of Guangxi Medical University. Written

informed consents were obtained from all of the participants.
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FIGURE 1

Comparisons of Serum levels of sNogo-B and α-Syn in patients with PD and HC. (A) Serum levels of sNogo-B in patients with PD and HC.

Patients with PD presented lower serum levels of sNogo-B than healthy control individuals (p < 0.0001); (B) Serum levels of α-Syn in patients

with PD and HC. Patients with PD presented higher serum levels of α-Syn than healthy control individuals (p < 0.0001); (C) Serum levels of

sNogo-B in early and advanced patients with PD and HC. No significant di�erence was observed between serum sNogo-B levels of early and

advanced patients with PD (p = 0.521); (D) Serum levels of α-Syn in early and advanced patients with PD and HC. No significant di�erence was

observed between serum α-Syn levels of early and advanced patients with PD (p = 0.857); PD, Parkinson’s disease; α-Syn, α-Synuclein; HC,

healthy controls. **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not significant.

Clinical evaluation

All patients recruited were evaluated on the day of the

sample collection with the Unified Parkinson’s Disease Rating

Scale III (MDS-UPDRS III) (Goetz et al., 2007) and the Hoehn

and Yahr staging scale (H&Y). MMSE score and the Non-Motor

Symptoms Scale (NMSS) (Chaudhuri et al., 2007) were used to

evaluate the cognitive function and the non-motor symptom

of patients with PD. Levodopa equivalent dose (LED) was

calculated as well (Tomlinson et al., 2010).

Sampling and biological assays

All recruited participants’ venous blood samples were

collected with vacuum tubes on the morning of the patients’

visit after an overnight fast. Blood samples were centrifuged

at 3,000 g for 15min at 4◦C and then aliquoted and stored at

−80◦C until analysis. LEGENDMAXTM Human Nogo-B ELISA

Kit (Detectable levels of 95% sample ranging from 30 to 468

pg/ml) were used to determine sNogo-B levels in the serum of

patients with PD. In order to verify our determination with prior
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studies, the levels of α-Synuclein in serum were determined by

Abcam Human α-Synuclein ELISA Kit (Detectable range: 281

to 3,200 pg/ml). The samples were diluted if necessary during

the assay. All of the above procedure was carried out in strict

accordance with the instructions.

Statistical analysis

All statistical analyses were performed with IBM SPSS

Statistics 23 and all data were tested for normality of distribution

(p > 0.05). Comparisons between groups were made using the

Chi-squared test for categorical data, and independent samples

t-test or the Mann–Whitney U-test for continuous variables. A

receiver operating characteristic curve was drawn to calculate

the area under the curve for sensitivity and specificity. Pearson’s

or Spearman’s rank correlation analyses were conducted to

evaluate the correlation between levels of sNogo-B, α-Synuclein,

and clinical variables.

Results

Patients with PD and healthy controls were matched in age

and gender. Serum sNogo-B levels were observed lower in PD

group than that in HC group (107.12 ± 27.62 pg/ml vs. 291.57

± 27.44 pg/ml, p < 0.0001) while serum α-Syn levels were

observed higher in PD group than that in HC group (4,664.36

± 1,049.91 pg/ml vs. 2,354.27 ± 1,177.95 pg/ml, p < 0.0001), as

illustrated in Figure 1. Subgroup analysis according to separate

stage showed that there was no significant difference between

early and advanced groups in serum sNogo-B levels (127.04 ±

35.48 pg/ml vs. 70.43 ± 28.18 pg/ml, p = 0.521) as well as α-

Syn levels (4,723.71 ± 157.29 pg/ml vs. 4,484.6 ± 290.25 pg/ml,

p= 0.857), which was shown in Figure 1.

According to the receiver operating characteristic curve

analysis, the area under the curve (AUC) of serum sNogo-B

in differentiating patients with PD from HC was 0.801 and

the cutoff value was 209.09 pg/ml; Sensitivity and specificity

were 91.1 and 49%, respectively. While AUC of serum α-Syn

in differentiating patients with PD from HC was 0.93 and the

cutoff value was 3,712.67 pg/ml. Sensitivity and specificity were

86.8 and 85.7%, respectively. The AUC of combining serum

sNogo-B and α-Syn in differentiating patients with PD from HC

was 0.9534 and sensitivity and specificity were 94.3 and 85.7%,

respectively (Figure 2).

Pearson or Spearman correlation analysis showed that

serum sNogo-B level was mildly negatively correlated with

UPDRS III scores (r = −0.264, p = 0.049) and negatively

correlated with the Hoehn and Yahr stage (r = −0.344,

p= 0.0108) and serum α-Syn level (r = −0.365, p = 0.0001),

respectively (Figure 3). Nevertheless, we failed to observe any

significant correlations between levels of serum sNogo-B and

FIGURE 2

ROC curve of serum levels of sNogo-B (AUC = 0.801, p <

0.0001), serum α-Syn (AUC = 0.93, p < 0.0001) and combination

of them (AUC = 0.9534, p < 0.0001). Both sNogo-B and α-Syn in

serum presented significant diagnostic value of PD;

Combination of sNogo-B and α-Syn presented the higher

diagnostic value of PD.

NMSS scores (25 ± 15.683, r = −0.134, p = 0.338) as well as

levodopa equivalent dose (324.78 ± 37.92 mg/d, r = −0.092, p

= 0.497).

Discussion

Soluble neurite outgrowth inhibitor-B is a circulating

isoform of full-length Nogo-B. Previous studies reveal that

Nogo-B plays an important role in many diseases like

atherosclerosis (Rodriguez-Feo et al., 2007), cancer, childhood

epilepsy, and neurodegenerative disease (Eckharter et al., 2015;

Zhang et al., 2020), and its potential as a novel candidate gene

of Parkinson’s disease (Guo et al., 2018). However, there is little

evidence for altered sNogo-B in PD to date. To the best of our

knowledge, we are the first to find out that serum sNogo-B

levels in patients with PD decreased significantly compared

with healthy controls. Considering the role of Nogo-B/NgBR in

promoting axonal branching (Eckharter et al., 2015), sNogo-B

may act as protecting antibody and potentially take effect in

neural repairment and even treatment of PD. Moreover, it was

found that NgBR is highly expressed in the cell body and

axon of sensory neurons, and the interaction between Nogo-B

expressed by Schwann cells and NgBR could further promote

axonal branching (Eckharter et al., 2015) while PI3K/ Akt signal

pathway is involved in promoting neuron survival, axon growth

and axon branching (Huang et al., 2017; Wang et al., 2019; Zhu

et al., 2019). It is suggested that sNogo-B may take part in the

pathogenesis of PD by down-regulating the expression of related

proteins in the PI3K/Akt signaling pathway by inhibiting the

Nogo-B/NgBR signal axis.

Serum α-Syn levels in PD presented higher than that in

HCs, which is consistent with the results of some previous

research (Park et al., 2011; Atik et al., 2016). In addition,

serum α-Syn levels in PD were negatively correlated with
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FIGURE 3

Correlations analysis of serum sNogo-B and clinical characteristics. (A) Serum sNogo-B level negatively correlated with UPDRS III score (r =

−0.264, p = 0.049); (B) Serum sNogo-B level negatively correlated with Hoehn and Yahr stage (r = −0.344, p = 0.0108); (C) Serum sNogo-B

level negatively correlated with serum α-Syn level (r = −0.365, p = 0.0001).

serum sNogo-B levels, which indicates the connection of

sNogo-B and α-Syn. It’s reported that aggregation of misfolded

and degenerative α-Syn caused by endoplasmic reticulum

dysfunction is involved in the pathophysiological process of PD

(Costa et al., 2020). In physiologic conditions, the endoplasmic

reticulum (ER) is involved in the quality control of intracellular

proteins. ER-associated degradation (ERAD) selectively delivers

degenerative or misfolded proteins to the proteasome for

degradation, thus preventing abnormal proteins from cellular

secretion (Ruggiano et al., 2014; Schwarz and Blower, 2016).

In the case of ER-proteasome dysfunction, α-Syn aggregation

may affect the endoplasmic reticulum and result in ER stress

(Bernal-Conde et al., 2019; Costa et al., 2020). In addition, it

has been found that ER to Golgi trafficking and mitochondrial

damage in PD models can be reversed by compounds reducing

α-Syn toxicity (Su et al., 2010). Moreover, Nguyen et al. have

also reviewed that ER-mitochondria-lysosome dysfunction is

involved in the pathophysiological process of PD (Nguyen

et al., 2019). Since Nogo-B is a member of the endoplasmic

reticulum protein family (Zhang et al., 2020), it is suggested

that down-regulation of Nogo-B may lead to ER - proteasome

and ER - lysosome dysfunction, which leads to the decline of

α-syn clearance ability, thus participating in the pathogenesis

of PD. This hypothesis needs to be explored by further

experimental studies.

Furthermore, the association between clinical features and

serum sNogo-B levels was explored. Lower serum sNogo-B

was found to be associated with severer motor symptoms and

higher Hoehn and Yahr stage. Although serum sNogo-B levels

could not distinguish between early and advanced patients by
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now, the trend of decreasing levels of sNogo-B in advanced

PD is foreseeable, which deserves future investigation in larger

samples. As loss of Nogo-B reduces the fly’s movement ability,

dopamine levels, and the number of dopaminergic neurons

(Guo et al., 2018), sNogo-B might potentially reflect the severity

of motor symptoms and disease progression in patients with PD.

Since levodopa equivalent dose has no effect on serum sNogo-B

level, it indicates the potential for therapeutic targeting of the

dysregulated Nogo-B in PD.

Interestingly, the area under the curve of serum

sNogo-B in differentiating patients with PD from HC

is lower than the AUC of α-Syn. We combined serum

sNogo-B and α-Syn in order to improve the diagnostic

value for PD and the results showed that the AUC

of the combination was higher as expected. It’s worth

noting that α-Syn may not act as a diagnostic indicator

for PD as α-Syn levels in serum or plasma varies in

different studies because of the existence of variant of

α-Syn as well as the influence of erythrocyte in α-Syn

(Atik et al., 2016; Barkovits et al., 2020).

Of course, there are limitations to this study. First, the

sample size is small and patients with PD were mainly in

the early stage, thus further studies of larger sample numbers

are needed. Second, since both α-Syn and Nogo-B function

in the brain, the decreased sNogo-B level in the periphery

did not directly reflect the levels in the brain. Therefore, the

measurement of sNogo-B and α-Syn in cerebrospinal fluid

level might be important to establish the connection between

Nogo-B and PD. Third, in this present study, we focused

on the difference between PD and healthy people, related

movement disorders like essential tremor, multiple system

atrophy, or progressive supranuclear palsy were not involved,

which might be distinct from PD and should be explored

in the future.

Conclusion

Our study suggests that decreased serum sNogo-B may be

a potential biomarker for PD. The lower Nogo-B level reflects

the worse motor function of PD. Serum sNogo-B is of added

value to serum α-Syn panel in distinguishing PD from controls.

Future studies are needed to confirm in larger samples and

different populations.
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