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Summary
Background The tumor microenvironment (TME) serves as an important factor in tumorigenesis and metastasis.
Although distinct cell subsets can be identified via single-cell RNA sequencing (scRNA-seq), the spatial composition
of cells within the TME is difficult to characterise.

Methods Tissue samples were collected from three patients with esophageal squamous cell carcinoma (ESCC), and
scRNA-seq was performed to identify distinct cell subsets. In addition, a microarray-based spatial transcriptomics
(ST) method was used to characterise the spatial landscape of expression data via an array of spots. Using multi-
modal intersection analysis (MIA) to integrate scRNA-seq and ST, the exact cellular components of the tumor and
stromal regions were annotated.

Findings The subpopulations of seven stromal cells were identified within the TME of ESCC, and the architecture of
scRNA-seq-determined subsets was mapped in cancer and stromal regions. The distribution of various stromal cells
and their subpopulations was heterogeneous. Compared with immune cells, non-immune stromal cells were signifi-
cantly enriched in the TME. Most subsets of epithelial cells were enriched in the cancer regions, whereas inflamma-
tory cancer-associated fibroblasts were correlated with the stromal regions. Furthermore, TME features were
different between metastatic and non-metastatic samples and between the primary and metastatic sites of the meta-
static sample.

Interpretation This study revealed the spatial landscape of various cell subsets within the TME and the potential
cross-talk among diverse cells, which provides novel insights into cancer intervention.
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Research in context

Evidence before this study

Esophageal squamous cell carcinoma (ESCC) accounts
for the majority cases of esophageal cancer and has a
high mortality due to its invasiveness and metastasis.
Immunotherapy has been considered a promising ther-
apy for esophageal cancer and identifying the tumor
microenvironment (TME) is crucial for stratifying
patients with different clinical outcomes. We searched
relevant studies up to Dec 16, 2020 using PubMed and
the Institute for Health Metrics and Evaluation’s
research articles database, for the co-analysis of single-
cell RNA sequencing (scRNA-seq) and spatial transcrip-
tomic (ST) method in ESCC using the terms (“single-cell
RNA sequencing” OR “scRNA sequencing” OR “single-
cell sequencing”) AND (“spatial transcriptomics” OR
“spatial transcriptome”) AND (“esophageal squamous
cell carcinoma” OR “ESCC” OR “esophageal cancer”),
with no language restrictions. We have not retrieved
any study concentrating on the co-analysis of these two
methods in ESCC. Furthermore, the exact landscape for
the architecture of scRNA-seq-determined subsets
within the TME in ESCC was still unknown.

Added value of this study

In the present study, we enrolled three ESCC patients,
one of which has metastatic ESCC. By using multimodal
intersection analysis (MIA) to integrate scRNA-seq and
microarray-based spatial transcriptomics (ST) methods,
we presented the TME features and analyze the distri-
bution of different cell subpopulations in cancer and
stromal regions of ESCC. Furthermore, we found the dif-
ference in stromal cells within the TME in cancer regions
between the metastatic sample and non-metastatic
sample, and in regions between primary and metastatic
sites of the metastatic sample.

Implications of all the available evidence

In the present study, we revealed the spatial landscape
of various cell subsets within the TME and the potential
cross-talk among diverse cells. We also found transcrip-
tomic differences and unique geographical patterns
between non-metastatic and metastatic samples. Our
study provides previous unknown insights into the
diverse tumor ecosystem of ESCC and has potential
benefits for cancer intervention.
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Introduction
Esophageal cancer is the eighth main cause of cancer-
specific death worldwide, leading to approximately
0.54 million deaths in 2020.1 Esophageal squamous
cell carcinoma (ESCC) and esophageal adenocarcinoma
(EAC) are the two main subtypes, with ESCC account-
ing for the majority of all cases.1,2 The risk factors differ
between these two subtypes: alcohol and smoking are
associated with ESCC, whereas obesity and reflux are
associated with EAC.3�5 Surgery, chemotherapy, che-
moradiotherapy, and immunotherapy are the standard
treatments for esophageal cancer.6 Despite the improve-
ment in treatment strategies, some patients have unfa-
vorable clinical outcomes, and the 5-year survival rate is
<25%.7 In recent years, immunotherapy has emerged
as a novel strategy and is a promising therapy for esoph-
ageal cancer, with several clinical trials investigating the
safety and efficacy of immunotherapy or combination
therapy. The findings of ORIENT-2 (a randomized,
open-label, multi-center phase 2 study) indicated that
PD-1 inhibitor significantly extended the overall survival
(OS) of ESCC patients in comparison to chemotherapy
following the first-line chemotherapy.8 However, some
patients did not respond to immunotherapy, and fur-
ther research is needed. The tumor microenvironment
(TME) could potentially affect the ESCC patient’s
response to tumor immunity and immune checkpoint
inhibitors.9 In addition, TME is heterogeneous in
esophageal cancer, and intratumor heterogeneity may
be closely related to different responses to a specific
treatment strategy, such as immunotherapy.10,11 How-
ever, few effective strategies have been reported to clas-
sify the TME subtypes and analyze the association
between the diversity of TME and metastasis in ESCC,
which prevents the development of precise medications
for patients.

Single-cell RNA sequencing (scRNA-seq) has been
considered an unprecedented method to unveil the
potentially significant understanding of different cell
subtypes, including multiple cell subpopulations in
tumors. Various cellular subsets have been classified in
cancer, such as subpopulations of tumor-associated
stromal cells and tumor-infiltrating immune cells.12,13

The discovery of a multicellular ecosystem within the
TME has provided novel insights into the intratumoral
transcriptional heterogeneity in many cancers, includ-
ing ESCC.14�16 For instance, Chen et al. used scRNA-
seq method to demonstrate a complex reprogramming
of different cells within the TME of ESCC, providing
new therapeutic targets for future treatment.17 Further-
more, another study revealed the substantial variation
in the proportion of cells and cell-cell interactions
between ESCC patients receiving neoadjuvant chemo-
therapy or not, elucidating the novel therapeutic bio-
markers for ESCC patients.18 As for immunotherapy,
research revealed that interaction between Tregs and
macrophages led to the possible immunosuppression
in the TME of patients with ESCC.19 However, tissue
dissociation before scRNA-seq analysis usually leads to
the loss of spatial information, restricting the investiga-
tion of cellular cross-talk in the TME.

The spatial transcriptomics (ST) technology, which is
complementary to the scRNA-seq technology, can over-
come the abovementioned restriction.20 Using spatially
barcoded histological microarrays, ST provides an intact
www.thelancet.com Vol 84 October, 2022
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two-dimensional landscape of transcripts over an entire
tissue section. ST has been used to evaluate the spatial
heterogeneity of melanoma,21 colorectal cancer,22 pan-
creatic ductal adenocarcinoma,23 prefrontal cortex,24 the
heart25 and the mouse brain.26 Although ST can provide
detailed two-dimensional information of transcripts in
different tissues, it has limitations, such as the relatively
low cellular resolution. The transcriptomes may differ
from spot to spot depending on the number of cells cap-
tured by each spot, resulting in heterogeneity of the
results.23 To overcome their limitations, we integrated
scRNA-seq and ST analyses to comprehensively analyze
ESCC tissues.

In this study, we identified the subsets of seven cell
types and analyzed the ST architecture of three ESCC
samples. We characterised the features of TME and ana-
lyzed the distribution of different cell subpopulations in
cancer and stromal regions of ESCC. In addition, we
identified different cell subsets in the cancer region
between metastatic and non-metastatic samples and all
regions between the primary and metastatic sites of the
metastatic sample. Our results enriched the under-
standing of the comprehensive landscape and cellular
ecosystem of ESCC.
Methods

Ethics statement
This study was performed in accordance with the Decla-
ration of Helsinki and was approved by the National
Cancer Center/Cancer Hospital Ethics Committee (No.
21/147-2818). All patients provided written informed
consent.

Patients and sample collection
Three patients who were diagnosed with pathologically
confirmed ESCC and underwent surgery at the Depart-
ment of Thoracic Surgery of the Cancer Hospital, Chi-
nese Academy of Medical Sciences, were enrolled. After
samples were resected, tumor tissues were cut into
three pieces along the long axis: one was processed for
pathological diagnosis, one was processed for scRNA-
seq, and the other one was processed for spatial tran-
scriptomics. One metastatic lymph node was also col-
lected, and was cut into two pieces: one was processed
for pathological diagnosis, and one was processed for
scRNA-seq. This study was approved by the National
Cancer Center/Cancer Hospital Ethics Committee.
Written informed consent was obtained from all partici-
pants included in this study.

Cell capture and cDNA synthesis
Using the Single Cell 3’ Library and Gel Bead Kit V3
(10x Genomics, 1000075, Pleasanton, CA, USA) and
Chromium Single Cell B Chip Kit (10x Genomics,
1000074), a cell suspension (300�600 living cells/µL,
determined by Count Star) was loaded onto the
www.thelancet.com Vol 84 October, 2022
Chromium Single Cell Controller (10x Genomics) to
generate single-cell gel beads in the emulsion according
to the manufacturer’s protocol. Briefly, single cells were
suspended in PBS containing 0.04% BSA. Approxi-
mately 11,000 cells were added to each channel, and
approximately 7000�10,000 cells were estimated to be
recovered as target cells. The captured cells were lysed,
and the released RNA was barcoded through reverse
transcription in individual GEMs. Reverse transcription
was performed on an S1000TM Touch Thermal Cycler
(Bio-Rad) at 53°C for 45 min, followed by 85°C for 5 min
and hold at 4°C. The cDNA was generated, amplified
and assessed for its quality on an Agilent 4200 system
(performed by CapitalBio Technology, Beijing).

Single-cell RNA-sequencing library preparation
scRNA-seq libraries were constructed using the Single
Cell 3’ Library and Gel Bead Kit V3 according to the
manufacturer’s instructions and subsequently
sequenced using an Illumina Novaseq6000 sequencer
with a sequencing depth of at least 100,000 reads per
cell using a paired-end 150 bp (PE150) reading strategy
(performed by CapitalBio Technology, Beijing).

Staining and imaging
Cryosections of 10-mm thickness were cut and mounted
onto the GEX arrays. The sections were placed on a ther-
mocycler adaptor with the active surface facing up and
incubated for 1 min at 37°C. Subsequently, the sections
were fixed for 30 min with methyl alcohol at �20°C and
stained with haematoxylin and eosin (H&E) (eosin,
Dako CS701, haematoxylin, Dako S3309, bluing buffer
CS702). Brightfield images were taken on a Leica DMI8
whole-slide scanner at 10x resolution.

Permeabilisation and reverse transcription
Gene expression was analyzed using a Visium Spatial
Gene Expression slide and Reagent Kit (10x Genomics,
PN-1000184). A slide cassette was used to create leak-
proof wells for adding reagents. Approximately 70-mL
permeabilisation enzyme was added and incubated at
37°C for 24 min. Each well was washed with 100-mL
SSC, and 75-mL reverse transcription Master Mix was
added for cDNA Synthesis.

cDNA library preparation for sequencing
At the end of first-strand synthesis, the RT Master Mix
was removed from the wells, and 75 mL of 0.08-M
KOH was added and incubated for 5 min at room tem-
perature. Subsequently, KOH was removed, and the
wells were washed with 100-uL EB buffer. Thereafter,
75-mL Second Strand Mix was added to each well for
second-strand synthesis. cDNA amplification was per-
formed on an S1000TM Touch Thermal Cycler (Bio-
Rad). Spatial libraries were constructed using the Vis-
ium Spatial Library Construction Kit (10x Genomics,
PN-1000184) according to the manufacturer’s instruc-
tions and subsequently sequenced using an Illumina
3
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Novaseq6000 sequencer with a sequencing depth of at
least 100,000 reads per spot using a pair-end 150 bp
(PE150) reading strategy (performed by CapitalBio
Technology, Beijing).

scRNA-seq data analysis
The CellRanger software was used for quantitative anal-
ysis of the gene expression of scRNA-seq data, and the
results were filtered using the R package Seurat. We
used the isOutlier function of scater package to calculate
the upper limits of the expressed genes and the mito-
chondrial gene content. Cells with genes more than the
upper limits and with <200 expressed genes were
removed. The remaining cells were used for down-
stream analysis. Data of all samples were combined
using the merge function of Seurat and standardised
using the NormalizeData function of Seurat. The Find-
VariableGenes function was used to determine 2,000
highly variable genes. The RunPCA and RunUMAP
functions were used for dimensionality reduction clus-
tering. The final number of principal components (PCs)
is 20, which is determined by the inflection point of
the ElbowPlot function. And the P-value of 20 PCs is <
0.05 in the JackStrawPlot result. Based on the clustering
results, cell types were annotated using a combination
of the R package singleR and previously reported gene
markers. The data of each cell type were extracted, and
each cell type was clustered using the abovementioned
dimensionality reduction clustering method. We used
the FindAllMarkers function to analyse the key genes of
each cell subpopulation (min.pct=0.25, logfc.thresh-
old=0.25). The R package monocle2 was used to analyze
the pseudotime of epithelial cells. Differentially
expressed genes (DEGs) were analyzed at the single-cell
level using the FindAllMarkers function of Seurat (min.
pct=0.20).

Spatial transcriptomic analysis
The gene expression of ST sequencing data was ana-
lyzed using the CellSpace software. After the gene
expression was quantified, a downstream analysis was
performed using the R package Seurat. The SCTrans-
form function of Seurat was used to standardise the spa-
tial transcriptomic data of three samples, whereas
RunPCA and RunUMAP were used for dimensionality
reduction and clustering (PC=30). The FindAllMarkers
function was used to analyze the characteristic genes of
each cluster in the spatial transcriptome (min.pct=0.25,
logfc.threshold=0.25). Using the specific genes of the
cell type extracted from scRNA-seq method and the spe-
cific genes of each cluster extracted from the ST
method, the significant enrichment of the two gene sets
was analyzed using the multimodal intersection analy-
sis (MIA) method (based on the hypergeometric test).
The cluster in the spatial region was defined as the
major region of the specific cell type, which had the
highest enrichment significance of intersection with
specific genes of this cell type (e.g., Cluster1 in the spa-
tial region was considered to be the epithelial region
because it had the highest score with the specific genes
of epithelial cells). Combined with the characteristic
genes of each cell type in a single cell, MIA was per-
formed to obtain the main cell types distributed in each
spatial region. All spatial spots were divided into cancer
(regions with abundant epithelial cells) and stromal
(regions with abundant non-epithelial cells) regions.
Pseudotime analysis of T1 and N1 epithelial cells was
performed using monocle2, and the three states of epi-
thelial cells resulting from the analysis were annotated
onto the spatial transcriptome using the FindTransfer-
anchors function of Seurat. Based on the annotation,
spatial spots were divided into four regions. The spatial
regions annotated by states 1 and 2 with a concentration
of metastatic epithelial cells were named ‘Cancer
Region 1’ and ‘Stromal Region 1’, respectively, whereas
the remaining cancer and stromal regions were named
‘Cancer Region 2’ and ‘Stromal Region 2’, respectively.
DEGs between two cancer regions and between two
stromal regions were analyzed using the FindMarkers
function of Seurat.

Mapping the cellular interactions
To get access to the distribution of various cell sub-
groups in the spatial region, we used the FindTransfer-
Anchors function of the R package Seurat to map each
cell type to the spatial region. We performed cell com-
munication analysis using CellChat (v1.1.3). We first cre-
ated the “CellChat” object via the createCellChat
function. Next, the computeCommunProb, compute-
CommunProbPathway and aggregateNet functions
were used to create cell communication networks.27

And netVisual_circle and netVisual_bubble functions
were applied to create the circle and bubble diagrams,
respectively.

Functional enrichment and survival analyses
The KEGG pathway of each DEG was annotated using
BLAST to align the gene sequence to protein sequences
obtained from the KOBAS database. The p-value of
enrichment significance was evaluated using Fisher’s
exact test for each pathway and corrected using the Ben-
jamini and Hochberg (BH) method to obtain the q-
value. The expressed genes were different in the TCGA
and GSE53625 cohorts, so we took the differential genes
of both cohorts for the survival analysis. In addition, we
normalized the two data using the scale function of R
software because the TCGA data was sequencing data
and GSE53625 was microarray data. Subsequent analy-
sis was conducted based on the normalized data. We
used the DEGs from the cancer regions and stroma
regions for the analysis, respectively. The coxph func-
tion of the R package survival was used to perform Cox
regression survival analysis. All the genes with the coef-
ficient were selected to construct the prognostic model.
www.thelancet.com Vol 84 October, 2022
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The model was built using cancer samples in the TCGA
cohort (training) and was validated in the GSE53625
cohort (validation). The median value was considered as
the cut-off value. Two survival curves were generated
using the DEGs of cancer and stromal regions. In addi-
tion, we evaluated the potential value of crosstalk-related
genes in prognostic prediction using the Cox regression
survival analysis. And the genes with the coefficient
were selected to construct the prognostic model in the
TCGA cohort. CIBERSORT was used to score immune
cells in the spatial spot of T1 samples, and the Reacto-
meGSA package was used to score the Hallmark gene
set in the spatial spot.

Multiplex Fluorescent Immunohistochemical Staining
We have baked FFPE slides of the T1 sample in a dry
oven for 1 hour at 60°C to improve sample adhesion to
the slide. Deparaffinization was performed by immers-
ing FFPE slides in fresh xylene for two times for
15 min each and rehydration was performed with a
series of grade EtOH washes (100%, 95%, 85%, 75%)
for 3 min, respectively. EDTA antigen retrieval solution
(50X) was diluted with dH2O for epitope recovery (1X).
Heat slides in EDTA antigen retrieval solution (1X)
until boiling, then sub-boil for 20 min (95°C-98°C).
PBS was used to wash sections twice for 3 minutes
after cooling down. Wash buffer was then removed
and sections were blocked with peroxidase-blocking
reagent (abcarta, PK001) for 10 min. Primary antibody
incubation was performed by diluting antibody based
on product-specific protocol (abcarta, PB001). The pri-
mary antibody included CD79a rabbit mAb (abcarta,
PA015), CD3 rabbit mAb (abcarta, PA004), IGKC rab-
bit pAb (proteintech, 14678-1-AP), IGLC2 mouse mAb
(abcam, ab233563), Ep-CAM mouse mAb (abcarta,
PA026), ACTA2(SMA) mouse mAb (abcarta, PA141)
and VWF(Factor VIII) rabbit mAb (abcarta, PA422).
Incubate sections for 1 hour at 37°C in a humidified
chamber and wash sections in PBS twice for 3 min
each. And secondary antibody incubation was per-
formed by covering sections with 1-3 drops of HRP con-
jugated goat anti-rabbit & mouse reagent (abcarta,
PK001). Tyramide signal amplification was then con-
ducted by covering tissue section in 1X fluorophore-
conjugated TSA amplification reagent (alphaTSA,
AXT6410000) for 5 min. And sections were washed in
PBS twice for 3 min each. HITRAI Scanner was finally
used for image scanning.
Patient number Age Gender TNM stage Smo

T 1 76 Male T2N3M0 Yes

T 2 43 Female T3N0M0 No

T 3 60 Male T1N2M0 Yes

Table 1: Characteristics of the 3 patients included in this study for scRN
ScRNA-seq: single-cell RNA sequencing; ESCC: esophageal squamous cell carcino
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Statistics
The statistical software, threshold and methods of each
bioinformatic analysis are described in Results, Meth-
ods and Figure legends. All the analysis was conducted
based on R software (v3.6.0).
Role of funding source
The funders played no role in study design, in the col-
lection, analysis and interpretation of data, in the writ-
ing of the manuscript and in the decision to submit the
paper for publication.
Results

Identification of cell populations via scRNA-seq
Tissue specimens from 3 patients with ESCC were col-
lected (Table 1), and scRNA-seq was performed to evalu-
ate the types and proportion of different cell types in
ESCC. A total of 14 clusters were identified based on
gene expression (Figure 1a). A UMAP plot demonstrat-
ing the distribution of gene expression in each sample
was also created (Figure 1b). A total of 20,324 cells were
classified as epithelial cells, NK and T cells, endothelial
cells, fibroblasts, B cells, monocytes and neutrophils,
which were identified based on the expression of spe-
cific marker genes shown in the UMAP plot (Figure 1c).
For each cell type, three marker genes were selected
(Figure S1), and the most significant marker gene was
found to be widely expressed and distributed in its cell
type (Figure 1E). The number of endothelial cells, B cells
and neutrophils was higher in T1, T2 and T3 samples,
respectively (Figure 1d). The exact number of each cell
type was presented in Table S1.
Spatial transcriptomic regionalisation of ESCC samples
To assess the spatial distribution of different cell types,
ST analysis was performed on T1 (2353 spots), T2 (2849
spots) and T3 (2896 spots) samples. ST sections of the
three samples were stained with H&E (Figure 2a�c).
According to the ST sequencing data, spots in the spa-
tial sections were divided into 10 regions (Figure 2d�f),
with each spatial region expressing different characteris-
tic genes (Figure S2).

MIA(23), a hypergeometric distribution test method,
was used to integrate the results of ST and scRNA-seq
analyses. The association between the spatial regions
king history Drinking history Family history of ESCC

Yes No

Yes No

No Yes

A-seq analysis and spatial transcriptomics.
ma.
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Figure 1. The single cell atlas of ESCC patients (n=3). a. Single cell clustering results of three primary samples based on the
expression levels of genes. b. The UMAP presentation of the distribution of the three samples. c. The UMAP presentation of major
annotated cell types according to the expression of selected marker genes. The clusters are annotated with various colors based on
specific identities of different cell types. d. Number of cells and sample proportion of each cell type. e. The expression of marker
genes in different cell types.
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Figure 2. Spatial transcriptome analysis of ESCC and regionalization of cancer and stroma (n=3). a-c. H&E staining of transcrip-
tome sections of three samples. (T1, T2 and T3, in turn). d-f. The results of spot clustering in three spatial transcriptome data. The num-
bers of spots in three samples are 2353 (T1), 2849 (T2) and 2896 (T3). g-i. Results of correlation significance analysis of spatial
transcriptome regions and cell subsets of single-cell data using MIA method. The higher the value, the greater the proportion of highly
expressed genes shared by spatial transcriptome regions and cell subsets. For each spatial region, it was classified as the cell type with
the highest value. Finally, all spatial regions were divided into cancer regions and stroma regions. j-l. According to the analysis results
of MIA, all spots were divided into cancer region and stroma region. The red is the area of cancer, and the blue is the area of stroma.

Articles
and single-cell clusters was analysed to identify the
major cell types distributed in each region
(Figure 2g�i). In addition, the spatial regions with epi-
thelial cells as the dominant component were classified
as cancer regions (almost all epithelial cells are cancer
cells), whereas other regions were classified as stromal
regions (Figure 2j�l).

scRNA-seq and spatial transcriptomic analyses of
epithelial cells, fibroblasts and endothelial cells
The spatial distribution of every cell type is different
(Figure 2g�i). The distribution of subsets of each cell
type was compared between cancer and stromal regions.
The subsets of stromal cells (epithelial cells, fibroblasts
and endothelial cells) were enriched in both regions. A
total of 8 subsets (C0�C8) were identified for epithelial
cells, with each subset having unique marker genes
(Figure 3a�c). The T1 sample (metastatic sample) was
largely represented by C0, C1 and C4 subsets, whereas
non-metastatic samples mostly contained other subsets
(Figure 3d). Most epithelial cell subsets, especially C5
and C7, were distributed in the cancer regions, whereas
C4 was mostly distributed in the stromal regions, and
www.thelancet.com Vol 84 October, 2022
C6 did not have a preference (Figure 3e). GSVA revealed
that NEIL3-mediated resolution of ICLs was signifi-
cantly enriched in C5 and C7 subsets, indicating that
DNA repair may be associated with tumorigenesis
(Figure 3f, Table S2). Furthermore, two main subtypes
of fibroblasts, namely, inflammatory cancer-associated
fibroblasts (iCAFs) and myofibroblasts (myCAFs), were
identified based on specific marker genes (Figure 4a, d).
In addition, eight subsets were identified, and their dis-
tribution in the three patients was demonstrated in the
UMAP plot (Figure 4b-c). Each of the two subtypes had
highly expressed genes, such as ACTA2 and FBLN1
(Figure 4e). The T1 sample was mostly enriched in
iCAFs, whereas myCAFs did not have a preference
(Figure 4f). iCAFs were significantly enriched in stro-
mal regions, whereas myCAFs were enriched in both
cancer and stromal regions (Figure 4g). The functions
and pathways differed between these two subsets, such
as vitamins in myCAFs and hydroxycarboxylic acid-
binding receptors in iCAFs (Figure 4h, Table S3). Fur-
thermore, the endothelial cell subsets were analyzed in
the three patients, which revealed three subsets with
unique marker genes (Figure S3a-c). The C2 subset was
7



Figure 3. Subsets analysis and MIA mapping of epithelial cell (n=3). a. Identification of subgroups of epithelial cells in ESCC. b.
The distribution of epithelial cells in three ESCC patients. c. Characteristic gene expression heatmap of each subgroup of epithelial
cell. d. Cell number and sample proportion of each cell subsets. e. MIA results of epithelial cells in cancer and stroma of spatial tran-
scriptome. f. GSVA results of different cell subsets.
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mostly enriched in the T1 sample, whereas the C1 sub-
set was highly enriched in non-metastatic samples
(Figure S3d). In addition, the C2 and C0 subsets were
mostly found in cancer and stromal regions, respec-
tively (Figure S3e). Similar pathways were found to be
enriched as in the aforementioned cell types, such as
NEIL3-mediated resolution of ICLs in the C2 subset and
hydroxycarboxylic acid-binding receptors in the C0 and
C1 subsets (Figure S3f, Table S4). These findings sug-
gested that the distribution of stromal cells was not sim-
ilar, and each cell type had its subset that could stratify
cancer and stromal regions in ESCC.

scRNA-seq and spatial transcriptomic analyses of NK
and T cells, B cells, monocytes and neutrophils
Based on the integration of scRNA-seq and ST, we ana-
lyzed the distribution of some immune cells. However,
the subsets of NK and T cells, B cells, monocytes and
neutrophils were not enriched in either the cancer or
stromal region. The following five main categories of NK
and T cells were identified: CD4 + T cells, CD8 + T cells,
regulatory T cells, NK cells and unspecified (Figure 5a).
The UMAP plots revealed 15 classifications and the distri-
bution of these cell types in the 3 patients with ESCC
(Figure 5b-c) and demonstrated marker genes and highly
expressed genes in each category (Figure 5d-e). MIA
revealed that exhausted CD4+ cells and cytotoxic CD8+
cells were mostly enriched in non-metastatic samples,
whereas other cells were enriched in all three samples
(Figure 5f). Only proliferating CD4+ cells had a relatively
higher enrichment score in cancer and stromal regions
of all samples, whereas na€ıve CD4+, exhausted CD8+
and NKT cells were mainly concentrated in the cancer
regions of the T1 sample (Figure 5g). Some pathways
were enriched in NK and T cells, such as intracellular
oxygen transport in exhausted CD4+ cells (Figure 5h,
Table S5). A total of 6, 9 and 4 subsets were identified
for B cells, monocytes and neutrophils, with highly
expressed genes in each subset (Figure S4a-b, S5a-b,
S6a-b). The C1�3 subsets of B cells and the C2 subset of
neutrophils were mainly enriched in the T1 sample
(Figure S4c, S6c), whereas most subsets of monocytes
were enriched in non-metastatic samples (Figure S5c). In
addition, MIA revealed that the characteristic genes of
most subsets of these three cell types were mainly
enriched in the cancer region of the T1 sample, indicat-
ing that these subsets were characterised by sample het-
erogeneity (Figure S4d, S5d, S6d). GSVA of each
subgroup of these three cell types showed no significant
difference (Figure S4e, S5e, S6e; Tables S6�8).

Distribution of metastasis-associated epithelial cells in
the spatial transcriptome
On analyzing the ST data of the 3 patients, T1 was iden-
tified as the primary site in a patient with lymph node
metastasis, and a metastatic sample (N1) was collected
from this patient for scRNA-seq. Combining the single-
www.thelancet.com Vol 84 October, 2022
cell data of T1 and N1 samples, a total of 12,205 cells
were divided into 7 cell types (Figure 6a). In epithelial
cells, 7 subsets were identified via cell subpopulation
analysis (Figure 6b). In both C1 and C5 subsets, some
cells of the primary and metastatic origin were present.
However, most other subsets belonged to a single sam-
ple. For pseudotime analysis (Figure 6c), epithelial cells
were divided into three evolutionary branches; of which,
states 1 and 2 mainly included metastatic cells, whereas
state 3 mainly included primary cells. State 1 contained
a total of 2478 cells; of which, 1757 (70.90%) were of
metastatic origin and 721 (29.10%) were of primary ori-
gin. State 2 contained a total of 1101 cells; of which, 756
(68.66%) were of metastatic origin and 345 (31.34%)
were of primary origin. State 3 contained a total of 1028
cells; of which, 90 (8.75%) were of metastatic origin
and 938 (91.25%) were of primary origin (Figure 6d).
These data were used to annotate spots in the spatial
transcriptome. States 1 and 3 were annotated in the can-
cer region, whereas state 2 was annotated in the stromal
region (Figure 2j). Pseudotime analysis on T1 and N1
samples revealed that epithelial cells of N1 (metastasis)
were mainly distributed on the right branch (Figure
S8).

The spatial regions annotated by states 1 and 2 with
concentrated metastatic cells were named ‘Cancer
Region 1’ and ‘Stromal Region 1’, respectively. The
remaining cancer and stromal regions were named
‘Cancer Region 2’ and ‘Stromal Region 2’, respectively
(Figure 6e). Cancer Region 1 was considered the treat-
ment group, and Cancer Region 2 was considered the
control group. The upregulated 140 DEGs in Cancer
Region 1 were mainly enriched in pathways related
to ‘metabolism of xenobiotics by cytochrome P450’
(q-value = 0.0001, Fisher’s exact test corrected by
BH method) and ‘chemical carcinogenesis’
(q-value = 0.0027, Fisher’s exact test corrected by BH
method), whereas the downregulated 115 DEGs were
mainly related to ‘ribosomal’ (q-value = 0.0048, Fisher’s
exact test corrected by BH method) pathways. Among
the downregulated genes, some genes were annotated
to pathways related to ‘glutathione metabolism’, ‘carbon
metabolism’ and ‘glycolysis/gluconeogenesis’ (Figures
6f, 6h, Table S9). In two stromal regions, 18 upregu-
lated genes were enriched in the ‘oxidative phos-
phorylation’ (q-value = 2.68e-11, Fisher’s exact test
corrected by BH method) pathway, whereas 59 downre-
gulated genes were mainly enriched in pathways related
to ‘ECM�receptor interaction’ (q-value = 3.89e-11, Fish-
er’s exact test corrected by BH method), ‘focal adhesion’
(q-value = 2.1e-8, Fisher’s exact test corrected by BH
method) and ‘PI3K�Akt signalling’ (q-value = 6.56e-5,
Fisher’s exact test corrected by BH method) (Figures
6g, 6i, Table S10). The survival analysis of TCGA data
showed that DEGs in both cancer (p-value < 0.0001,
Log-rank test) and stromal regions (p-value < 0.0001,
Log-rank test) were significantly related to overall
9



Figure 4. Subsets analysis and MIA mapping of fibroblast (n=3). a. Identification of two main subgroups of fibroblast in ESCC.
iCAF: inflammatory fibroblast; myCAF, myofibroblast. b. Single cell clustering results of fibroblast subsets. c. The distribution of fibro-
blast in three ESCC patients. d. Dot plot of marker gene expression in fibroblast of different subsets. e. The highly expressed gene
two main fibroblast subgroups. f. Number of cells in fibroblast subsets and three samples proportion. g. MIA results of the fibroblast
subsets distribution in the spatial transcriptome stroma and cancer regions. h. GSVA of fibroblast subsets.
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Figure 5. Subsets analysis and MIA mapping of NK and T cell (n=3). a. Identification of subgroups of NK and T cells in ESCC. Five
main categories are divided: CD4 + T cell, CD8 + T cell, regulatory T cell, NK cell and unspecified. b. Single cell clustering results of
NK and T cell subsets. c. The distribution of NK and T cells in three ESCC patients. d. Dot plot of marker gene expression in NK and T
cells of different subsets. e. The highly expressed characteristic gene heatmap of NK and T cell subsets. f. Number of cells in NK and
T cell subsets and three samples proportion. g. MIA results of the NK and T cell subsets distribution in the spatial transcriptome
stroma and cancer regions. h. GSVA results of NK and T cell subsets.
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survival (Figure S10a-b), whereas DEGs in stromal
regions (p-value = 0.012, Log-rank test) were consider-
ably related to OS (Figure S10c-d). The detailed DEGs
were shown in Table S11-12. The higher risk level pre-
dicted by DEGs was related to poorer survival probabil-
ity in both regions.

In addition, the functional enrichment of each spot
was scored, and significant differences were observed in
many tumor-related pathways, such as the Notch and
TGF-b pathways (p-value = 2.9e-13 and 5.96e-7, Student’s
t-test, respectively), between the two cancer regions. The
enrichment scores of these pathways were significantly
higher in Cancer Region 1 than in Cancer Region 2. The
enrichment of other pathways, including epithe-
lial�mesenchymal transition (EMT, p-value = 6.01e-110,
Student’s t-test) and angiogenesis (p-value = 1.33e-74,
Student’s t-test), was significantly different between the
two stromal regions, with higher enrichment in Stromal
Region 2. (Figure S7a-b). Furthermore, the immune-
infiltrating levels of different regions were evaluated
using the CIBERSORT algorithm. The proportion of
na€ıve CD4+ T cells (p-value = 0.0015, Student’s t-test),
gammadelta T cells (p-value = 0.0126, Student’s t-test),
M0 macrophages (p-value = 0.0330, Student’s t-test) and
eosinophils (p-value = 0.0056, Student’s t-test) was
higher in Cancer Region 2, whereas that of activated NK
cells (p-value = 0.0077, Student’s t-test) was higher in
Cancer Region 1. As for the stromal regions, most
immune cells had higher infiltration in Stromal Region
2, whereas only plasma cells (p-value = 8.59e-19,
Student’s t-test) had higher infiltration in Stromal Region
1 (Figure S7c-d).

Spatial landscape and cellular interactions of different
cells within the TME
We then evaluated the spatial landscape of different
types of cells, aiming to explore the potential role of vari-
ous cells within the TME. We found that epithelial cells
were mostly enriched in the cancer region, whereas
fibroblasts were significantly enriched in the stroma
region (Figure 7a-b). The B cells, NK and T cells were
enriched more in the stroma region than in the cancer
region (Figure S9a-b). However, the proportion of some
other cells was relatively small and no significant differ-
ence can be found in the regions for the endothelial
cells, monocytes and neutrophils (Figure 7c, Figure
S9c-d).

Previous studies have shown the importance of the
interactions among cells in cancer development.28 We
evaluated the cell-cell communications of the cells
within the TME to explore the role of the specific types
of cells in reconstructing the TME of ESCC patients.
Our findings revealed that the interaction between epi-
thelial cells and fibroblasts was the most significant,
and epithelial cells also had strong interactions with NK
and T cells (Figure 7d-e). According to the analysis of
the selected ligand-receptor interactions, some immune
response genes (such as MIF) were highly expressed in
immune cells, whereas tumor cells exhibited relatively
higher expressions of the corresponding genes (espe-
cially ACKR3), which may play a critical role in facilitat-
ing immune infiltration (Figure 7f). The inhibitory
interaction, such as TIGIT-NECTIN2, was detected
between tumor cells and NK and T cells. The crosstalks
between tumor cells and fibroblasts were considerably
more than other immune cells (Figure 7f). Moreover,
we found some specific immune genes (such as SPP1,
MIF and MDK) were significantly expressed in tumor
cells, and the corresponding receptors of which were
highly expressed in most immune cells (Figure 7g). We
also found that crosstalk-related genes were signifi-
cantly associated with clinical outcomes of patients with
esophageal cancer in the TCGA cohort (Figure 7h, Table
S13). In a word, we inferred that some particular cellular
communications played a crucial role in reshaping the
TME of ESCC.

Tissue validation of the spatial transcriptomics
To further evaluate the reliability of the ST method, we
performed the multiplex fluorescent immunohisto-
chemical staining for the T1 sample. We have selected
one gene marker for each cell and our findings revealed
that ST method was reliable in different cell type,
including epithelial cell (Figure S11a), fibroblast (Figure
S11b), endothelial cell (Figure S11c), B cell (Figure S11d)
and NKT cell (Figure S11e). In addition, the multiplex
fluorescent immunohistochemical staining was per-
formed to confirm whether the top stromal DEGs start-
ing with IG- were pseudo-signal due to the cell stress
resulting from the ST permeabilization process. And
our results demonstrated that there were B cells in situ
corresponding to high IG-expression (Figure S11f-g).
Discussion
In this study, we identified subpopulations of seven cell
types and addressed their spatial map in three heteroge-
neous ESCC samples. We integrated scRNA-seq and ST
analyses using MIA to evaluate the enrichment score of
different cell populations across cancer and stromal
regions, revealing the comprehensive map of various
cell types and subsets in the TME. In addition, we evalu-
ated the correlation of distinct cell subpopulations with
the stromal and cancer regions in ESCC. The findings
revealed heterogeneity between the primary and meta-
static sites, providing meaningful biological insights
into the mechanisms of ESCC metastasis.

TME is a complex tissue environment for cancer
development and progression, which contains various
types of cells, including tumor, immune and stromal
cells.29 Compared with tumor cells within the TME,
stromal cells have genetic stability and are considered a
promising therapeutic biomarker for cancer treat-
ment.30 In addition, immune cells within the TME play
www.thelancet.com Vol 84 October, 2022



Figure 6. Metastasis related epithelial cells distribution in spatial transcriptome (n=1). a. Single-cell clustering and cell type
annotated results of T1 (primary) and N1 (lymph node metastases) samples. b. Clustering results of epithelial cell subsets in T1 and
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an essential role in tumorigenesis and metastasis, and
they may be important for immunotherapy effective-
ness, as indicated by the immunosuppressive mecha-
nisms possibly associated with Treg�macrophage
interactions in ESCC.19 Chen et al. used scRNA-seq to
show that the TME of ESCC is heterogeneous, demon-
strating substantial differences in stromal cells between
tumor and normal tissues, which may contribute to car-
cinogenesis.17 However, the main restrictions for TME
in cancer treatment are temporal and spatial differen-
ces, which largely contribute to the heterogeneity of can-
cer.31 To the best of our knowledge, this study presents a
spatial landscape of multiple cell subpopulations in
ESCC, indicating its intra- and inter-tumoral heteroge-
neity, which may provide novel insights into the investi-
gation of efficient therapies. MIA revealed that cell
subpopulations were heterogeneous in the tumor and
stromal subregions among all samples. The number
and variety of cells were much greater in the cancer
region of the T1 sample and the stromal region of the
T3 sample.

Stromal cells were more significantly enriched in the
TME of ESCC, suggesting their more active role in
tumorigenesis and metastasis. A recent study demon-
strated that more epithelial cells and fibroblasts were
found in ESCC tumor tissues and the adjacent normal
tissues, respectively, which is consistent with the results
of this study.32 EMT detaches epithelial cells and pro-
motes metastasis and therapeutic resistance, indicating
the potential value of stromal cells of TME in the devel-
opment of novel therapies.33 The inflammatory and
remodelling processes are regulated by the interactions
between esophageal epithelial cells and eosinophils,
which may drive various tumorigenic phenotypes in
ESCC.34,35 In this study, most subtypes of epithelial cells
were more abundant in cancer regions than in stromal
regions. Two subsets of epithelial cells were substan-
tially enriched in cancer regions and unrelated to stro-
mal regions, which may be considered powerful
indicators for ESCC. CAFs are important for tumorigen-
esis and are a heterogeneous component within the
TME.36 In this study, two CAF subsets—iCAFs and
myCAFs—were identified. iCAFs were mostly clustered
in the stromal regions, whereas no difference was found
in the distribution of myCAFs between cancer and stro-
mal regions. Fang et al. found that CXCL1 promotes the
formation of iCAFs via the CXCR2�pSTAT3 pathway,
contributing to the progression of ESCC.37 In addition,
IL-6 regulates the interaction between fibroblasts and
N1 samples. c. Pseudotime analysis of epithelial cells showed that e
Proportion of primary and lymph node metastatic cells in 3 states o
annotate the spatial transcriptome spots, which were spatially div
where epithelial cells state 1 is concentrated in. Stroma region 1 is
remaining cancer and stroma spots were subdivided into cancer
expressed genes (DEGs) in cancer region 1 versus cancer region 2. g
2. h. Function enrichment of DEGs in cancer region 1 versus cancer
genes were shown, respectively. I. Function enrichment of DEGs in s
tumor cells within the TME in ESCC.38 We hypothe-
sized that iCAFs interact with tumor cells through spe-
cific factors in the stromal region instead of direct
interaction in the tumor region. In addition, some spe-
cific pathways enriched in iCAF subpopulations may be
candidates for future research, such as ‘NTF3-activated
NTRK3 signalling’ and ‘COX reactions’. Non-immune
stromal and endothelial cells were heterogeneous
among the three ESCC samples in this study and did
not have a clear preference for tumour or stromal subre-
gions.

Immune cells within the TME play a key role in can-
cer progression by interacting with tumor cells by
secreting different chemokines, cytokines and other sig-
nalling molecules.39 In this study, compared with non-
immune cells, immune cell subpopulations were het-
erogeneous in ESCC, and most subsets were enriched
in the cancer region of the T1 sample. TME components
can promote EMT, invasion and angiogenesis to facili-
tate metastasis in various cancers, such as esophageal,11

pancreatic40 and breast41 cancers. In this study, T1 sam-
ple was obtained from the primary site of metastatic
ESCC, whereas the other two samples were obtained
from primary ESCC. The types and proportion of
immune cells within the TME in metastatic ESCC were
different from those in primary cancer, including na€ıve
CD4+ T cells, neutrophils and B cells, and might affect
cancer cells in different ways. Gu et al. showed that
tumour-educated B cells secrete HSPA4-targeting IgG
and subsequently facilitate the metastasis of breast can-
cer.42 In addition, neutrophils can interact with L-17-
producing gd T cells and promote metastasis in breast
cancer.43 Besides, tumor-associated macrophages can
also produce growth factors, chemokines and cytokines
to create an immunosuppressive TME, which could
facilitate metastasis in various cancers.44 We conducted
pseudotime analysis using T1 and N1 samples and pre-
sented the spatial features of cancer and stromal regions
to determine DEGs and different pathways between the
primary and metastatic regions. A recent study used
scRNA-seq analysis and revealed differences in cells
between the primary and metastatic sites of head and
neck cancer.45 In this study, combined with scRNA-seq
and spatial information, pathways related to metabo-
lism and tumorigenesis were found to be enriched at
metastatic sites, showing the dynamic activity of tumour
and stromal cells during metastasis. In addition,
patients with higher expression of stroma DEGs had
substantially unfavorable clinical outcomes in both
pithelial cells were divided into three evolutionary branches. d.
f epithelial cells. e. Three states of epithelial cells were used to
ided into four regions. Cancer region 1 represents the region
the region where epithelial cells state 2 is concentrated in. The
region 2 and stroma region 2. f. Volcano plot of differentially
. Volcano plot of DEGs in stroma region 1 versus stroma region
region 2. Top 6 enrichment pathways of up and down regulated
troma region 1 versus stroma region 2.
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Figure 7. The spatial landscape and cross-talk of different types of cells within the TME. a-c. The scaled deconvolution values of
epithelial cells, fibroblasts and endothelial cells within the TME. d-e. The predicted interaction strength of ligand-receptor within the
tumor tissue of ESCC. f-g. The communicated probability and related P values of the selected ligand-receptor interactions between
tumor cells and other cells within the TME. P < 0.05 refers to the significant ligand-receptor interaction. h. The Kaplan-Merier curves
showing the prognostic value of crosstalk-related genes in patients with esophageal cancer.
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TCGA and GEO cohorts, indicating that these meta-
static genes were related to a poor prognosis of ESCC.
And DEGs in cancer regions could only significantly
stratify patients in the TCGA cohort. We inferred that
cells within cancer regions were more heterogeneous
than those within the stroma regions. Therefore, cells
within the TME play a significant role in cancer metas-
tasis, which may serve as prognostic predictors and pro-
vide new insights into the investigation of effective
therapies for ESCC.

Although this study reveals the spatial features of
various cell subsets in ESCC and provides a widely
applicable method to comprehensively map an entire
tissue using MIA, it has some limitations. First, the
number of patients enrolled in this study was limited
because this was an exploratory study on ESCC in this
field. Based on the findings, we believe that more
patients can be enrolled for further study, and more dis-
tinct TME features in ESCC can be identified. Second,
the resolution of ST technology remains to be a short-
coming. The size of the ST array may not be sufficient
to cover the whole tissue, and ST arrays do not achieve
comparable resolution for every spot at the single-cell
scale. In addition, the transcriptomic data can be only
accessed within the cells of each spot and are lost at
intervals between every two spots. With the develop-
ment of ST technology, higher resolution and shorter
interval distance may be achieved in the future.

With the integration of scRNA-seq and ST analyses,
this study presents the comprehensive spatial landscape
of different cell subpopulations in ESCC, indicating the
intratumor heterogeneity of TME features and tumors.
Transcriptomic diversities and distinct spatial patterns
were detected between non-metastatic and metastatic
samples. The findings show that the precise composi-
tion and spatial landscape of tumors may vary from per-
son to person, which may provide novel insights into
the discovery of prognostic factors and development of
effective therapeutic interventions.
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