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Abstract

Wearable Awareness Through Continuous Hidrosis (WATCH) sensor is a sweat

based monitoring platform that tracks cortisol and glucose for the purpose of under-

standing metabolic responses related to macronutrient consumption. In this research

article, we have demonstrated the ability of tracking these two biomarkers in passive

human sweat over a workday period (8 h) for 10 human subjects in conjunction with

their macronutrient consumption. The validation of the WATCH sensor performance

was carried out via standard reference methods such as Luminex and ELISA This is a

first demonstration of a passive sweat sensing technology that can detect interre-

lated dual metabolites, cortisol, and glucose, on a single sensing platform. The signifi-

cance of detecting the two biomarkers simultaneously is that capturing the body's

metabolic and endocrinal responses to dietary triggers can lead to improved lifestyle

management. For sweat cortisol, we achieved a detection limit of 1 ng/ml (range

�1–12.5 ng/ml) with Pearson's “r” of 0.897 in reference studies and 0.868 in

WATCH studies. Similarly, for sweat glucose, we achieved a detection limit of

1 mg/dl (range � 1–11 mg/dl) with Pearson's “r” of 0.968 in reference studies and

0.947 in WATCH studies, respectively. The statistical robustness of the WATCH

sensor was established through the Bland–Altman analysis, whereby the sweat cor-

tisol and sweat glucose levels are comparable to the standard reference method.

The probability distribution (t-test), power analysis (power 0.82–0.87), α = 0.05.

Mean absolute relative difference (MARD) outcome of ˷5.10–5.15% further con-

firmed the statistical robustness of the sweat sensing WATCH device output.
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1 | INTRODUCTION

According to the CDC National Center for Health Statistics, the prev-

alence of obesity in adults was 42.4% in 2018. With the hectic life-

style combined with the decrease in the quality of food being

consumed, these numbers are expected to skyrocket by the end of

this decade.1 This prevalence has led to World Health Organization

(WHO) declaring obesity as a major unmet public health problem.2,3

Obesity is linked to several pathological disorders including hyperten-

sion, type 2 diabetes mellitus, cardiovascular diseases, cancer, respira-

tory system abnormalities, sleep disorders, and metabolic disorders.4

Specifically, this obesity pandemic has resulted in a dramatic increase

in cases of type 2 diabetes mellitus and cardiovascular diseases. How-

ever, the outcomes of being obese do not often lead to complications

resulting in the development of lifestyle disorders. This case-by-case

variation in the disease progression is caused due to a complex inter-

play of genetic and environmental factors that contributed to obesity

in the first place. The origins of this disease can be either due to

genetic predisposition or due to dietary intake combined with a sed-

entary lifestyle.5 One of the factors that exacerbate the outcomes of

obesity includes dietary fat and carbohydrate intake.6 Reports suggest

that the main cause of obesity is the imbalance between energy (food)

intake and energy expenditure, along with genetic and environmental

contributed effects. There is significant evidence that indicates that

cortisol might be a major component of the factors contributing to

the development of obesity.7

Cortisol is a glucocorticoid and plays an important role in the con-

text of macronutrients. It supports energy regulation by selecting the

right type of macronutrient (carbohydrate, fat, or protein) that

the human body needs to meet the physiological demands placed on

it. Mainly, the effects of macronutrient content are considered to be

mediated by alterations in cortisol action. Examples include studies

that have reported a direct association between cortisol levels and

calorie intake in population groups of women.8 Previous research has

shown that glucose intake amplified the cortisol response to psycho-

social stress, while low blood glucose (BG) levels prevented the

stress-induced activation of the hypothalamus–pituitary–adrenal

(HPA) axis.9 Chronically high BG levels along with insulin suppression

could lead to cells that are starved of glucose. Glucose modulation in

conjunction with cortisol's effect on appetite can create a craving for

high-calorie foods, leading to overeating, which ultimately results in

obesity in the long run. Several dietary and endogenous factors affect

the maintenance of an appropriate level of glucose and cortisol in

human blood. Cortisol acts on the glucose amount by activating glyco-

gen stores in the liver, reducing the oxidation of glucose, stimulation

of lipolysis, and significant enhancement or elevation of gluconeogen-

esis in response to severe amino acid imbalance. Mobilization of glu-

cose reserves is particularly important in the case of stress inducing

situations like endurance training due to prolonged effort.10 Several

research studies have explored how macronutrient deficiency pro-

motes type 2 diabetes in obese patients by triggering potential impair-

ment of glucose metabolism, thereby causing insulin resistance11 A

summary of this cycle is presented as Figure S1. This figure highlights

the bidirectional relationship between chronic stress combined with

increased glucose levels and metabolism. Increased obesity often puts

the patient at a risk of developing type 2 diabetes, which then affects

the HPA axis through inhibition of hippocampal receptors. The HPA

axis stimulation leads to increase in cortisol levels, which stimulate

gluconeogenesis, leading to increase in glucose level. In addition to

this, it also contributes to metabolically induced insulin resistance that

exacerbates the current diabetic condition.12 The dietary macronutri-

ent content can alter the glucocorticoid metabolism as the result of

increased cortisol release.13 The work done by Stimson et al. with

obese participants who have varied dietary intake patterns has proven

that the macronutrient contents are certainly mediated by alterations

in cortisol release rates.10 This interelatibility of the molecules can be

exploited to understand how dietary triggers and stress lead to the

development of lifestyle disorders.

The global pandemic caused by COVID-19 has led to living condi-

tions that promote a sedentary lifestyle, and a low quality dietary

intake; increasing our vulnerability to the COVID-19 virus.14 The risk

of cardiovascular diseases due to the SARS-CoV-2 pathogenic virus is

believed to be aggravated by stress (affecting cortisol release rates)

and sugar-rich diets (affecting glucose release rate).15,16 Furthermore,

patients suffering from Diabetes Mellitus are at a higher risk for com-

plications and death from COVID-19. Thus, it highlights the need for

self-monitoring systems that will help with understanding the body's

response to diet and keep a control on biomarker levels for this high-

risk population. Hence, there is an immediate need for technological

interventions that can support on-demand temporal monitoring of

glucose and cortisol concerning the macronutrient uptake. Monitoring

glucose and cortisol simultaneously and combinatorially provides

meaningful insight into the physiological reactions (metabolic and

endocrinal) to dietary intake and triggers related to the same. This is

highly beneficial for improving lifestyle by understanding how macro-

nutrient specifically relate to the body's functioning.

Current point-of-care diagnostics enable the measurement of

glucose and cortisol separately at static time points. Glucose is typi-

cally measured through continuous glucose monitors and cortisol

measurements are obtained from either salivary cortisol, urinary cor-

tisol, or blood draws at specific time points.17–19 These measures

are heterogeneous, in the sense, that they are obtained from differ-

ent sensing platforms and are unable to provide a dynamic relation-

ship between the two molecules as a function of macronutrient

consumption. With the recent advancement in the development of

point-of-need wearables, it has now become feasible to monitor

both glucose and cortisol independently in a noninvasive manner.

Human eccrine sweat has emerged to be the bio-fluid of choice

toward enabling the dynamic and on-demand tracking of these bio-

markers.20 However, the challenge is to perform sweat stimulation

to such an extent that it collects sufficient volumes for performing

real-time monitoring of these target biomarkers. This volume insuffi-

ciency is a driving limitation of the process of collecting and analyz-

ing the sample for biomarker quantification. Hence, in certain

scenarios, noninvasive tracking lacks the accuracy needed for a real-

time and on-demand measurements.21–23
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Our group has pioneered in the ability to perform on-demand

measurements for several biomolecules present in passively expressed

human eccrine sweat. Some of the recently published work includes

detection of cortisol and DHEA for circadian diagnostics with a limit

of detection of 0.1 ng/ml,24 monitoring IL-1β, and CRP levels via

SWEATSENSER to detect IBD flares,25 detecting glucose, alcohol, and

lactate for lifestyle monitoring.26 These published works highlight the

ability to track diagnostically relevant biomarkers in real-time and in a

noninvasive manner. Another example of the technological break-

through presented by our group focuses on using low volumes of pas-

sive sweat for performing detection.26–31This proves that there is a

possibility in designing sensing platforms, which are capable of work-

ing with ultra-low volumes of biofluid to perform biomarker detection.

This makes it feasible to monitor large cohorts of the population who

might have trouble generating a sweat sample passively. An example

of this type of population includes people who may not be physically

active because of compromised mobility due to injury, illness, or age.

They cannot naturally produce significant sweat volumes that are typ-

ically needed to support sampling via micro fluidic sweat collectors.

Their only recourse is the use of iontophoretic sweat stimulation sys-

tems, which have been shown to increase surface inflammation and

are associated with many adverse epidermal effects. Hence, passive

sweat-based measurements circumvent all the previously mentioned

challenges, enabling a hitherto unavailable opportunity to assess

metabolite levels in an individualized manner, especially in users with

a sedentary lifestyle. Additionally, with these advancements, there is a

significant opportunity to expand the scope of testing into pediatric

as well as geriatric populations. Passive sweat based sampling also

ensures that the biomarker levels captured correspond to the actual

concentrations as there is no suppression of the biomarker that is

often associated with pilocarpine or other ionotophoretic sweat-

stimulation related activities.32 In this work, we have coupled the tem-

poral, on-demand measurements of glucose and cortisol as expressed

in passive eccrine sweat in healthy but sedentary individuals and con-

nected it to the individual's macronutrient consumption. We demon-

strate an enabling technology that can equip users with the ability to

identify the relationship between macronutrient consumption and the

body's physiological response. We present WATCH studies with

10 human subjects to demonstrate the proof-of-technological feasibil-

ity of the passive sweat wearable platform. This works toward provid-

ing insights into the body's physiological response to dietary triggers.

The relationship of cortisol and glucose with metabolism of macronu-

trients ensures that a single dual-marker assay can provide a compre-

hensive evaluation of the user's health.

2 | RESULTS

2.1 | Evaluation of WATCH device performance

Our device is an enabling prognosis technology to monitor affinity-

based interactions between target biomarkers and respective anti-

body probes on functionalized sensor surfaces.33 A dose–response

calibration curve was developed to detect sweat glucose and cortisol

by employing an in-vitro benchtop SWEATSENSER device. To meet

the required target concentration ranges that we are looking for in

healthy human sweat, a series of dilutions were prepared for glucose

(0–11 mg/dl) and cortisol analytes (0–12 ng/ml) in the sweat medium.

A 4-parameter fit was applied to build a calibration curve in response

to obtained impedance results for both the biomarkers. The perfor-

mance of the WATCH sensor was evaluated by conducting spike and

recovery experiments for sweat glucose and cortisol. A series of log

dilutions were spiked on functionalized sensor surfaces and the

impedance response was recorded. The corresponding recovered con-

centration was computed from the developed calibration equation

using the obtained impedance response. Figures 1a,b provide the

F IGURE 1 (a,b). Sensor surface dose–response demonstration for the detection and quantification of sweat glucose (a) and sweat cortisol.
(b) Electrochemical measurements
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spike-recovery dose responses with standard deviation (SD) values of

<0.05 for glucose and cortisol. This method of impedance-based sens-

ing was implemented to quantify both sweat biomarkers.

The Box plot represented in Figure 2a–d for sweat glucose analy-

sis includes standard reference measurements (ELISA) and WATCH

measurements. These two analytical methods were employed on the

same subject's sweat sample to understand the correlation of

the detected concentrations to the testing environment. At discrete

time-points, two methods are linearly correlated with one another.

The before breakfast (T1) sweat sample results for all 10 human sub-

jects lie in the range of 0.09–3.31 mg/dl for ELISA,0.60–4.20 mg/dl

for WATCH, and the rate of deviation between two methods is

<0.93 mg/dl, that is, ˷0.12 mmol/L. The after breakfast (T2) sweat

sample results for all 10 human subjects lie in the range of 1.01–

9.10 mg/dl for ELISA, 0.85–9.35 mg/dl for WATCH, and the rate of

deviation between 2 methods is <0.85 mg/dl, that is, ˷0.09 mmol/L.

The postlunch (T3) glucose levels were in the range of 0.95–4.20 mg/dl

for ELISA, 1.05–5.30 mg/dl for WATCH, and the rate of deviation is

<0.7 mg/dl, that is, ˷0.08 mmol/L. The late evening (T4) levels for all

10 subjects lie in the range of 0.80–5.85 mg/dl for ELISA, 1.01–

5.75 mg/dl for WATCH, and the rate of deviation between two

methods is <0.85 mg/dl, that is, ˷0.09 mmol/L. The Box plot represen-

tation for sweat cortisol levels is illustrated in Figure. 2e–h, this

includes the standard reference measurements (LUMINEX) and

WATCH measurements. The sweat cortisol analysis is performed in a

similar manner to the previously described sweat glucose testing and

validation. The prebreakfast (T1) sweat sample results range from

1.88–5.63 ng/ml for LUMINEX, 1.65–12.45 ng/ml for WATCH, and

the rate of deviation between 2 methods is <0.62 ng/ml, that is,

� 2.1 nmol/L. The after breakfast, (T2) sweat sample results lie in the

F IGURE 2 (a–d) Sweat glucose data Box plot representation at T1-before breakfast (˷8:30 a.m.), T2-after breakfast (˷9:30 a.m.), T3-after

lunch (˷1:30 p.m.), T4-late evening (˷5:30 p.m.), discrete timepoint correlation of Reference standard versus WATCH output. (e–h): Sweat
Cortisol data Box plot representation at T1-before breakfast (˷8:30 a.m.), T2-after breakfast (˷9:30 a.m.), T3-after lunch (˷1:30 p.m.), T4-late
evening (� 5:30 p.m.), discrete timepoint correlation of reference standard versus WATCH output
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range of 1.58–8.27 ng/ml for LUMINEX, 0.3.23–9.25 ng/ml for

WATCH, and the rate of deviation between two methods is

<0.75 ng/ml, that is, ˷2.50 nmol/L. The post lunch (T3) sweat sample

results lie in the range of 2.09–5.76 ng/ml for LUMINEX, 3.15–

9.15 ng/ml for WATCH, and the rate of deviation between two

methods is <0.73 ng/ml, that is, ˷2.51 nmol/L. The late evening

(T4) sweat sample results lie in the range of 1.40–5.23 ng/ml for

LUMINEX, 2.11–10.35 ng/ml for WATCH, and the rate of deviation

between 2 methods is <0.65 ng/ml, that is, ˷2.20 nmol/L. A summary

of these values has been provided in Table S1.

Bland–Altman analysis provides the mean bias or offsets of the

value for all measured data points between the two analytical

methods for the same variable. The x-axis is an average, and the y-axis

is the difference between the reference method and the

corresponding analytical method. The BA comparison plots were pro-

duced to interpret the level of agreement between reference versus

WATCH method for each analyte. Figure 3a represent the BA com-

parison plots for sweat glucose concentration between ELISA versus

WATCH data. The mean bias value is �0.28825 mg/dl, approximately

close to 0 on the scale, indicating a minute difference between the

two measurement methods. There are 2 or 3 data points in sweat glu-

cose measurements that lie beyond ±1.96 SD. Sweat glucose data

points are almost equally distributed between any pair of the methods

presented with 1 or 2 outliers. The mean bias value of Reference ver-

sus WATCH indicates a close agreement between the two methods.

Sweat cortisol data points using a reference method versus WATCH

method was distributed with a lower mean bias of �2.67325 from a

baseline of 0. This is indicative of the fact that reference methods are

influenced by the selection of monoclonal antibodies and conjugated

secondary biotinylated antibodies. The mean bias to a baseline of

0 indicating close agreement between the two analytical methods.

Figure 3b represent the Bland–Altman comparison plots for sweat

cortisol concentration between LUMINEX versus WATCH results.

The mean bias value is representing below approximation to 0 scale.

The majority of the datapoints lie under the ±1.96 SD range with the

exception of 2 or 3 outlying data points. We observed a slightly nega-

tive mean bias in our WATCH measurements due to the amplified

magnitude of sensitivity in reference methods like ELISA Optical Den-

sity output and LUMINEX magnetic bead-based technology output.

Several factors like detection modality, instrumentation, personnel

hand skills, environmental conditions, and buffer medium influence

the output. However, our output of concentration range lies within

the detection limits and showed a corresponding linearity in change

with the reference data. Hence, we were able to draw a relevant data-

driven conclusion.

2.2 | WATCH performance: cross sectional
observational study

This work presents the average values of all 10 healthy human cohort

at 4 different time intervals to comprehend the trend of glucose and

cortisol release rates in human sweat. The obtained concentration

averages in case of sweat glucose are T1: 1.50 mg/dl, T2: 2.55 mg/dl,

T3: 2.25 mg/dl, and falls to T4: 1.80 mg/dl for the ELISA reference

method studies (Green). Similarly, the trend levels are at T1: 2.05 mg/dl,

T2: 2.60 mg/dl, T3: 2.35 mg/dl, and T4: 2.10 mg/dl for WATCH

results (BlueThe obtained concentration averages are T1: 3.35 ng/ml,

T2: 3.55 ng/ml, T3: 3.5 ng/ml, and T4: 2.85 ng/ml for LUMINEX refer-

ence studies [purple].). Finally, the WATCH (red) levels are T1:

5.95 ng/ml, T2: 6.55 ng/ml, T3: 6.10 ng/ml, and T4: 5.45 ng/ml.

2.3 | MARD analysis: WATCH performance in
real-world, use-case environment

The Mean Absolute Relative Difference (MARD) analysis is a widely

incorporated statistical measurement to evaluate accuracy of blood

F IGURE 3 (a,b): A Bland Altman comparison plots on sweat glucose data: ELISA standard reference method versus WATCH Model prediction
(10 data points each at 4 discrete time points—8.36 h study)
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glucometer output in clinical trials.34 In this project, we applied the

MARD analysis to monitor sweat glucose in healthy cohort as a pilot

study. MARD is the average values of absolute error between

WATCH device output versus Standard reference output. A minute or

less change in percentages (<5–12%) indicates that the WATCH read-

ings are in close agreement with Reference readings. If the change is

large, then MARD percentage indicates greater discrepancies between

the WATCH and reference measurements. Any differences in compar-

ing two analytical methods can be accurately and precisely addressed

by calculating MARD values.35 This statistical approach is widely

incorporated to check the efficacy of medical devices performance in

monitoring glucose levels. Hence, we applied MARD analysis in our

research work to compete with the health market standards in sweat

sensor making.

The sweat glucose values obtained using the reference method

can be deemed accurate within the acceptable error. A similar reason-

able accuracy was also computed for the WATCH sensing technology.

The continuous measuring output has desirable properties such as

agreement with reference results and performance of the technology

presented in this work was found to be consistent across subjects.

The WATCH output lag deviation was found constant across the rise

and fall of the sweat glucose values and this helped with building a

static frame of reference for assessing accuracy using MARD. The

expression for MARD is as given below in equations. Figure 4 shows

good agreement between the reference and the WATCH measure-

ments, exhibiting a low MARD % deviation for multiple points.

%MARD¼100%� 1
N
Σ
Gmodel�Greference

Greference
ð1Þ

MARD¼
X xi�xj jð Þ

N
ð2Þ

In our study, the total time was around 8.5 h of continuous

WATCH measurements and the reference measurements were col-

lected at four discrete time points for each subject within this total

time period. As shown in Figure 4, the first few points show higher

MARD values, however with time, the MARD value decreases. This

demonstrates that an increase in the number of comparison points

results in good convergence between the measurement methods.

Since MARD is a stochastic quantity, the area under the curve portion

along x-axis tends toward in convergence,36 and the continuous hori-

zontal lines in Figure 4 show that the boundaries of uncertainty

F IGURE 5 (a) The Sweat glucose trend profile (concentration
range 0–11 mg/dl) for 10 human subjects, corresponding overlay
curves represents ELISA reference method (black line) versus WATCH
model prediction (blue line). (b) The sweat cortisol trend profile
(concentration range 0–13 ng/ml) for all 10 human subjects at 4 time
points and the corresponding overlay curves represents LUMINEX
reference method (black line) versus WATCH model prediction
(red line)

F IGURE 4 The number of paired points on the uncertainty of
MARD analysis for the demonstrated WATCH sensor upper and
lower bounds of the confidence interval (CI) with probability
value Υ = 0.95
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become tighter with an increasing number of paired points. For any

given number of data points, published research has shown that nor-

mal expected MARD lies between 1 and ˷30%,37 with a confidence

interval ranging between 0.95–0.97. In our study, the percent MARD

value is 5.15% (Reference vs. WATCH sensor) with confidence inter-

val (CI) value of 0.95.

F IGURE 6 Macronutrient pinwheel pie chart description of participated human subjects (n = 10) in a time of 8-h 35 min, continuous monitoring
and their food consumption details such as the percentage of carbohydrates, protein, fat, and fiber contents shown next to the curve graphs

PALI ET AL. 7 of 12



2.4 | Sweat biomarker trends: glucose and cortisol
profile mapping using WATCH

Discrete timepoint based sweat glucose profiles for all 10 human

subject cohort were matched by comparing reference analytical

method (ELISA) based results to the WATCH sensor results. Simi-

larly, sweat cortisol profiles for all 10 human subject cohort were

matched by comparing reference analytical method (LUMINEX)

results to the sensor results. Figure 5a represents the measured glu-

cose concentrations in sweat. Figure 5b represents the measured

cortisol concentrations in sweat samples obtained from the volun-

teers. Figure 6 provides the information of food intake with

amounts of carbohydrates, protein, fat, and fiber percentages in

10 subjects. The stick bar in black indicates the point where the

food intake was recorded (approximately around 8:30 a.m.). The two

curves representing glucose and cortisol levels in sweat were

recorded over an 8-h workday with the WATCH device. The trend

lines upper (cortisol) and lower (glucose) in Figure 6 show us how

both these metabolic markers fluctuate in the sweat throughout the

day. The macronutrient pinwheel information for each subject is

demonstrated next to the glucose and cortisol plots.

2.5 | Probability distribution and power analysis

Independent sample t-test was performed between reference and the

sensor data to validate the distribution probability and to compare

mean distribution between the analytical methods. The total mean

measurements at each time point are accompanied with a sample size

of 40 (10 subjects � 4-time points) and their respective variability in

concentrations are presented in the supplementary section. These

values confirm that the differences in the distributions of the mea-

surements by method are statistically insignificant. Regarding

reporting the biomarker levels among the three methods of data col-

lection for the two sweat markers, it can be observed that the power

lies between 0.82 and 0.87 with an α of 0.05. Based on this study, we

are confident that there is a possibility of achieving a power value of

>0.93 in the future work by increasing the cohort of participants in

the study. This would help healthcare professionals in understanding

the relationship between macronutrient consumption versus fluctua-

tions in glycemic-adrenal indices by relying on measurements from

the WATCH sensing platform.

3 | DISCUSSION

The work focuses on observing and understanding the impact of

major macronutrient groups (carbohydrates, proteins, fats etc.) on glu-

cose and cortisol expression in healthy individuals with our sensing

technology (WATCH device). Both glucose and cortisol are involved

in pathways that focus on maintaining homeostasis that is linked to

energy intake via food consumption. Detection of physiologically rele-

vant range of glucose (hypo- to hyperglycemic range: 0.01–200 mg/

dl) in perspired human sweat was successfully demonstrated by Bhide

et al.26 This work is a first demonstration in the sweat sensing realm

with a novel idea of leveraging impedimetric sensing to detect dual

markers on a single sensor surface. Our attempt to incorporate the

concept of macronutrient dietary intake monitoring with target

marker detection further enhances the sensing modality by providing

insight into the fluctuations that have the ability to alter the glucose-

cortisol response phenomenon. Our research group has previously

demonstrated the Cortiwatch sensor that reports the physiological

range of cortisol present in ambient sweat for circadian diagnostics.38

Based on this previous knowledge, we have further advanced the pro-

cess of detecting cortisol levels in healthy human sweat using an -SH

linked 5' Cortisol-aptamer sensor surface.

From the results, it can be inferred that the WATCH sensing plat-

form is sensitive to the glucose and cortisol levels in sweat. The

results from the BA analysis highlight that the sensor performance is

comparable to the commercial standard techniques. The Pearson's

correlation values also highlight the agreement between the standard

reference and WATCH results (Figure S2a,b, details presented in the

Supporting Information section). The WATCH performance observa-

tional study clearly predicts a low-high-low biomarker level fluctuation

that occurs throughout the day over the period of 8 h 36 min, which

is the expected trend in BG levels of healthy individuals per day. The

results for sweat cortisol also showcase a similar trend of low-high-

low (ng/ml). We observed a good correlation in the output data from

reference versus sweat sensing studies. Our work presents a three-

way correlation based on WATCH device continuous data output on

10 * 4 individual samples (n = 10 at 4 timepoints), thereby, achieving

predictive prognosis in an asymptomatic environment where early dis-

ease diagnosis makes a difference, especially in the case of under-

expressed concentrations. A sedentary lifestyle alters the normal

secretion of markers that are found in human biofluids. These distor-

tions in normal secretion over time is due to internal immune resistiv-

ity, nutrient insufficiencies, hormonal imbalances, less physical

activity, and so on, which in turn conceals the signaling efficiency of

the metabolic markers. To address the challenge of under-expressed

concentrations, we chose low concentration ranges for sweat cortisol

(1–12 ng/ml) and sweat glucose (1–11 mg/dl) markers for performing

these studies. Our WATCH data-driven attempt was to understand

sweat glucose (glycemic index profile) and sweat cortisol (adrenal

stress index profile) level's relation to human metabolism and food

intake by using a single platform for dual-marker sensing. The grounds

for our sweat data sampling and experimentation are a collective

effort in emphasizing the platform's ability to map cortisol and glucose

simultaneously in sweat samples at discrete time points and correlate

it with dietary intake. This data were recorded over 8 h in 10 human

participants (n = 10) using the WATCH device. This is a first demon-

stration to understand the relationship between dietary intake (% of

carbohydrates, fat, protein, etc.) and glucose release levels (glycemic

Index) and cortisol release levels (adrenal index) simultaneously and

continuously in human sweat. The MARD analysis confirms the asso-

ciation of macronutrient consumption to the changes in glucose

levels. For the sweat trends highlighted in Figure 5a,b, we observed
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an approximate overlapping phenomenon in the curves depicting Ref-

erence measurements and WATCH measurements for all the discrete

time points. This indicates a good agreement between the output

results across the three modes of measurement. These results truly

highlight the ability of the WATCH sensor to track dual biomarkers

sensitively, regardless of the experimental environment it is tested

in. This comparison highlights the accuracy and sensitivity of the

WATCH sensor performance. It also offers precise insight into

the ability of WATCH sensing platform to report these biomarker

levels associated with user profiles. Also, it helps with understanding

the direction of future case studies that will be performed on signifi-

cantly larger cohort of samples.

Our research group in collaboration with EnLiSense has demon-

strated a continuous and wearable sweat marker sensing technology for

tracking dual biomarkers with low detectable concentrations. There are

numerous portable sensing devices that are available in the medical

device industry as of now with several drawbacks, which are inevitable

and need to be addressed. This technology has a great impact on the field

of disease diagnosis based medical devices with regards to their perfor-

mance, validation, and development for clinical application.

4 | MATERIALS AND METHODS

4.1 | Reagents and instrumentation

Phosphate buffered saline (PBS) at pH 7.3 and the cross-linker

DTSSP (3,30-dithiobis [sulfo-succinimidyl propionate]) were pur-

chased from Thermo Fisher Scientific (Waltham, MA). The high-

performance liquid chromatography (HPLC) purified 85-mer cortisol

binding ssDNA aptamer (100 ng), Hydrocortisone (corticosteroid)

stress hormone, and IDTE resuspension buffer (10 mM Tris and

0.1 mM EDTA at pH 8.0) were purchased from Integrated DNA

Technologies (Coralville, IA). The glucose oxidase enzyme (synthe-

sized from Aspergillus niger) and D-(+)-glucose analyte was pur-

chased from Sigma-Aldrich Chemicals (St. Louis, MO). In-house-

made synthetic sweat at pH 7.2 was used for sensor characteriza-

tion.39 The Roche Accu-check Gluco-meter was purchased from

Amazon.com, Inc. (Seattle, WA) for BG testing.40,41 Standard chemi-

cal analyses like the Enzyme-linked immunosorbent assay method

(ELISA) and LUMINEX were applied as reference methods. The

ELISA kit was a customized kit purchased42 from Fab-Gennix Inter-

national Inc. (Frisco, TX) and LUMINEX-xmap technology-based Cor-

tisol Human Procarta Plex (™) Simplex Kit was purchased43 from

Thermo-Fisher Scientific, (Waltham, MA). These reference tests

were chosen to compare the WATCH sweat sensing device perfor-

mance to commercially available technology.

4.2 | Sweat sensor experimental details

The EnLiSense WATCH device comprises a wearable electronic

reader and a replaceable sweat sensing strip that is prefunctionalized

for the specific detection of target biomarkers. This is mounted onto

the reader that transduces the impedance values from the sensor and

outputs a calibrated concentration of the measured biomarker levels

in sweat. The sensor fabrication process has been described in detail

in our previous work.44,45 Nonfaradaic electrochemical impedance

spectroscopy (EIS) was used to measure the sensor response to the

presence of the target analytes in sweat sampled every minute.46

Additional fabrication details and sensor functionalization protocols

have been provided in the supplementary section.

4.3 | Human subject sampling, handling, and
storage

Human sweat and blood samples were collected at four discrete time

points to gauge not only the glycemic index fluctuations related to

their food consumption, but also to predict the cortisol release related

stress pattern in a diurnal cycle. Sweat samples were collected from

10 adult healthy human subjects. The collection, processing, and stor-

age was in-compliance with the protocol approved by the institutional

review board at the University of Texas at Dallas (IRB #19–146). Writ-

ten informed consent was obtained from all the volunteers before

experimentation. All 10 healthy cohort samples were collected at time

points T1 (before breakfast) around 8:30 a.m., T2 (after breakfast)

around 9:30 a.m., T3 (after lunch) around 1:30 p.m., and T4 (late eve-

ning) around 5:30 p.m. The collected sweat samples were stored at

�20�C for further analysis. Each sweat sample that was collected at

different time points was aliquoted. The demographics of the

10 human participants is summarized in Table S2. Our entire experi-

mental results and discussion sections are based on data correlation

between standard reference output to WATCH device output. The

results from the standard reference method were used to perform

correlations for the performance of our sweat marker sensing technol-

ogy. For sweat glucose measurements ELISA is the reference method.

These WATCH measurements were taken using a human subject by

placing a sweat sensor on their arm, which includes physical move-

ment. The same experimental process was followed for sweat cortisol

measurements with LUMINEX as the reference method and WATCH

device as sensing technology. The two modes of measurements were

performed on the same sample which was collected from each human

subject (˷75–80 μl sample volumes).

5 | CONCLUSION AND FUTURE WORK

The technology presented in this work, WATCH, is an attempt at

understanding the physiological responses to dietary triggers by using

a sweat-based wearable platform that tracks the endocrinal and meta-

bolic indices, cortisol, and glucose. The ability to track glucose accu-

rately (>95–98% accuracy in assay) through sweat without

compromising on the sensor's sensitivity and selectivity is challeng-

ing and cumbersome. Commercially available BG monitors47 are

designed to operate within wider concentration profiles, making the
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detection sensitive, and easy to calibrate. However, in the case of

sweat based biomarkers, these concentrations are significantly lower

in magnitude. The scale for BG range is 125–285 mg/dl or 7.0–

16.0 mmol/L, whereas for sweat glucose (SG), this range goes down

to 1.2–25 mg/dl (0.065–1.6 mmol/L); almost 10-times the magni-

tude difference in concentrations. Similarly, the blood cortisol levels

in healthy humans are anywhere between 5 and 25 μg/dl or

140 and 690 nmol/L,48 whereas sweat cortisol levels lie between

10 and 180 ng/ml or 25 and 450 nmol/L.49 Tracking these low (low

mg/dl or ng/ml) ranges of biomarkers continuously with high preci-

sion and accuracy requires sensor devices that perform sensitively

but do not compromise on other parameters such as robustness, ability

to work with low volumes, quick run time, portability, and non-

invasiveness. However, this remains a challenge that needs innovative

technological interventions. Toward addressing this challenge of

detecting lower ranges of biomarker concentrations (detection limit

>2 mg/dl and >2 ng/ml) in a constrained sample volume scenario, we

have developed and demonstrated a highly sensitive wearable sweat-

sensor device that can detect using ultralow volumes (1–2 μl) of sweat.

In this study, we demonstrated detection of metabolic markers,

sweat glucose in the range of 1–10 mg/dl and sweat cortisol in the

range of 1–11 ng/ml in healthy human subjects, both reported

simultaneously and continuously using the WATCH device. The

sweating abnormalities due to a lack of thermo regularity and meta-

bolic balance makes it critical to monitor these biomarkers, espe-

cially in prediabetic conditions to track the slightest elevation in

glucose levels50 for a better prognosis. We provide the results of a

cross-sectional observational study where we demonstrate the feasi-

bility of evaluating temporal trends of these metabolic biomarkers

over an 8-hr period using wearable technology that works with pas-

sively expressed sweat. As a pilot study, we employed healthy

humans as test subjects, in a way that allows for detection of low-

est possible concentrations and confirm the efficacy in terms of

sensitivity and specificity of our sensing device. We also demon-

strate the feasibility to correlate and assess macronutrient sub-

groups and determine their relationship with glucose and cortisol in

sweat. Hence, this work paves the path for the future outlook of

providing a better and comprehensive disease related sample analy-

sis. We plan to further expand this work in future prospective stud-

ies where there is controlled nutrition consumption to better

understand and decouple the relationship between a specific macro-

nutrient group consumption and its impact on glucose and cortisol

release rates in varying real-world environments.
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