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	   Abstract: Rationale: PIWI-interacting RNAs (piRNAs) are a recently-discovered class of small non-
coding RNAs (ncRNAs) with a length of 21-35 nucleotides. They play a role in gene expression regu-
lation, transposon silencing, and viral infection inhibition. Once considered as “dark matter” of 
ncRNAs, piRNAs emerged as important players in multiple cellular functions in different organisms. 
However, our knowledge of piRNAs is still very limited as many piRNAs have not been yet identified 
due to lack of robust computational predictive tools.  
Methods: To identify novel piRNAs, we developed piRNAPred, an integrated framework for piRNA 
prediction employing hybrid features like k-mer nucleotide composition, secondary structure, thermo-
dynamic and physicochemical properties. A non-redundant dataset (D3349 or D1684p+1665n) comprising 
1684 experimentally verified piRNAs and 1665 non-piRNA sequences was obtained from piRBase 

and NONCODE, respectively. These sequences were subjected to the computation of various se-
quence-structure based features in binary format and trained using different machine learning tech-
niques, of which support vector machine (SVM) performed the best.  
Results: During the ten-fold cross-validation approach (10-CV), piRNAPred achieved an overall accu-
racy of 98.60% with Mathews correlation coefficient (MCC) of 0.97 and receiver operating character-
istic (ROC) of 0.99. Furthermore, we achieved a dimensionality reduction of feature space using an 
attribute selected classifier.  
Conclusion: We obtained the highest performance in accurately predicting piRNAs as compared to 
the current state-of-the-art piRNA predictors. In conclusion, piRNAPred would be helpful to expand 
the piRNA repertoire, and provide new insights on piRNA functions. 
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1. INTRODUCTION 

 Since its discovery, RNA interference (RNAi) and its 
effector non-coding RNAs (ncRNAs) namely, microRNAs 
(miRNAs), small interfering RNAs (siRNAs), and PIWI-
interacting RNA (piRNAs) have revolutionized our under-
standing of the mechanisms regulating gene expression [1, 
2]. The common key event in all the RNAi regulatory mech-
anisms is the binding of small ncRNAs to Argonaute (AGO), 
forming a ribonucleoprotein complex termed as RNA-
induced silencing complex (RISC) [3]. The AGO family of 
proteins is phylogenetically divided into two sub-families: 
somatic AGO [4], and germ line specific PIWI (P-element 
induced wimpy testis) clade [2, 5]. Both miRNAs and siR-
NAs act through the AGO family and constitute the RISC 
complexes known as the miRISC and siRISC, whereas the 
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small ncRNAs interacting with PIWI are known as the piR-
NAs [6].  
 piRNA is a recently discovered class of ncRNAs, which 
are in the length range of ~24-32 nucleotides [1, 7, 8]. Ini-
tially, piRNAs were described as repeat-associated siRNAs 
(rasiRNAs) because of their origin from the repetitive ele-
ments such as transposable sequences of the genome [9]. 
However, later it was identified that they acted via PIWI-
protein [10]. In addition to having a role in the suppression 
of genomic transposons, various roles of piRNAs have been 
recently reported like regulation of 3’ UTR of protein-coding 
genes via RNAi [11], transgenerational epigenetic inher-
itance to convey a memory of past transposon activity [12], 
and RNA-induced epigenetic silencing [13]. Furthermore, 
piRNA sequences are comparatively diverse than any other 
class of cellular ncRNAs and they constitute the most preva-
lent class of ncRNAs [7]. 

 The overall mechanism of piRNA biogenesis is substan-
tially different than that of the other ncRNAs. It includes 
siRNA, miRNA and long ncRNAs (lncRNAs) [13]. piRNAs 
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are generated from long, single-stranded RNAs, which are 
transcribed from the genomic loci termed as piRNA clusters 
[14-19]. Earlier studies suggested multiple mechanisms of 
piRNA biogenesis in different cell types, tissues and organ-
isms [10]. However, recent reports proposed a single and 
unified model that explained the mechanism of piRNA bio-
genesis across a range of evolutionarily diverse organisms 
[20-23]. These studies indicated that piRNA biogenesis 
could be divided into two parts: 1) the piRNA-dependent 
amplification loop, known as the ‘Ping-Pong cycle’, and 2) 
the piRNA-independent generation of phased trailing piR-
NAs. The former pathway begins with a maternally inherited 
1U-biased piRNA, known as the initiator piRNA [24]. The 
PIWI-bound initiator piRNA cleaves the complementary 
single-stranded long transcript sequence into a pre-pre-
piRNA with a terminal 5’ monophosphate [23]. The PIWI-
bound pre-pre-piRNA undergoes subsequent RNA cleavage 
from its 5’ end to produce responder pre-piRNA. The re-
sponder pre-piRNA further undergoes 3’ end-processing to 
generate mature responder piRNA with 10A-bias. Subse-
quently, the mature responder piRNA enters the piRNA bio-
genesis cycle, acting as an initiator piRNA, and in turn, pro-
duces a new responder piRNA with 1U-bias, which is identi-
cal to the original initiator piRNA. The pathway operates as 
an amplification loop and hence, it is termed the ‘Ping-Pong’ 
cycle [7]. Thus, this arm of the unified model is dependent 
on a maternal initiator piRNA and also on the availability of 
long single-stranded piRNA precursor sequences. In con-
trast, phased piRNA generation is a piRNA-independent 
process, which operates through interaction with the mito-
chondrial endonuclease phospholipase D family member 6 
(PDL6), an endonuclease present on the outer mitochondrial 
membrane. PDL6 cleaves the remaining 3’ end of the pre-
pre-piRNA in a repeated manner, producing an array of tail-
to-head pre-piRNAs, which are known as phased trailing 
piRNAs [21]. Thus, the current model proposed that the ini-
tiator piRNAs produce responder piRNAs and trailing piR-
NAs, which were known as the secondary and primary piR-
NAs, respectively, in the old model [22]. Hence, owing to 
the extensive role of piRNAs in regulating various biological 
processes, the conserved features of their biogenesis, and 
their sequence diversity, genome-wide identification of nov-
el piRNAs would be of great importance to help understand 
piRNA-guided gene regulatory mechanisms across different 
cell types and organisms.  

 In piRNA identification, the general alignment-centered 
algorithms such as basic local alignment search tool 
(BLAST) [25] and Multiple Expectation Maximization for 
Motif Elicitation (MEME) [26] are well known for their ro-
bustness, but not for accuracy due to divergence of piRNAs 
across different species [27]. Recently, next-generation se-
quencing (NGS)-based methods have emerged as a powerful 
platform to identify piRNAs in a high-throughput mode [28]. 
However, in addition to piRNA, sequencing-generated data 
may also harbor reads from several other small ncRNAs 
such as miRNAs, endogenous siRNAs (endo siRNAs), small 
nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), 
smaller fragments of mRNAs and long ncRNAs in the piR-
NA length range. Therefore, the length range alone cannot be 

a characteristic parameter to screen for piRNAs in small 
RNA-based sequencing platforms. Hence, more accurate and 
robust algorithms are required to distinguish the real piRNA 
sequences from the pseudo piRNAs (non-piRNAs) of similar 
lengths by employing various discriminative features.  

 Recent studies employed multiple approaches to identify 
piRNAs with high accuracy in the genome of various organ-
isms (Table S1). Betel et al. proposed an algorithm based on 
the position-specific scoring matrix (PSSM) of 10 nucleo-
tides upstream and downstream of piRNA sequences identi-
fied from the pachytene stage of mouse spermatogenesis, 
and predicted mouse-derived conserved piRNAs with ~60-
70% precision [29]. Nevertheless, developed on a homoge-
neous dataset and trained on static position-specific nucleo-
tide usage, the method shows position-specific features for 
only one species and hence, has limitations in piRNA identi-
fication in other species. Zhang et al. developed an algorithm 
using k-mer nucleotide frequency to capture the sequence-
based characteristics in piRNA sequences [27]. Since the 
algorithm adopted dynamic nucleotide frequency calculation 
over the static PSSMs, it was able to identify piRNAs in the 
organisms beyond the training set species. However, there 
was a need to include additional features to improve the ac-
curacy of piRNA identification apart from the sequence-
based features. Other studies integrated additional features 
than sequence alone like structure and thermodynamic ener-
gy, and developed different piRNA prediction algorithms. 
The algorithm ‘PIANO’ was developed to predict piRNAs in 
Drosophila melanogaster using structural features and trans-
poson interactions [30, 31], adopting local contiguous se-
quence-structure triplet-elements [27]. To predict mouse 
piRNAs using sequence motifs, ‘Pibomd’ was developed 
[32]. The above tools were trained on homogeneous datasets 
generated from single species (Table S1). ‘Accurate piRNA 
prediction’ [33], ‘GA-WE’ (a genetic algorithm-based 
weighted ensemble method) [34] and ‘2L-piRNA’ (a two-
layer ensemble classifier) [35] utilized sequence, structure 
and k-mer spectrum profile-based features to achieve better 
performance. Although these tools demonstrated a high accu-
racy level in predicting piRNAs, there was a need to develop a 
more robust algorithm capable of analyzing heterogeneous 
datasets from multiple organisms with high accuracy. 
 In this study, a comprehensive and robust machine learn-
ing-based algorithm is developed to predict piRNA sequenc-
es relying on the hybrid features such as spectrum profile or 
k-mer features (k=1 to 5), secondary structure, thermody-
namic energy and physicochemical properties of RNA dinu-
cleotides extracted from the piRNA sequences of eight spe-
cies: Homo sapiens, Mus musculus, D. melanogaster, Cae-
norhabditis elegans, Danio rerio, Gallus gallus domesticus, 
Xenopus tropicalus, and Bombyx mori (Table S1). During 
the 10-fold cross-validation (10-CV), our method reached an 
overall accuracy of >98% and a sensitivity of >98% in the 
above species. When compared with the existing algorithms, 
our hybrid predictive model piRNAPred demonstrated higher 
accuracy level. In conclusion, piRNAPred is the most updat-
ed piRNA identification method developed by integrating 
features of sequence, structure, thermodynamic energy and 
physicochemical properties extracted from a heterogeneous 
dataset across phylogenetically diverse organisms.  
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2. MATERIALS AND METHODS 

2.1. Dataset Preparation 

 The experimentally verified positive piRNA and non-
piRNA sequences were extracted from piRBase [28] and 
NONCODE [36], respectively. Since both the databases con-
tain millions of sequences from numerous organisms, we 
removed redundant and overlapping sequences using a clus-
ter database at high identity with tolerance (CD-Hit) soft-
ware. Removal of the redundant sequences was achieved at 
different percentage identity level; we used 60% sequence 
identity. Sample sequences having 60% identical overlap 
among them were grouped into one cluster and represented 
as a single sequence. The rationale of clustering was to veri-
fy the redundancy/overlap of the sequences to reduce the 
number of sequences at different percentage sequence identi-
ty. Finally, a non-redundant benchmark dataset (D3349 or 
D1684p+1665n) comprising 1684 experimentally verified piR-
NAs and 1665 non-piRNA sequences was obtained. These 
piRNA sequences were extracted from eight organisms (Ta-
ble S1). Further, benchmark dataset was subjected to the 
computation of various sequence-structure based features in 
binary format, and trained using different machine learning 
techniques (MLTs). Fig. (1) entails the step-wise methodol-
ogy adopted in the development of piRNAPred. 
 Apart from the above heterogeneous benchmark dataset 
representing sequences from evolutionarily distant species, we 
considered two homogeneous datasets in a tissue-specific 
manner. The first tissue-specific dataset was extracted from a 
single study, which involved the identification of piRNAs and 
non-piRNAs from the testes of C57BL/6P20Miwi +/+ and 

C57BL/6P20Miwi-/ADH mice, respectively, using MIWI-
Immunoprecipitation (IP) followed by sequencing [37]. There 
were 57,5786 piRNA and 55,1640 non-piRNA sequences in 

GSM822759 and GSM822762, respectively. These sequences 
were screened, processed and made non-redundant, which 
resulted in a total of 2000 positive and 1711 negative sequenc-
es. Similarly, the second tissue-specific dataset involved 1418 
piRNA and 1418 pseudo-piRNA sequences form M. musculus 
[35]. These tissue-specific homogeneous datasets were subse-
quently subjected to features formulation and model develop-
ment using 10-CV.  

3. FEATURES UTILIZED 

3.1. Spectrum Profile or k-mer Features 

 One of the important contributing features of predictive 
model development is the k-mer string [33, 35, 38]. In ma-
chine learning, a k-mer string is defined as particular k-mer 
tuple (1, 2, 3, 4, 5 or even higher) of nucleotide or amino 
acid sequences that can be used to identify some representa-
tive motifs within DNA or proteins. The overall idea of us-
ing different k-mer strings is the identification of differential 
nucleotide usage between the authentic piRNA and pseudo 
piRNA sequences. However, when the dataset sequences are 
of different length, spectrum profile or k-mer nucleotide 
composition (k-MNC) is used [34, 39]. k-MNC is defined as 
a total number of a particular nucleotide divided by the 
length of the sequence. e.g., a piRNA sequence with five 
guanine residues and of length n, where n=19 nucleotides, 
the percentage composition of guanine residues will be 
26.31%. Hence, there are 4 mononucleotide composition-
based features (A, T/U, G and C).  

Composition of k = 
Number of k * 100 

Number of all nucleotides 
(k, any amino acid or nucleotide) 

 
Fig. (1). Schematic illustration of the overall workflow adopted to develop piRNAPred: Left and right arm demonstrates the processing 
of piRNA and non-piRNA sequence from piRBase and NONCODE, respectively to generate a dataset (D1684p+1665n) followed by their down-
stream conversion into sequence, structure, thermodynamic, physiochemical and BINARY1+10 feature space and predictive model develop-
ment. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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 Similarly, there will be 16-dinucleotide composition-
based features (AA, AU, AC, AG, UA, UU, UC, UG, CA, 
CU, CC, CG, GA, GU, GC, GG). From k=1 to 5, they are 
designated as mono-, di-, tri-, tetra- and penta-nucleotide 
compositions. Hybrid predictive models (k=1, 2/1, 2, 3 etc.) 
involve higher-order combinations like hybrid of mono- and 
di-nucleotide composition is (md), mono-, di- and tri-
nucleotide is mdt, mono-, di-, tri- and tetra-nucleotide is mdtt 
and mono-, di-, tri-, tetra- and penta-nucleotide is mdttp. 
Thus, k-MNC can be utilized to identify the motifs or re-
gions of interest, which can distinguish the positive sequenc-
es from the negative ones in terms of differential nucleotide 
usage. Here, we employed a hybrid model of k=1-5, resulting 
into a total of 1364 strings of feature space.  

3.2. Sequence-Structure Triplet Elements (SSTE) 

 A set of 32 features of local contiguous structure-
sequence triplet element (SSTE) was proposed by Xue et al., 
for distinguishing the hairpins of real pre-miRNAs and pseu-
do pre-miRNAs [31]. These SSTEs can also be incorporated 
for extracting real piRNAs from pseudo piRNA sequences. 
In a secondary structure, there are two states for every nucle-
otide, paired or unpaired, which are designated by brackets: 
either "(" or ")" or dots "." Correspondingly, standard sec-
ondary structure notation in RNAfold was developed in the 
Vienna RNA package where, a paired nucleotide near the 5'-
side "(", can form pair with ")" nucleotide at 3’ end [40]. To 
convert them into a binary format, the paired state was des-
ignated as “1”, while the unpaired state as “0”. Further, an 
SSTE feature was calculated, which consisted of the second-
ary structure state of three contiguous nucleotides with the 
identity of the nucleotide in the middle [e.g. A(((]. For ex-
ample, there will be 8 possible SSTEs of “adenine” as 
["A(((", "A((.", "A(..", "A(.(", "A.((", "A.(.", "A..(" and 
"A..."]. Therefore, there will be 32 (4 × 8) possible structure-
sequence combinations for the nucleotides A, U, G, and C 
(Table S2) [31]. 

3.3. Thermodynamic Energy of Contiguous Dinucleotides 

 It was reported that thermodynamic properties of miRNA 
and siRNA sequences contribute to determining strand bias, 
molecule’s function, and longevity [41]. The thermodynamic 
energy feature space in the study corresponds to Gibbs free 
energy of continuous two nucleotides ina siRNA/miRNA 
sequence [41]. These features were incorporated to develop 
computational models for siRNA prediction and demonstrat-
ed considerable improvement [42, 43]. Therefore, to check 
the potential of thermodynamic energy of contiguous dinu-
cleotides in piRNA identification from false positive se-
quences, we calculated 16 thermodynamic energy-related 
patterns, and develop predictive models.  

3.4. RNA Physicochemical Properties 

 There are six physicochemical properties of RNA dinu-
cleotides namely rise, roll, shift, tilt, slide, and twist (Table 
S3). Their values have been used for the prediction of 
ncRNAs such as miRNA and piRNA [33]. The dinucleotide 
combination of an individual physicochemical property leads 
to the generation of 16 features, and these six RNA physico-
chemical properties collectively create a feature space of 96 
strings. 

3.5. Binary Profile of 1U and 10A Bias of piRNAs 

 We have included the information about the relative 
preference of nucleotides at 1st and 10th position of the pri-
mary piRNA and secondary piRNA in the form of a new 
predictive feature termed as the binary profile of 1+10 posi-
tion (BINARY1+10). This feature reflects the relative occu-
pancy of a particular nucleotide (A/U/G/C) at a given posi-
tion of the piRNA sequence. Thereafter, this position-
specific occupancy was converted into SVM readable binary 
format resulting in a total of 16 features (4 for 1st and 4 for 
10th position, respectively). Thus, it provided information 
about the relative preference of a nucleotide at each position 
of piRNA (Table 1).  
 All the above features were combined in a hybrid model 
i.e. k-MNC with k=1-5, leading to 1364 vectors, 32 SSTE, 
16 thermodynamic energy-, 96 physicochemical property-
related features and 16 features for BINARY1+10 for 1U and 
10A bias of piRNA making up to a total of 1516 features 
space (1364+32+16+96+16). As computational algorithms 
are only trained on binary notation (0 or 1), these features 
were further needed to be transformed into binary symbols to 
implement the feature vectors in different MLTs. In the pre-
sent study, binary symbolisation for standard 4 nucleotides 
was in a string of 4 characters: A, U, G and C, and are de-
noted by 1000, 0101, 0010, and 0001, respectively [38]. Fur-
ther, the classifier was trained on 1 for “ON” and 0 for 
“OFF” signals for a particular feature. In this way, we could 
provide sequence, structure or any other biological features 
into binary format to train the classifier. The main goal of 
computing composition is to change the varied length of a 
sequence to a fixed length vector. This step was crucial 
while performing the classification of sequences by MLTs.  

4. ALGORITHM DEVELOPMENT 

 We used SVMlight software package (http://svmlight. 
joachims.org/) to train the 1516 features of D1684p+1665n and to 
develop the predictive model in 10-CV mode. SVMlight is an 
implementation of a supervised MLT called support vector 
machines (SVM), which was proposed by Vapnik [44]. It 
works on the principle of pattern-recognition in the given 
dataset during training, and predicts the test-set based on 
these patterns. We used radial basis function (RBF) kernel 
having kernel width parameter (gamma, g) and regulariza-
tion parameter (c) to build the SVM-based models in the 
range of 0.000001 to 5 and 0.00001 to 2000, respectively. 
Apart from SVM, we utilized other MLTs (Random Forest 
(RF)), Bagging, classification via regression, J48 pruned 
tree, naive Bayes and Instance Based Learner (Ibk)) using 
Weka package (Table 2).  

5. FEATURE SELECTION TO ACHIEVE DIMEN-
SIONALITY REDUCTION 

 An optimal classifier depends upon features used for 
training. Therefore, to screen out the maximum relevant sub-
space out of 1516 features, we employed attribute selected 
classifier in the Waikato Environment for Knowledge Analy-
sis (Weka) package [45], and retrieved reduced feature space 
and provide 198 maximum relevance features (Table S4). 
Further, we checked the performance of these 198 features in 
different MLTs (Table S5). 
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6. STATISTICAL ASSESSMENT OF ALGORITHM 

 The performance of predictive models on the test set 
was assessed with the help of the statistical equation 
Mathews correlation coefficient (MCC). It is generally ap-
plied to calculate correlation between the actual and pre-
dicted values along with other statistical measures namely, 
percentage sensitivity (Sn), specificity (Sp), accuracy (Ac), 
true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN) [35, 46]. These equations are pro-
vided below: 

 

 
 

 
 

 
 

7. RESULTS 

7.1. Performance of Individual Features During 10-CV 

7.1.1. Spectrum Profile or k-mer Features 

 The k-mer models i.e. mono-nucleotide (mono-NT), di-
NT, tri-NT, tetra-NT and penta-NT achieved a MCC of 0.35, 
0.37, 0.41, 0.51, and 0.56, respectively. We also assessed the 
performance of hybrid k-mer features e.g. a combination of 
mono- and di-nucleotide termed as md hybrid model. The 
mono-di (MD), mono-tri (MT), di-tri (DT), mono-di-tri 
(MDT), mono-di-tri-tetra (MDTT) and mono-di-tri-tetra-
penta (MDTTP) achieved a minimum MCC of 0.38 to a ma-
ximum MCC of 0.44. Among all the k-mer models, MDTTP 
performed the best, and hence, it was selected to combine 
with structural and thermodynamic features to create a hy-
brid model (Table 1).  

7.1.2. SSTE Based Features 

 SSTE based models achieved excellent performance with 
a percentage accuracy of 95.61, sensitivity and specificity of 
93.53 and 97.72, respectively.  

7.1.3. Thermodynamic Energy- based Features 

 Thermodynamic energy-based predictive models scored 
percentage sensitivity, specificity, accuracy of 76.13, 81.38, 
and 78.74, respectively, with an MCC of 0.58. 

7.1.4. RNA Physicochemical Property-based Features 

 The 96 RNA physicochemical property-based features 
exhibited percentage sensitivity, specificity, and accuracy of 
77.26, 76.70, and 76.98 respectively, with an MCC of 0.54. 

7.1.5. Binary Profile of 1U and 10A Bias of piRNA 

 The 16 features reflecting the position-specific relative 
occupancy of a particular nucleotide exhibited percentage 
sensitivity, specificity, and accuracy of 69.24, 44.85, and 
57.12, respectively with an MCC of 0.15 (Table 1). 

7.2. Performance of Hybrid Features During 10-CV 

 For assessing the performance of hybrid models with 
MDTTP and other features during 10-CV, we employed 
SSTE (A), thermodynamic energy-based features (B), RNA 
physicochemical property-based features (C) and BINA-
RY1+10 (D). Out of all predictive feature combinations, 
MDTTP+A+B+C i.e. a hybrid of MDTTP, SSTE, thermody-
namic energy and RNA physicochemical properties achieved 
the best result as it exhibited 98.60% accuracy, 98.57% sen-
sitivity, 98.62% specificity, and 0.97 MCC followed by 
MDTTP+ABC+BINARY1+10, which performed almost 
equally well: 98.24% accuracy, 99.05% sensitivity, 97.42% 
specificity and 0.96 MCC. We also plotted the performance 
of the three best predictive models in the graphic analysis 
using the receiver operating characteristic (ROC) plot (Fig. 
2). 

 Additionally, to reflect the performance of a predictive 
model trained on homogeneous dataset from a single tissue, 
we developed two models trained on the piRNA and non-
piRNA sequences in a single tissue-specific manner from 
mouse testes and ovary. The dataset was formulated into 
1516 features, accessed using 10-CV resulting in models 
MDTTP+ABC+Binary1+10 (testes) and MDTTP+ABC+  
Binary1+10 (ovary) for testes and ovary dataset, respectively. 
Further, we performed external validation by checking the 
performance of the testes model to predict the ovary dataset 
and vice-versa (Table S6). 

7.3. Performance of MDTTP+A+B+C Trained on Other 
MLTs 

 To check the performance of other MLTs on the 1508 
feature space, we performed 10-CV. However, the SVM 
performed the best of all the tested MLTs, followed by ran-
dom forest, bagging, and classification-via-regression (Table 
2). The best predictive model was termed as “piRNAPred”, 
and has been provided to users for the prediction of piRNAs 
(https://github.com/IshaMonga/piRNAPred). 

7.4. Cross-validation 

 We adopted the 10-CV method for validating our classi-
fier. During 10-CV, the complete dataset was randomly di-
vided into 10 sets, of which the model was trained on 9 sets 
(the training set) and 1 set was kept aside for testing (the test 
set) (Fig. S1). This process was recursively repeated ten-
times, and the performance of ten steps was averaged to pro-
vide the final assessment of the predictive model [38, 42]. 

7.5. Comparison with Other State of the Art Predictors 

 Since the existing piRNA prediction algorithms were 
developed on dissimilar features employing diverse MLTs, 
therefore they exhibited different sensitivity and specificity 
levels: piRNA- 72.47% and 95.53% [27], PIANO- 95.89% 
and 94.61% [30], Pibomd- 91.48% and 89.76% [32], accu-
rate piRNA prediction- 83.10% and 82.10% [33], GA-WE -
90.6% and 78.3% [34] and 2L-piRNA- 88.3% and 83.9% 
[35]. On the other hand, piRNAPred achieved 98.57% sensi-
tivity, 98.62% specificity, 98.60% accuracy and 0.97 MCC 
(Table 3). 

( )( )( )( )FN+TNFP+TNFN+TPFP+TP
FNFPTNTP=MCC ∗−∗

( ) ( )[ ] 100/ ∗FN+TPTP=SnSenstivity

( ) ( )[ ] 100/ ∗FP+TNTN=SpySpecificit

( ) ( )[ ] 100/ ∗FN+TN+FP+TPTN+TP=AcAccuracy
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Table 1. Performance of different predictive models using SVM during 10-fold cross-validation. 

S. No. Predictive 
Model 

Features No. of 
Features 

Thres TP FP TN FN Sn 
(%) 

Sp 
(%) 

Acc 
(%) 

Mcc g c ROC 

1 MONO 

k-MNC 
based 

features 

4 0 1426 867 798 258 84.7 47.93 66.41 0.35 1 5 0.75 

2 DI 16 0.1 1153 531 1134 531 68.5 68.11 68.29 0.37 5.00E-05 50 0.73 

3 TRI 64 0.1 1189 501 1164 495 70.6 69.91 70.26 0.41 5.00E-05 500 0.76 

4 TETRA 256 0 1126 282 1383 558 66.9 83.06 74.92 0.51 0.01 1 0.81 

5 PENTA 1024 0 1363 412 1253 321 80.9 75.26 78.11 0.56 0.0005 50 0.85 

6 MD 

Hybrid k-
MNC 
based 

features 

20 0 1212 574 1091 472 72 65.53 68.77 0.38 1.00E-05 300 0.74 

7 MT 68 0.1 1165 484 1181 519 69.2 70.93 70.05 0.40 5.00E-05 100 0.75 

8 DT 80 0 1228 557 1108 456 72.9 66.55 69.75 0.40 0.0001 50 0.76 

9 MDT 84 0.1 1172 499 1166 512 69.6 70.03 69.81 0.40 1.00E-05 1000 0.75 

10 MDTT 340 0 1233 554 1111 451 73.2 66.73 69.99 0.40 0.0001 10 0.76 

11 MDTTP 1364 -0.1 1308 572 1093 376 77.7 65.65 71.69 0.44 5.00E-05 300 0.79 

12 A SSTE 
based 

features 

32 0 1575 38 1627 109 93.5 97.72 95.61 0.91 0.0001 10 0.70 

13  B Thermo-
dynamic 

energies of 
RNA 

dinucleo-
tides 

16 0.1 1282 310 1355 402 76.1 81.38 78.74 0.58 0.05 250 0.86 

14 C Physico-
chemical 
properties 
of RNA 

dinucleo-
tides  

96 0 1301 388 1277 383 77.3 76.7 76.98 0.54 1.00E-05 5 0.85 

15 BINARY1+10 position 
specific 

NT usage 
of 1st and 
10th posi-

tion (Bina-
ry) 

16 0 817 642 522 363 69.24 44.85 57.12 0.15 1.00E-005 100 0.35 

16  AB Hybrids of 
SSTE, 

Thermo-
dynamic 

energies of 
RNA 

dinucleo-
tides and 
Physico-
chemical 
properties 
of RNA 

dinucleo-
tides 

(ABC) 
with 

MDTTP 

48 -0.3 1653 27 1638 31 98.2 98.38 98.27 0.97 0.0005 500 1.00 

17  AC 128 0 1468 230 1435 216 87.2 86.19 86.68 0.73 1.00E-05 1000 0.93 

18 BC 112 0 1301 388 1277 383 77.3 76.7 76.98 0.54 1.00E-05 5 0.85 

19 ABC 144 -0.1 1502 275 1390 182 89.2 83.48 86.35 0.73 1.00E-05 500 0.93 

20 MDTTP + A 1396 0 1592 99 1566 92 94.5 94.05 94.3 0.89 5.00E-05 100 0.98 

21 MDTTP + B 1380 0 1436 333 1332 248 85.3 80 82.65 0.65 5.00E-05 200 0.90 

22 MDTTP + C 1460 0 1369 127 1538 315 81.3 92.37 86.8 0.74 0.01 5 0.89 

(Table 1) contd…. 
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S. No. Predictive 
Model 

Features No. of 
Features 

Thres TP FP TN FN Sn 
(%) 

Sp 
(%) 

Acc 
(%) 

Mcc g c ROC 

23 MDTTP +AB Hybrid of 
k-MNC 
based 

features+ 
SSTE, 

thermody-
namic, 
RNA 

physico-
chemical 
properties 
and posi-
tion spe-
cific NT 
usage of 

1st and 10th 
position 
(Binary) 

1412 0 1608 71 1594 76 95.5 95.74 95.61 0.91 5.00E-05 100 0.99 

24 MDTTP +BC 1476 0.1 1065 9 1656 619 63.2 99.46 81.25 0.67 0.01 5 0.89 

25 MDTTP +AC 1492 0 1488 227 1438 196 88.4 86.37 87.37 0.75 1.00E-05 50 1.00 

26 MDTTP +ABC 1508 0.1 1660 23 1642 24 98.57 98.62 98.60 0.97 1.00E-05 50 0.99 

27 MDTTP+ 
ABC+ 

BINARY1+10 

1516 0 1668 43 1622 16 99.05 97.42 98.24 0.96 1.00E-005 50 0.99 

Abbreviations: Acc, Accuracy; diNT, dinucleotide; c, Regularization parameter; FP, False Positive; FN, False Negative; g, Gamma (a kernel density parameter); k-MF, k-Mer Features OR 
k-MNC, k-Mer Nucleotide Composition; MMP, Mismatch Profile; MCC, Mathews Correlation Coefficient, pseDNC, pseudo Dinucleotide Composition; PCPseDNC, Parallel Correlation 
Pseudo Dinucleotide Composition; PSSM, Position-Specific Scoring Matrix; SSTE, Structure-Sequence Triplet Elements; SSP, Subsequence Profile; Sn, Sensitivity; Sp, Specificity; SSTE, 
Structure-Sequence Triplet Elements (A); B, Thermo-dynamic energies of contiguous dinucleotides; C, RNA physicochemical properties of adjoining dinucleotides (diNTs); AB, hybrid of 
SSTE and Thermo-dynamic energies of contiguous diNTs; Thres, threshold; TN, True Negative; TP, True Positive, AC, hybrid of SSTE and RNA physicochemical property of adjoining 
diNTs; ABC, hybrid of SSTE, thermo-dynamic energy and RNA physicochemical property of contiguous dinucleotides; ROC, Receiver Operating Characteristic. 
 
Table 2. Performance of 1508 features on different machine learning techniques during 10-fold cross-validation. 

S. No. Machine Learning Technique TP FN TN FP Sn (%) Sp (%) Acc (%) MCC 

1 SVM (piRNAPred) 1660 24 1642 23 98.57 98.62 98.60 0.97 

2 Random Forest 1616 68 1647 18 95.96 98.92 97.43 0.95 

3 Bagging 1611 73 1628 37 95.67 97.78 96.72 0.93 

4 Classification via Regression 1586 98 1576 89 94.18 94.65 94.42 0.89 

5 J48 Pruned tree 1553 131 1515 150 92.22 90.99 91.61 0.83 

6 Naive Bayes 920 764 1362 303 54.63 81.8 68.14 0.38 

7 IbK 1302 382 610 1055 77.32 36.64 57.09 0.15 

Abbreviations: Acc, Accuracy; FP, False Positive; FN, False Negative; MCC, Mathews Correlation Coefficient, Sn, Sensitivity; Sp, Specificity; SVM, Support Vector Machines; TN, 
True Negative; TP, True Positive. 

8. DISCUSSION 

 Cell growth, homeostasis and phenotypic expression of 
cellular functions have underlying complex regulations oper-
ating both at the gene expression and epigenetic levels [8, 
10]. Gene expression regulation is majorly governed by 
small ncRNA-based surveillance and silencing in the biolog-
ical systems [7, 47]. Among different players of RNAi, piR-
NAs are the most recently discovered and highly diverse 
class of ncRNAs [2]. They were first reported to govern the 
gonadal cell development by regulating the expression of 
transposons in the mouse germ cells [48-50], and loss of 
their expression leads to sterility [32-34]. Recent findings 
also suggest their roles in post-transcriptional gene regula-
tion [11, 51], transgenerational epigenetic inheritance [12], 

regulation of mRNA decay [52], and localization in 
germplasm part of the embryo during embryogenesis [53]. 
Although many piRNAs have been recently discovered in 
some species, their identification has largely remained elu-
sive in most of the organisms due to a lack of robust tools 
capable of identifying piRNA across phylogenetically di-
verse organisms with high accuracy. 
 The identification of piRNAs is majorly carried out by 
the NGS-based methods in which, many sequences from 
other ncRNAs fall within the range of piRNA sequence-
length. Hence, to differentiate the piRNAs from the false-
positive sequences, a more accurate and robust algorithm 
was warranted [33]. Recently, various methods were pub-
lished which employed different features and used piRNAs
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Fig. (2). ROC curve demonstrating the performance of three best predictive models: ROC curve demonstrating the performance of the 
top three predictive models MDTTP+A+B+C (ROC: 0.99), MDTTP+A+B (ROC: 0.99) and SSTE/ Triplet Elements (ROC: 0.70) respective-
ly [x-axis and y-axis represents true positive rate (tpr) and false positive rate (fpr)]. (A higher resolution / colour version of this figure is available 
in the electronic copy of the article). 
 
Table 3. Comparison of piRNAPred with current state-of-the-art piRNA prediction methods. 

S. No. Tool  Description of Features Species from which piRNAs 
Taken 

Sn  
(%) 

Sp  
(%) 

ACC 
(%) 

MCC References 

1 piRNA k-MF (k=5, 1364) Homo sapiens, Mus musculus, 
Drosophila melanogaster,  Cae-

norhabditis elegans 

72.47 95.5 NA NA 
(Zhang et al., 

2011) 

2 PIANO SSTE D. melanogaster 95.89 94.6 95.27 NA (Wang et al., 
2014) 

3 Pibomd SSP M. musculus 91.48 89.8 90.62 NA (Liu et al., 
2014) 

4 Accurate piRNA 
prediction 

k-MF , MMP, SSP, 
PSSM,  pseDNC, SSTE 

H. sapiens,   M. musculus ,   D. 
melanogaster 

83.10 82.10 82.6 0.651 (Luo et al., 
2016) 

5 GA-WE k-MF, PCPseDNC, PSSM 90.6 78.3 84.4 0.694 (Li et al., 
2016) 

6 2L-piRNA pseDNC, C M. musculus 88.3 83.9 86.1 0.723 (Liu et al., 
2017) 

7 piRNApred k-MNC, SSTE, B and C H. sapiens,   M. musculus ,   D. 
melanogaster ,  C. elegans  Dan-
io rerio,  Gallus gallus domesti-

cus , Xenopus tropicalus, Bombyx 
mori 

98.57 98.6 98.6 0.97 
Algorithm 

proposed in 
the current 

study 

Abbreviations: Acc, Accuracy; k-MF, k-Mer Features OR k-MNC, k-Mer Nucleotide Composition OR SP, Spectrum Profile; MMP, Mismatch Profile; MCC, Mathews Correlation 
Coefficient, pseDNC, pseudo Dinucleotide Composition; PCPseDNC, Parallel Correlation Pseudo Dinucleotide Composition; PSSM, Position-Specific Scoring Matrix; SSTE, Struc-
ture-Sequence Triplet Elements; SSP, Subsequence Profile; Sn, Sensitivity; Sp, Specificity; SSTE, Structure-Sequence Triplet Elements (A); B, Thermo-dynamic energies of contigu-
ous dinucleotides; C, RNA physicochemical properties of adjoining dinucleotides (diNTs). 
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from different species. Integration of the k-mer spectrum 
profile in the algorithm was found to better distinguish the 
real piRNAs than the pseudo ones, and these k-mer nucleo-
tide strings escalated to hybrid models by combining differ-
ent k-mer nucleotide combinations [33]. Zhang et al., pro-
posed a k-mer approach to identify piRNAs from five organ-
isms i.e. rat, mouse, human, fruit fly and nematode [27]. 
Further, all the ncRNAs have a unique secondary structure, 
which can be computed by SSTE [31]. This approach was 
utilized to classify piRNAs in D. melanogaster [30]. Howev-
er, this tool had a homogeneous training dataset, and this 
limited the discovery of novel piRNAs in the other non-
related organisms [54]. ‘Pibomd’ extended the use of se-
quence-based motifs in the prediction of M. musculus piR-
NAs [32]. However, a comprehensive dataset was needed to 
capture all the possible sequence-based motifs and predict 
piRNAs from various evolutionary diverse organisms. Other 
algorithms like GA-WE [34] and 2L-piRNA [35] used pseu-
do dinucleotide composition (pseKNC), PSSM, mismatch 
profiles, etc., and achieved high accuracy of the classifier. 
However, the existing piRNA prediction algorithms did not 
combine various other features like secondary structure, 
thermodynamic energy and physicochemical properties of 
RNA, and did not utilize piRNA sequences from phylogenet-
ically diverse organisms, which we considered crucial for the 
prediction of piRNAs with high accuracy. 
 In the present study, we collected 1684 positive piRNA 
sequences from eight different species (Table S1). The 
length range of 1684 piRNAs was 24-33 nucleotides, and 
they were statistically distributed in 21 followed by 24, 29 
and 31 nucleotides. To compare piRNAs and non-piRNAs, 
we investigated the composition-specific properties in detail 
and calculated the composition up to 5th order of nucleotides 
that resulted in 1364 vector space. The accuracy of the clas-
sifier increased from k=1 to 5, suggesting that a combination 
of higher-order nucleotide usage (5-mer in our case) would 
better distinguish piRNAs from the non-piRNA sequences 
(Table 1). Apart from training the classifier on the differen-
tial nucleotide usage by incorporating k-MNC, we also 
trained our classifier on the relative position-specific occu-
pancy of nucleotides at 1st and 10th position in the primary 
and secondary piRNAs, respectively, which resulted into a 
feature space of 16. However, their accuracy (57.12%) sug-
gested that these features alone were not enough to distin-
guish the piRNAs from the non-piRNA sequences. Further, 
the high accuracy of the triplet element features suggested 
that sequence and secondary structure together could be a 
potent and discriminative property to segregate piRNAs 
from the pseudo sequences of similar length. However, there 
was moderate accuracy in the classifier trained on the prop-
erties based on Gibbs free energy and physicochemical val-
ues of dinucleotides. Importantly, the hybrid model 
piRNAPred which incorporated the k-mer spectrum profile, 
SSTE, thermodynamic properties of continuous dinucleo-
tides and physicochemical features, demonstrated the highest 
accuracy among all the models with an MCC of 0.97. 

CONCLUSION AND FUTURE IMPLICATIONS 

 In conclusion, the piRNAPred demonstrated the highest 
accuracy in predicting piRNAs as compared to the existing 
piRNA prediction tools. We hope it would be helpful in ex-

panding our current understanding of piRNA biology by 
predicting novel piRNAs in different organisms. In the fu-
ture, we will update more piRNAs from the other species, 
and develop a user-friendly interface. The scripts, predictive 
models, datasets and other supplementary material are pro-
vided on https://github.com/IshaMonga/piRNAPred. 

LIST OF ABBREVIATIONS 

Acc = Accuracy 
diNT = Dinucleotide 
c = Regularization parameter 
g = Gamma (a kernel density parameter) 
k-MF = k-Mer Features OR k-MNC, k-mer nucleo-

tide composition 
MMP = Mismatch Profile 
MCC = Mathews Correlation Coefficient 
pseDNC = Pseudo Dinucleotide Composition 
PCPseDNC = Parallel Correlation Pseudo Dinucleotide 

Composition 
PSSM = Position-Specific Scoring Matrix 
SSTE = Structure-Sequence Triplet Elements 
SSP = Subsequence Profile 
Sn = Sensitivity 
Sp = Specificity 
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