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Time-Resolved Measurements of 
Turbulent Mixing in Shock-Driven 
Variable-Density Flows
John Carter1,3, Gokul Pathikonda1,3, Naibo Jiang2, Josef J. Felver2, Sukesh Roy2 & 
Devesh Ranjan1*

Recent developments of burst-mode lasers and imaging systems have opened new realms of 
simultaneous diagnostics for velocity and density fields at a rate of 1 kHz–1 MHz. These enable the 
exploration of previously unimaginable shock-driven turbulent flow fields that are of significant 
importance to problems in high-energy density physics. The current work presents novel measurements 
using simultaneous measurements of velocity and scalar fields at 60 kHz to investigate Richtmyer-
Meshkov instability (RMI) in a spatio-temporal approach. The evolution of scalar fields and the vorticity 
dynamics responsible for the same are shown, including the interaction of shock with the interface. This 
temporal information is used to validate two vorticity-deposition models commonly used for initiation 
of large scale simulations, and have been previously validated only via simulations or integral measures 
of circulation. Additionally, these measurements also enable tracking the evolution and mode merging 
of individual flow structures that were previously not possible owing to inherently random variations 
in the interface at the smallest scales. A temporal evolution of symmetric vortex merging and the 
induced mixing prevalent in these problems is presented, with implications for the vortex paradigms in 
accelerated inhomogenous flows.

The study of hydrodynamics relevant to high-energy-density physics (HEDP) frequently involves complexities 
and challenges in physics and engineering (reacting species, turbulence, mixing, plasma effects, electromagne-
tism, large spatial and temporal range of scales, extremely ‘fast’ physics, etc.)1,2. For example, the shock- and 
blast-induced instabilities, such as Richtmyer-Meshkov instabilities (RMI) and Rayleigh-Taylor Instabilities 
(RTI) play a dominant role in many applications, such as the mixing of fuel and air by incident shocks in a 
scramjet engine3, the ‘ignition problem’ of Inertial Confinement Fusion (ICF)4,5, blast-driven mixing of stellar 
media surrounding supernovae6 etc. Significant interest in these problems exists, with particular emphasis on 
effective models5 estimating the mixing effects of simulated hydrodynamics. Understanding and being able to 
model the shock-driven turbulent mixing of these phenomena is critical to further our understanding of HED 
physics. For example, a description of the fluid-interface growth in RMI is often provided by considering the 
vorticity generated by baroclinic torque at the interface due to the interaction of a pressure gradient (▽P, from 
shock) misaligned with a density gradient (▽ρ, from interface). This initial vorticity evolution was first modeled 
from linear stability theory7 and, for example, the Samtaney-Zabusky Model8 with good experimental agreement. 
Furthermore, Balakumar, et al.9 showed that the vortex configuration resulting from the initial shock advects 
material and neighboring vorticies (which strongly affects the extent of the mixing region) highlighting the 
importance of vorticity throughout the development of RMI. However, as secondary instabilities develop, the 
flow departs further from linear theory, and thus it is difficult to analytically describe the complex interactions 
which follow this regime into the transition and to turbulent mixing. Simulations have studied the evolution of 
the time-resolved vorticity field and found a significant change in vorticity due to additional production of the 
same by secondary instabilities10. There is currently no experimental work describing the temporal evolution 
of vorticity in RMI, much less in conjunction with density field evolution, to study the vortex interactions and 
induced mixing.

Early measurements of RMI in shock tubes used schlieren photography to primarily investigate the growth of 
the overall mixing layer11. These laid the foundation for understanding the linear and nonlinear growth regimes 
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of the RMI. However, this is a volume-averaged method and planar techniques such as mie scattering, planar 
laser induced fluorescence (PLIF) and particle image velocimetry (PIV) have since become increasingly com-
mon providing more robust descriptions of the flow (such as mixed mass and turbulent spectra). Conventional 
research efforts on these fronts have used simultaneous measurements of velocity and density using large ensem-
bles of uncorrelated (and independent) experimental runs with identical initial conditions. Recently a qualitative 
description of the morphological evolution of the interface and analysis of the growth rate of the mixing region 
have been provided in high-speed mie scattering and schlieren movies12–14. While these results do provide qual-
itative information about the mixing phenomena, their direct utility in providing benchmark validation data is 
limited. To this end, much pioneering work in the area of simultaneous PLIF and PIV has been performed15–17, 
albeit using large ensembles of snapshots from repeated experiments. In essence, simultaneous diagnostics are 
of interest to understanding the correlation between density and velocity fluctuations, and thus the turbulent 
mass-flux that is critical to closing RANS models such as the BHR model18 — a model extensively in use today for 
computations in variable-density turbulent mixing. Examples of such studies to enhance closure physics in vari-
able density turbulence (albeit for low-speed classical RTI and KH instabilities) can be found in recent works19,20.

The challenges in experimentally studying and modeling such flows come primarily from the high 
spatial-resolution requirements inherently imposed by the typical mixing scales [~O(1−10 μm) in laboratory 
experiments], coupled with their extremely short temporal scales [~O(0.5−10 μs)]. These, together with the 
large scale flow evolution [~O(10 cm,10 ms)] lead to large desired dynamic ranges from the diagnostics. These 
requirements have conventionally limited the spatio-temporal detail with which these phenomena could be inves-
tigated. These illustrative ‘scale separations’ are for typical laboratory experiments, and the actual application 
could involve 2−10 orders larger separation than those seen in the laboratory. Recent advances in high-speed 
imaging and laser sources are paving the way for overcoming these limitations by employing non-intrusive opti-
cal measurements in complex reacting and non-reacting flow environments. For example, burst-mode lasers 
and gate-intensified CCD cameras are used to examine the velocity flow-field of supersonic flows by employing 
very high speed PIV at up to a MHz-repetition rate in compressible jet flows21, albeit at low resolutions and at 
considerable noise owing to the nature of the intensified imaging system. At conventional high-speed resolutions, 
Wernet22 and Beresh, et al.23 have made PIV measurements over hot and cold jets, supersonic jet in cross-flow 
and transonic flow over a cavity at acquistion rates ~O(10 kHz). Similarly, Wagner, et al.24 have implemented 
PIV in the wake of a cylinder in a shock-tube to study the harmonics of the transient wake growth. Besides PIV, 
the application of pulse-burst systems have been demonstrated for high-speed reactive- and passive-tracer PLIF 
(qualitative, Michael, et al.25, for eg.), thermometry26, etc. Additionally, akin to the current work, Miller, et al.27  
have demonstrated the ability for simultaneous velocity and qualitative-PLIF measurements at 10 kHz using pulse 
burst systems. Numerous other application-specific implementations of high-speed diagnostics have been pre-
sented in the thorough review of Thurow, et al.28 The current work extends this spatial and temporal dynamic 
range [≈O(100 μm−100 mm) and ≈O(10 μs−10 ms)] simultaneously in velocity and concentration/density fields 
to enable studies of shock-driven mixing-related physics that were previously not possible due to insufficient 
dynamic range.

We leverage and demonstrate the aforementioned developments in high speed instrumentation to perform 
simultaneous velocity - species concentration measurements to study the evolution of Richtmyer-Meshkov 
Instability (RMI) in an inclined shock tube and subsequent turbulent mixing induced by the same. For this, we 
configure a dual-leg pulse-burst laser and two high-speed Photron SA-Z Fastcam cameras operating in a synchro-
nized manner. In burst-mode lasers, a low-energy continuous wave laser is sliced into a sequence of pulses which 
are then amplified to produce pulse doublets in close succession for a limited amount of time, which typically lasts 
1–100 ms depending on the laser architecture28. A high-speed planar PIV and acetone-PLIF system is designed 
to capture the physics of RMI in a time-resolved sense for the first time. Specifically, we aim to demonstrate the 
ability to measure the turbulent structure in sufficient detail to make comments on scalar mixing in space and 
time, and to indicate ways in which such instrumentation can be leveraged for a better understanding of mixing 
phenomena.

Design of Experiments
Richtmyer-Meshkov Instability (RMI) and flow facility.  Richtmyer-Meshkov instability (RMI) typi-
cally ensues when a shock wave propagates from one medium into a medium of different thermodynamic prop-
erties (density & ratio of specific heats). The propagation, when coupled with small misalignments between the 
interface and shock-front, results in a ‘baroclinic deposition’ of vorticity on the interface. This is governed by the 
vorticity equation, which, for fluids initially at rest, is given by ω ρ= ∇ × ∇

ρ
D Dt P/ 1

2 . It can be seen that the 
amount of vorticity deposition, and thus the Reynolds number of the instability, increases with increase in density 
gradients (‘Atwood number’), pressure gradients (shock strength or Mach number, M) and the mismatch angle 
between the two gradients (as sinα). The subsequent evolution of the instability involves vortex stretching and 
transport of this impulsively deposited vorticity (and consequently the species) via the classical vorticity transport 
and instability mechanisms. For ‘low’ shock strengths (typically  M1 3) and simple interfaces (typically pla-
nar), complexities such as secondary interactions with reflected and refracted shocks, vorticity production at 
vortex cores, compressibility effects in instability evolution, etc. can be ignored. The current experiments are 
designed in this parameter space where a planar shock and a planar interface that are misaligned at a constant 
angle is studied. This frequently forms a canonical configuration for numerical, experimental and theoretical 
analyses to understand fundamental mechanisms such as the vortex-roll up, initial condition memory, linear and 
non-linear growth mechanisms, etc. While a brief description on the experimental configuration to study this is 
provided below, more details on the physical facility can be found in Mohaghar, et al.29. Likewise, a more 
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thorough review of RMI and its relevance to the many HEDP phenomena is presented in the recent summary of 
Zhou4.

The current experiments are designed to make simultaneous planar measurements of velocity and concentra-
tion (and hence density) at high temporal resolutions, to investigate a shock-driven instability growth between 
two gasses (N2 and CO2) and the subsequent turbulence-induced scalar mixing. Experiments were performed at 
the Shock Tube and Advanced Mixing Laboratory (STAM Lab) at Georgia Institute of Technology, with a thor-
ough description of the facility available in our previous works30,31. The entire tube has the ability to incline with 
the ground, which enables an easy control of the misalignment between the shock front (oriented along 
shock-tube cross section) and a stably stratified horizontal interface (oriented perpendicular to the gravity). A 
stably stratified interface is maintained at 1.7m from the bottom end of the shock-tube by filling a heavy gas (CO2 
here, ρ2 = 1.84 kg/m3) from the bottom, and a light gas (N2 here seeded with acetone, ρ1 = 1.16 kg/m3) from the 
top, giving an effective initial Atwood number =

ρ ρ

ρ ρ

−

+( )At 2 1

2 1
 of 0.22. The shock-tube test section with the inter-

face and incident shock configuration is shown in Fig. 1. The test section allows optical access at each module 
through staggered windows (W1−3 as shown) to record the development of the perturbed interface advecting 
from initial to the latest experimental times. A polycarbonate diaphragm at the top of the shock-tube sandwiched 
between the driver and driven sections is ruptured by pressurizing the driver section to 110PSI using N2 gas. The 
rupture causes a planar shock front at Mach (M) = 1.55 that impinges on the inclined interface between the two 
gases (at window location W1), and deposits baroclinic vorticity on the interface. The Mach number is measured 
experimentally using two high-dynamic pressure transducers mounted downstream of the X-plate, and the gas 
properties are calculated using 1-dimensional gas dynamics equations32. The shocked interface evolves and con-
vects behind the incident shock through windows W2 and W3, before the shock-wave rebounds on the bottom 
wall and impinges on the interface a second time. This second interaction (termed ‘re-shock’) at viewing location 
W3 deposits additional vorticity on the convecting interface, halts the convection, and transitions the instability 
to turbulence to initiate rapid mixing29,33. Here, simultaneous PIV and PLIF of acetone at 60 kHz are employed to 
investigate this interface after first shock (at two physical windows, W1 and W2), and the evolution and mixing of 
the interface after reshock (at bottom window, W3). Figure 1a shows the test section module, together with an 
example interface (from PLIF imaging) as it evolves downstream.

Laser configuration and architecture.  A specially configured burst-mode laser is used as the light 
source for both PIV (at 532 nm) and PLIF (at 266 nm). The general architecture of the burst-mode laser has been 
described in detail in other works34–36, so only a brief overview will be given here noting specific modifications for 
simultaneous diagnostics. The specific configuration used for the current experiments is shown in Fig. 2a. A flex-
ible master oscillator is used that can produce tunable pulse widths by slicing the output from a 30 mW, 1064 nm 
continuous-wave, narrow-band diode laser. A 10 GHz-bandwidth, Acousto-Optic Modulator (AOM) with an 
extinction ratio > 50dB is used to perform the pulse splicing. The AOM is modulated by a pulse generator which 
can be controlled using the software. The sliced 1064-nm pulse train is amplified in stages, and final laser output 
can reach laser energies ≈1J/pulse at 1064 nm at a repetition rate of 10 kHz and a burst duration of 10 ms. At 
100 kHz repetition rate, the average laser pulse energy reduces to ~100 mJ/pulse. The 1064 nm-laser is frequency 
doubled using a second harmonic crystal to produce 532 nm light for PIV, and then doubled again to produce 
the fourth harmonic 266 nm light for PLIF. For the current experimental conditions, a short burst of 532 nm and 
266 nm pulses at 60 kHz provided for about 10 ms is sufficient to study the development of the interface, although 

Figure 1.  Schematic of the inclined shock-tube on which the current experiments were performed. Also shown 
are the measurement windows (W 1–3), illustrative interface states and a schematic of optical setup for the 
diagnostics.
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the laser could be configured to operate at up to 1MHz. The peak laser pulse energies respectively were 60 mJ and 
25 mJ, respectively.

The laser beam from the output is directed into the the shock-tube via a series of dual-wavelength mirrors and 
beam-shaping optics to provide a sheet with a beam waist of ≈500 μm. The light sheet enters the shock tube from 
the bottom end plate through a sapphire glass window, and slices the interface at the measurement locations. The 
focal-length and location of the cylindrical lens that generates the sheet were adjusted depending on the meas-
urement location (windows, W1, W2 or W3) so as to optimize the amount of laser energy available for PIV and 
PLIF in the field of view.

Imaging and diagnostics.  Two Phantom SA-Z CMOS cameras were mounted next to each other on a 
rail that enables moving the cameras along the shock tube depending on the window to be imaged. While the 
PIV camera was viewing perpendicular to the light sheet, the PLIF camera was mounted with a tilt (≈15°) and a 
scheimpflug mount viewing the same field of view as that of the PIV camera. Images of a calibration target were 
taken with both cameras at each imaging window to enable spatial calibrations and registration between the two 
fields. The CMOS cameras are capable of imaging at up to 20 kHz at a full resolution of 1 megapixel. To temporally 
resolve the flow in current experiments, the cameras were run at a reduced resolution of 0.3MP but sampled at 
60 kHz. Both cameras were fitted with Nikon 50 mm lens, with a maximum aperture of f/1.6. The depth of focus of 
the imaging optics was around 5 mm (at 266 nm) which is much larger than the laser sheet thickness.

To enable simultaneous measurements of velocity and density, both the gasses in the shock tube were seeded 
with 0.3−1 μm TiO2 particles for PIV, while the light gas (N2) was additionally seeded with Acetone vapors. 
While the particles scatter the incident 532 nm light, the acetone vapors absorb the 266 nm light and fluoresce 
in the visible UV range (scattered 266 nm light from particles is weak and is blocked by the acrylic windows that 
only allows visible light). Additionally, to enable simultaneous imaging of the mie-scattered 532 nm light from the 
seeded particles and fluoresced light from the seeded acetone, the PIV camera was fitted with an Omega model 
532BP10 532 nm band-pass filter (OD ≥ 3) transmitting only scattered light, and the PLIF camera images through 
an Edmund Optics TECHSPEC 532 nm notch-filter (OD ≥ 4) that blocks the scattered light.

The PIV particle images were processed using https://www.lavision.de/en/products/davis-softwareLaVision 
DaVis8.4 software, using recursive grid refinement to a smallest window of 24 × 24px (50% overlap). This, given 
the magnification of the imaging, gives a spatial resolution of 4 mm/vec. A 3 × 3 × 3 spatio-temporal median filter 
was used for outlier detection, vector replacement and Gaussian smoothing (to remove high frequency noise) in 
the PIV vector fields. The PLIF images presented in the current work are qualitative in nature and have a spatial 
resolution of 250 μm. The mean decay in laser intensity is corrected using a median normalization given by,
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where IN and Ic are normalized and median-corrected images, I is the raw image, Imin and Imed are the minimum 
and median intensities of the image, and Ic,avg is the average intensity of Ic. This median based normalization 
results in accurate corrections for laser intensity, and is immune to outliers in individual images.

Experimental considerations.  An important consideration for the current experimental setup was bal-
ancing the energies between the two laser beams for optimization of signal-to-noise ratios in both PIV and PLIF 
applications. There were two constraints that were considered in designing the current system. Firstly, since both 
the laser beams (532 nm and 266 nm) originate from the same fundamental laser (at 1064 nm), their energies are 
coupled to each other. Owing to inefficiencies typically present in doubling the frequency, the fourth harmonic 
beam (266 nm) inherently has lower energy than the second harmonic counterpart (532 nm). Further, the peak 

Figure 2.  (a) Architecture of the burst-mode laser system, with the various components, and (b) laser power 
changes in 532 nm and 266 nm outputs as measured by mean intensity of PIV and PLIF images.
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power that the laser produces at 266 nm at 60 kHz (≈25 mJ/pulse) is lower than those typically available from 
low speed, high energy (≈100 mJ/pulse at 1Hz) Nd:YAG lasers. Secondly, the energies of the beams reach a peak 
shortly after the beginning of the emission, and slowly decay at later time. These effects can be seen in Fig. 2b, 
which shows the average intensities of PIV and PLIF raw images with time. This implies that the signal to noise 
ratio, especially in PLIF images, is lower at the end of acquisition than at the beginning.

To work around these constraints, PLIF images are first optimized by maximizing the energy of the fourth har-
monic and by increasing the aperture of the PLIF imaging system. This however leads to over exposure of the PIV 
images even at lowest aperture (high f/#), thus drastically increasing the peak-locking of the PIV vector fields37. 
This was mitigated by using a series of neutral density filters in front of the camera to reduce the intensity of the 
particle images to within the dynamic range of the camera. This still leaves the late time PLIF images (>8 ms) 
highly qualitative owing to the comparable strengths of PLIF signal and CMOS sensor noise. This effect is signif-
icant even at earlier times at regions where there is strong absorption of the excitation light as it travels through 
N2. This impact could be mitigated by using a higher power burst-mode laser that is currently under construction.

Results and Discussion
Comparison to high-resolution experiments.  The processed high-speed PLIF images show excellent 
agreement with previous high-resolution observations33 on the same physical facility, especially at more deter-
ministic large scales. This can be seen in Fig. 3 where the the PLIF mixture fraction fields from high-resolution 
experiments at W3 are compared to the images of the corresponding high-speed case at various evolution times. 
Supplementary video S1 shows the full evolution of the interface at the three different windows W1−W3 from 
the current experiments (note that the three views in W1−W3 are from different experimental runs). Note that 
while the previous data was acquired from separate experiments (one field per experiment-time), the current data 
shown is acquired from a single continuous progression of the interface. This enables tracking the evolution and 
mode merging of individual flow structures that were previously not possible owing to random variations in the 
interface growth at the smallest scales. Further, the current experimental data also enables the study of interface 
compression due to reshock (times 2–3 in Fig. 3), phase inversion of mean interface evolution, and the continu-
ous evolution of the small scale features (time 4 in Fig. 3). The complete progression as a video can be seen in the 
Supplementary Video S1, which shows details of the evolution of small turbulent vortical scales and the turbulent 
mixing of the two gasses by the instability mechanisms. Also evident at late times in the supplementary video S1 
is the aforementioned reduction in laser energy at late times, and the associated decrease in signal-to-noise ratio 
in the PLIF results.

Velocity and vorticity dynamics.  Richtmyer-Meshkov instability is primarily a vorticity-driven phenom-
enon, and the current experiments provide valuable information on the evolution of the same. Figure 4 shows the 
velocity fields overlaid on the vorticity contours at three important times of the evolution - late time interface after 
incident shock (T1 = 4.9 ms from incident shock), early time interface after reshock (T2 = 5.3 ms), and late time 
after reshock (T3 = 7.5 ms). Contour levels of magnitude <8% of peak are not shown to avoid small-scale noise in 
gradients and for clarity. The wholly negative orientation of deposited vorticity at T1 (from the initial orientation 
between interface and incident shock) is accurately captured. Also captured at T1 is the noise in vorticity from 
spurious vectors at the reshock front (  mm x mm30 40 , due to refraction of particle signal) and near the 
walls (y > 20 and y < −40, due to large shear). As the vortex sheet is stretched, interface at T1 develops the vortex 
reorganization into pockets of concentrated clockwise vorticity. This also manifests as strong perturbations in 
shape of the interface as the reshock deposits additional vorticity on the same at T2. The phase inversion and 
strengthening of these vortices (owing to the additional deposition and greater mismatch) is evident immediately 
after reshock. The subsequent modal evolution, vortex merging and breakdown leading to a rich turbulent mixing 

Figure 3.  Qualitative comparison of interface images captured employing low-speed, high-resolution (HR, 
from Mohaghar, et al.33) PLIF and current high-speed moderate resolution (HS) PLIF are shown at four times 
(1−4, 5.0,5.2,5.3,5.5 ms after incident shock). The passage of reshock from right to left can be seen in images 2 
and 3.
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environment is evident at T3. Supplementary video S2 captures this detailed progression, and is the first measure-
ment of the high-speed RMI evolution. The final interface velocity field shows strong intermixing and mean scalar 
transfer of each gas into the other.

The turbulent kinetic energy on the interface ultimately responsible for turbulence is deposited by shock 
at very small length scales [~O(diffusion thickness) ≈ O(mm)]. The vortex stretching and inviscid instability 
mechanisms redistribute this turbulent kinetic energy spatially and spectrally leading to a rich range of veloc-
ity (and consequently scalar) scales. The two-dimensional estimate to the turbulent kinetic energy (TKE2D) can 
be obtained via the in plane velocity fluctuations as the flow is statistically homogenous in the z−direction. 
Assuming reflective symmetry of the initial conditions and spatial homogeneity in the spanwise direction, Fig. 5 
shows this measure from fluctuating velocities computed via spanwise averaging. Immediately after the interac-
tion with the reshock, a localized peak in turbulent fluctuations is observed. This peak TKE grows spatially across 
the interface as the classical instability mechanisms redistribute the same. Further, the total TKE2D in the FOV 
remains relatively constant owing to the negligible dissipation relative to redistribution mechanisms (this value 
starts to show a decay-trend at late times for t > 8 ms). These demonstrate the strong inverse cascade of energy 
expected at early times of the instability growth without a significant dissipation.

Equivalently, the primary momentum for turbulence and mixing comes form the deposited baroclinic vor-
ticity from the shock-interface interactions during incident shock and the reshock. Many studies studying the 
growth, transition and mixing of the RMI using computational methods approach the problem as two separate 
processes – (1) the shock-interface interaction (responsible for initial vorticity deposition), (2) and the subse-
quent evolution of the same (responsible for mixing). This decouples the compressibility effects involved in RMI 
initiation from the subsequent hydrodynamics, which can then be analyzed using divergence-free field analyses 
(Biot-Savart time-integration38, for eg.). The mechanics of the shock-induced vorticity-deposition has been done 
in many previous studies and depends on the problem geometry (interfaces vs bubbles39,40), shock-propagation 
direction (light-heavy vs heavy-light40–42), strength of secondary waves (reflected and refracted shocks and 
rarefaction waves41), etc. The availability of high-speed measurements of PIV and PLIF enable us to study the 
vorticity-deposition models and provide direct experimental information to evaluate the same. The current 
experiment provides two cases for the evaluation of such models - interaction of the incident shock with the 
inclined interface and (a short time later) the interaction of the reshock with the interface that has now slightly 

Figure 4.  Evolution of vorticity (ω in s−1) at three different times corresponding to (a) late-time pre-reshock 
(T1 = 4.9 ms), (b) early time post-reshock (T2 = 5.3 ms) and (c) late time post-reshock (T3 = 7.5 ms). Velocity 
vectors are scaled to 1% of magnitude in (a) and to 10% in (b) and (c). See Supplementary video S2 for the full 
evolution in W3.

https://doi.org/10.1038/s41598-019-56736-w


7Scientific Reports |         (2019) 9:20315  | https://doi.org/10.1038/s41598-019-56736-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

evolved to a more complex shape. In the following analysis, we use normal symbols (ρ1,2, c, etc.) to refer to 
unshocked properties, prime (′) annotations for once-shocked properties (after passage of incident shock), and 
double-prime (″) for twice-shocked properties (after passage of reshock). Additionally, the subscripts 1 and 2 
correspond to light (N2) and heavy (CO2) gasses respectively. These properties are obtained via 1-dimensional gas 
dynamics analysis which are detailed in the works of Mohaghar32.

Figure 6 shows the evolution of the net circulation on the interface seen in W3. The interface as viewed in this 
location is already shocked by the incident shock as it enters the field of view, and thus starts with a non-zero cir-
culation (net-negative vorticity here). Assuming no dissipation of deposited vorticity, the measured value of this 
circulation is compared with the shock-polar model of Samtaney and Zabusky40 (hereafter referred to as SZ94) 
which estimates the deposited circulation (σ) per unit interface length as

σ
γ

η α γ γ= − + + − +− − −( ) ( )c
M M M

/
1 (sin )(1 2 )( 1) / 1

(3)
i i i

1

1
2 1 2 1

2

here, the c1 is the speed of sound in un-shocked nitrogen, η = ρ2/ρ1 > 1, γ is the mean ratio of specific heats, α 
is the misalignment between the interface and the shock (10° here), and Mi is the Mach number of the incident 
shock. This comparison shown in Fig. 5 at t < 5.0 ms shows a remarkable agreement with the estimated circu-
lation on the interface. Also shown in Fig. 6 are the net positive (Λ+) and negative (Λ−) circulation evolutions 
with time. Bulk of the circulation comes from the reshock, which quickly reorganizes owing to the unstable 
nature of the interface. This reorganization happens with negligible dissipation (shown by near-constant evolu-
tion of Λ+), though the net circulation reduces in time. This linear decay in net vorticity is entirely consistent for 
small-inclination interfaces, as was previously noted in the computations of McFarland, et al.43, and arises due 
to a flux of negative vorticity from the wall-vortex (clockwise oriented) that detaches from the wall towards the 
center of the shock-tube42. The complex interaction of the interface deposited vorticity and the wall-vortex at late 

Figure 5.  (a) Temporal evolution of two-dimensional, spanwise averaged TKE estimate and (b) the streamwise 
redistributions of the peak energy at different evolution times after reshock.

Figure 6.  Evolution of the circulation of the interface by net vorticity, positive-vorticity and negative vorticity.
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times (t ≈ 6.5 ms) results in a net increase in both clockwise and counter-clockwise vorticity, as can be seen in 
supplemental video S2.

More importantly, we can also utilize the late-time pre-reshock interface configuration (at time tr
−, Fig. 2a) 

measured using PLIF images and the velocity fields after reshock (tr
+, Fig. 2b) to study the net vorticity-deposition 

by the reshock. For this analysis, the shock propagation configuration is ‘slow-fast’ in nature (heavy-to-light gas), 
deposition is assumed to be regular, and occurring over an interface of ‘small’ perturbations (A/λ ≤ 0.1, where A 
is the perturbation amplitude, and λ is perturbation wavelength42). We evaluate two models commonly used for 
vorticity initiation - (a) one based on shock-polar analysis and asymptotic treatment of shock refraction effects 
(Samtaney, et al.42, hereafter referred to as SRZ98), and (b) model based on integration of baroclinic torque, a first 
order approximation of impulsive acceleration and one-dimensional gas dynamics assumptions (Weber, et al.38,  
hereafter referred to as WCB2013). The reader is referred to the original works38,42 for more details of the models. 
We invoke the assumptions of ‘regular’ shock-refraction (ignoring the reflected and refracted shock and rare-
faction effects), small perturbation amplitudes, impulse density gradients in the shock-propagation-direction 
at the interface, and a single-valued nature of the interface profile (at locations where this is strictly not obeyed, 
we consider the interface location representing the strongest density gradient in shock-propagation direction). 
Additionally, the interface is assumed to have infinitesimal width, and all the vorticity is assumed to be concen-
trated as an impulse function around it. Under these assumptions, SRZ98 model can be summarized for the 
current case as

σ
γ γ η

ξ α=





−

′






′

′

s
c

M s( )
/

2 1 1 ( )sin[ ( )]
(4)

r
2
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where σ(s) is the deposited circulation per unit length along the interface coordiante (s), c2′ is the sound speed in 
heavy gas, η′ = ρ1′/ρ2′ < 1, α′(s) is the mismatch angle between the local tangent of interface and the reshock, Mr 
is the Mach number of reshock, and

ξ γ
γ

=
+

− .M M( ) 4
1

( 1)
(5)r r

Similarly, the estimated reshock-deposited-vorticity from the WCB13 can be rewritten for the current 
assumptions as

ω
ρ ρ α

ρ ρ
=

− −

+
′ ′

′ ′

s
u s

( )
( )( )( tan )

( ) (6)

s 2 1
1
2 1 2

here us is the jump in interface velocity from before to after reshock (note that there is a ratio of impulse function 
to its heavyside function that evaluates to unity at the interface and has dimensions of 1/length scale). The orien-
tation of the interface immediately before its interaction with reshock forms the initial condition for the models. 
The 2-dimensional interface shape s(y) before reshock is extracted from the PLIF images at t = tr

− to compute the 
local angle [α(s)] with respect to reshock (reshock is assumed to be vertical). The jump velocity, us(s) = us

+−us
− of 

the interface from reshock is also measured from the pre-reshock and post-reshock scalar and velocity fields (us
− 

and us
+ respectively). The variation of these two quantities along the shock-tube width (and along the interface, 

owing to its single-valued nature) is shown in Fig. 7a.
Finally, the distribution of net circulation per unit interface length is computed from the measured vorticity 

field, ω(x, y, t) as

Figure 7.  (a) The interface jump velocity and the misalignment of interface with reshock along the shock tube 
width, and (b) comparison of deposited circulation per unit shock-tube-width with the models of SRZ98 and 
WCB13.
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∫σ α ω ω= −
−Δ

+Δ + −s x y t x y t dx( ) cos ( ( , , ) ( , , ))
(7)s y

s y
r r

( ) /2

( ) /2

where Δ is an arbitrary neighborhood around the interface to fully encompass the measured/diffuse vorticity 
field.

Figure 7b shows the comparison between the predicted circulation deposition per unit shock tube width, (σ/
cosα), by the two aforementioned models together with the experimentally measured counterparts. The figure 
shows a remarkable agreement between the two models and the experiments, justifying both the approaches for 
these conditions. It serves to note that the SRZ98 model as is presented here utilizes only the measured shape 
[s(y)], and implicitly estimates the jump velocity (us) based on 1-dimensional gas dynamics relations. The WCB13 
model, however, directly utilizes the measured jump velocity profile across the interface together with the inter-
face orientation relative to the shock. This latter approach offsets some of the assumptions made in the current 
work, which lead to the discrepancies. For example, the assumption of single interface interaction (that the inter-
face is a single valued function) is strictly not valid everywhere (10 mm < y < 20 mm, for eg.), and the ability to 
specify a jump-velocity profile in WCB13 from experiments improves the estimated vorticity deposition in the 
corresponding region. This deposited circulation serves as the initial condition for subsequent instability growth, 
transition and mixing dynamics. While many computational studies have investigated the ability of these models 
to represent the deposited baroclinic vorticity38,42,44, for eg.], the current work experimentally measures the inter-
face orientation and the vorticity before and after reshock in a time-resolved manner to provide a direct validation 
of slow-fast vorticity deposition.

Small-scale mixing dynamics from simultaneous measurements.  The goal of the current simul-
taneous diagnostics is to visualize the effect of turbulent velocity scales and mixing simultaneously. Figure 8 
shows the mixing induced (via PLIF images) by the vortical activity represented by the contours of vorticity. The 
Supplementary video S3 shows the continuous time version of the figure, elucidating the coupling between the 
mixing and vortical activity in an RMI. Pre-reshock, it can be seen that the deposited vorticity organizes itself into 
pockets of concentrated vortical structures, as the associated perturbations grow. The current work shows a clear 

Figure 8.  The vorticity-dominanted-mixing characteristics of RMI shown via contours of vorticity (ω) and 
corrected PLIF intensities (IN). (a–c) correspond to same times T1–T3 described in Fig. 4. The mixing activity 
of the gasses is concentrated as pockets of strong vorticity (in s−1). See Supplementary video S3 for the full 
evolution in W3.
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lack of mixing transition45 at this time, with very little mixing activity between the two gases. This late time inter-
face before reshock at T1 forms the initial condition for the subsequent vorticity deposition by reflected shock at 
T2. A phase reversal is noticed as the opposite signed (positive) vorticity deposition occurs, which leads to strong 
vortical structures. Most of the intermediate-time turbulent mixing post-reshock is observed to be concentrated 
around these vortical hotspots. The interface sandwiched by these structures undergoes further shear instabilities 
leading to a sharp rise in scalar mixing, that continues until the advent of the expansion wave.

Molecular mixing in turbulent environments is an inherently small scale phenomena, and the utility of 
current measurements lies in the ability to track temporal evolution of these scales. Figure 9 shows an illus-
trative temporal sequence highlighting these small scale dynamics (see Supplemental video S4 for evolution at 
full temporal-resolution). The vorticity contours overlaid on the PLIF images identifies two vortices (X and Y 
marked in Fig. 9a). The velocities are marked in the frame of reference of the vortex X, showing the swirling 
motion around the same46. Both vortices are formed from the reshock-initiated vortex sheet, and the subsequent 
roll-up due to its unstable nature. Under their mutual influence, the symmetric-vortices approach each other and 

Figure 9.  An illustrative temporal evolution of merging between two vortices [X and Y in (a)], and the 
associated scalar evolution shown in snapshots 67 μs apart, starting at 5.550 ms after incident shock in  
(a), 5.617 ms in (b), 5.684 ms in (c), 5.751 ms in (d), 5.818 ms in (e), 5.885 ms in (f), 5.952 ms in (g), 6.019 ms in 
(h) and 5.086 ms in (i). The vectors are velocities in the frame of reference of vortex-X (same scale as Fig. 4, in 
m/s) in (a) and line-contours represent vorticity with same levels as Fig. 8 (in s−1). See Supplementary video S4 
for the evolution at full temporal resolution.
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eventually merge47. This ‘mode-merging’ of vortices results not only in backward scatter of turbulence energy to 
smaller wave-numbers (large scales), but also in a local spike in scalar mixing as can be seen between Fig. 9f–i. 
This is the primary mixing mechanism in early stages of these vortex-dominated flows, and the mode merging has 
been studied theoretically (48,48–50, for eg.), experimentally (48,49,51, for eg.) and using computational tools52, for eg. 
However, existing studies on the effect of the mode-merging on scalar mixing (and specifically in variable density 
flows) are limited in scope and physics by the limitations of mixing models, or to low Reynolds numbers owing 
to the complexity of the same. The current high spatio-temporal resolution experiments are the first of its kind to 
capture this mode-merging and the induced mixing, specifically for shock-driven variable density phenomena. 
These advantages in the current diagnostics enable such studies related to temporal evolution of small scales that 
were previously not possible with conventional low speed approaches. Other possible directions currently being 
studied are the studies of vortex-accelerated vorticity deposition (VAVD52), vorticity-based mixing models, etc.

The current work demonstrates of the vortex dominated behavior of the turbulent mixing via time-resolved 
measurements of the vortex evolution. Further, the constraints on spatial resolution at these high speeds, espe-
cially in the velocity fields, is seen at instances where the PLIF images show vortical structures that are not cap-
tured individually by the vorticity fields owing to the lower resolution of the latter (see Supplementary video S3 at 
early times after reshock). This emphasizes the need for a coupled investigation using both high-resolution (low 
speed) and high-speed data, until such advances in imaging are available.

Conclusion
The current work demonstrates the recent ability for spatio-temporally resolved measurements for shock-driven 
variable-density mixing, by exploiting the advances in diagnostics for simultaneous velocity and mixture fraction 
measurements. These enable future studies of turbulent mixing phenomena and modeling for applications in 
shock-driven hydrodynamics (such as shock- and blast-driven RMI and RTI in HED applications). Important 
experimental considerations are emphasized for these high-speed measurements, particularly related to the 
acquisition challenges, laser energy and flow characteristics. The quality of results was assessed and validated by 
comparing the results to previously published high-resolution, single-shot measurements on Richtmyer-Meshkov 
Instability. The high-speed vorticity fields enable tracking and temporal analysis of small scale vortical features 
that are essential to understand the molecular mixing behavior of such turbulent flows. These simultaneous diag-
nostics are essential to these flows, which are inherently dominated by small scale physics, as the same cannot be 
achieved using time-uncorrelated independent experiments (owing to randomness in small-scale structures) or 
simulations (owing to high spatio-temporal requirements and modeling constraints). Two commonly used mod-
els for initiation of deposited vorticity (SRZ9842 and WCB1338) for computational studies were evaluated with this 
unique dataset, and it was shown that the WCB13 approach is capable of offsetting the typical assumptions (to a 
limited extent) via a prescribed interface jump velocity when the same is available via measurements. Further, an 
illustration of the often-studied symmetric vortex merging47 was demonstrated in a shock-driven variable-density 
flow for the first time, together with the induced effects on scalar mixing in an unprecedented detail. Detailed 
analysis on non-stationary physics such as the Vortex Accelerated Vorticity Deposition (VAVD52), vorticity-based 
stochastic modeling of mixing, etc. are made possible with these techniques, that were previously not amenable 
to experimental methods. These measurements are one of the first of this kind for high-speed turbulent mixing 
applications, and highlight the exciting possibilities that the recent advances in diagnostics enable.
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