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Simple Summary: Breast cancer represents the most frequent cancer in women in the world. The
state of the axillary lymph node is considered an independent prognostic factor and is currently
evaluated only with invasive methods. Deep learning approaches, especially the ones based on
convolutional neural networks, offer a valid, non-invasive alternative, allowing extraction of large
amounts of the quantitative data that are used to build predictive models. The aim of our work is to
evaluate the influence of the peritumoral parenchyma through different bounding box techniques on
the prediction of the axillary lymph node in breast cancer patients using a deep learning artificial
intelligence approach.

Abstract: Background: The axillary lymph node status (ALNS) is one of the most important prog-
nostic factors in breast cancer (BC) patients, and it is currently evaluated by invasive procedures.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), highlights the physiological
and morphological characteristics of primary tumor tissue. Deep learning approaches (DL), such as
convolutional neural networks (CNNs), are able to autonomously learn the set of features directly
from images for a specific task. Materials and Methods: A total of 155 malignant BC lesions evaluated
via DCE-MRI were included in the study. For each patient’s clinical data, the tumor histological
and MRI characteristics and axillary lymph node status (ALNS) were assessed. LNS was considered
to be the final label and dichotomized (LN+ (27 patients) vs. LN− (128 patients)). Based on the
concept that peritumoral tissue contains valuable information about tumor aggressiveness, in this
work, we analyze the contributions of six different tumor bounding options to predict the LNS
using a CNN. These bounding boxes include a single fixed-size box (SFB), a single variable-size
box (SVB), a single isotropic-size box (SIB), a single lesion variable-size box (SLVB), a single lesion
isotropic-size box (SLIB), and a two-dimensional slice (2DS) option. According to the characteristics
of the volumes considered as inputs, three different CNNs were investigated: the SFB-NET (for
the SFB), the VB-NET (for the SVB, SIB, SLVB, and SLIB), and the 2DS-NET (for the 2DS). All the
experiments were run in 10-fold cross-validation. The performance of each CNN was evaluated in
terms of accuracy, sensitivity, specificity, the area under the ROC curve (AUC), and Cohen’s kappa
coefficient (K). Results: The best accuracy and AUC are obtained by the 2DS-NET (78.63% and 77.86%,
respectively). The 2DS-NET also showed the highest specificity, whilst the highest sensibility was
attained by the VB-NET based on the SVB and SIB as bounding options. Conclusion: We have
demonstrated that a selective inclusion of the DCE-MRI’s peritumoral tissue increases accuracy in
the lymph node status prediction in BC patients using CNNs as a DL approach.
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1. Introduction

Breast cancer (BC) is the most frequent cancer in women worldwide [1]. The axillary
lymph node status (ALNS) is considered one of the most influential and independent
prognostic factors [2]. For accurate lymph node staging, invasive procedures from sentinel
node biopsy to axillary dissection are needed. The positive predictive value (PPV) of lymph
node cytology and biopsy is about 99–100%, however, a lower negative predictive value,
about 65–83%, does not permit the avoidance of axillary surgery in negative cases [3].

Although some imaging techniques are used for the detection of nodal metastasis,
such as mammography, ultrasonography (US), and computed tomography (CT), currently,
there has not been an agreement on the imaging criteria for identifying metastatic nodes.
Size and shape are generally used for LNS prediction (dense nodes of increased attenuation
and spiculated contour on mammography, a short-axis dimension greater than 10 mm on
CT, a long-axis dimension greater than 5 mm, a round shape, and a long axis greater than
5 mm on US [4–8]

Moreover, among all the employed imaging methods, magnetic resonance imaging
(MRI) performed best for primary tumor analysis, providing qualitative and quantitative
information [9–11], especially of the dynamic contrast-enhanced sequences (DCE), which,
thanks to the high contrast resolution, allow the best depiction of the tumor morphology,
size and perfusional behavior, distinction between benign and malignant lesions, prediction
of biological aggressiveness, and prognostic evaluation [9,12].

In recent years, imaging-based machine learning (ML) techniques have been employed
in many oncological fields with promising results to support medical decisions. In this area,
ML contemplates two different approaches: The first, usually referred to as radiomics, is
based on handcrafted features computed from the images feeding shallow learners, such as
support vector machines, decision trees, etc. The second is based on deep neural networks
and is known as deep learning (DL). Different from the first approach, DL automatically
learns discriminative features directly from images without being limited to the use of
predefined features or the developers’ experience.

Among the DL-based solutions used to analyze visual imagery, the use of convolu-
tional neural networks (CNNs) is the most applied. A CNN consists of a set of convolutional
layers capable of learning a compact hierarchical representation of the input that is well
suited to the specific task to be solved.

In BC, radiomics has been studied considerably for the characterization of primary
cancer, while there are still relatively few works that evaluate its application to the relation-
ship between tumor imaging characteristics and LNS [13–15]. In these works, in particular,
traditional radiomics systems were mainly investigated, while DL applications are limited
to a few studies and ultrasound cases [16–18]. Furthermore, the majority of these studies
focused on analyzing the imaging features of the primary tumor exclusively, ignoring the
tissue adjacent to the tumor. Nevertheless, evidence has shown that the peritumoral region
contains valuable information on the potential tumor aggressiveness and, also, lymphatic
spread, in particular in cases of multifocal and multicentric tumors [19–21]. In our previous
works [13,19], we analyzed the impact of the radiomics of the primary tumor and the
peritumoral edema on the LNS prediction. This time, based on the previously cited papers
demonstrating the importance of the peritumoral parenchyma, we assume that, close to
the tumor lesions, there might be some data not visible to the human eye that influences
the metastatic lymph node spread.

Then, in this work, we investigate the role of the lesions neighboring parenchyma
features through CNNs by experimentally analyzing different tumor bounding (TB) options.
The novelty of the technical contribution can be summarized as follows:
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• We propose and implement different tumor bounding options to systematically assess
the contribution gathered by the healthy tissue in the prediction of the axillary lymph
node status;

• We propose three different CNNs whose architectures vary according to the character-
istics of the volumes considered as inputs;

• We evaluate the impact of the 3D and 2D features extracted from input volumes and
the influence of healthy tissue in cases of multifocal and multicentric tumors.

2. Study Population

All breast MRI exams were performed for preoperative evaluation at the Central
Radiology Department of Policlinico Umberto I between January 2017 and January 2020
and retrospectively reviewed. A written informed consensus was obtained before the
execution of a contrast-MRI for all examinations.

All patients met the following inclusion criteria: three Tesla magnetic field MRI
examinations, post-contrast sequences, mass-like tumors, histopathological confirmation of
invasive breast cancer, a complete histological analysis, and definitive lymph-node status
of the ipsilateral axilla. In cases of BC bilateral lesions, the two lesions were evaluated
separately since the two breasts can be considered a single part. Patients with an incomplete
MRI examination or damaged images and patients without a complete histopathological
analysis were excluded.

The patients were excluded if they had breast implants or expanders, were in follow-up
neo- or adjuvant chemotherapy, or the MRI images were not of excellent diagnostic quality.

A total of 153 patients (average age 55 years; range 30–85) met the inclusion criteria.
In two patients who had bilateral breast cancer, the two breasts were considered as a single,
independent part. Therefore, a total of 155 malignant breast cancer lesions were included
in total.

The LNS status was assessed as positive if at least one lymph node involved by
metastasis was present in the definitive histopathological axillary cable sample (LN+); the
LNS was considered negative if all axillary lymph nodes were safe (LN−).

2.1. MRI Examination

All MRI examinations were performed using a 3T magnet (Discovery 750; GE Health-
care, Milwaukee, WI, USA). The sequence used for the analysis was the dynamic Contrast-
enhanced T1-weighted 3D sequence using fat suppression with a TR and a TE of 6.6 ms and
4.3 ms, respectively, with an ip angle of 10◦, a matrix of 512 × 256, NEX 1, and a slice thick-
ness of 2.4 mm. An amount of 0.2 mmol/kg of Gadobenate-dimeglumine (Multihance®;
Bracco Imaging, Milan, Italy) was used as the contrast agent, injected through a 20G intra-
venous cannula at a rate of 2 mL/s plus 15 mL of saline solution at the same speed. For
each acquisition, the relative subtracted images were automatically generated and used for
tumor analysis.

The images were analyzed by two radiologists with 10 and 3 years of experience,
respectively. The tumors were described as unifocal when only one lesion was present; mul-
tifocal when more than one tumor lesion was present in the same breast quadrant/region;
and multicentric when multiple tumor lesions were present in different breast quad-
rants/regions. For each lesion, the target dimensions, margins (regular, irregular, lobulated,
or spiculated), and intensity signal timing curve (I, II, or III, based on wash-in and wash-out)
were reported.

2.2. Clinical Data

The patients’ clinical data were collected, and, according to these data, the population
was split into subgroups: age, familiarity (considered positive if at least one familiar
member was affected by breast cancer at any age), hormone therapy (considered positive
if the patient performed at least 3 continuous months of hormone therapy including any
kind contraceptive, replacement, or therapeutic therapy), and menopausal status.
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2.3. Histological Data

The samples were obtained by a core biopsy or surgery and analyzed by an anatomic
pathologist with more than 15 years of experience. The tumor histotype classification
followed the WHO classification [22]. The tumor histological grade was assigned in accor-
dance with the NGS, and a score from one to three was given for these tumor characteristics:
tubular formation, nuclear pleomorphism, and the number of mitoses. Furthermore, the
estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor re-
ceptor (HER2), and the proliferation index Ki67 were assessed for immunohistochemical
analysis. A cut-off of 10% was used to consider the ER and PgR expression as positive;
while HER2 was considered positive when >+2, and ki67 was considered positive when
>14%.

Moreover, other histological data were collected: histotype (including ductal carci-
noma (IDC) and invasive lobular carcinoma (ILC)), grading (divided into G1, G2, or G3),
and tumor class, which includes the hormone receptor status and the proliferation index
percentage (Luminal A: ER+, HER2− and low ki67; Luminal B: ER+, HER2 −/+ and high
ki67; HER2 overexpressed; Triple Negative (TN): ER−, PgR−, HER2−).

2.4. Axillary Lymph Node Status

The axillary lymph node status was considered as the final output. The LNS was
assessed after an invasive breast cancer diagnosis using definitive surgical characterization
(sentinel node dissection, sampling dissection, or total lymphadenectomy, based on surgeon
decision but curative in all cases) [1,2]. The LNS was simply classified as positive, if there
was at least a sentinel LN involved, or negative if there was no positive lymph node. On
this basis, the dataset accounts for 27 positive and 128 negative patients, which are referred
to as LN+ and LN− in the following. Table 1 reports the details of the dataset used in
this paper.

Table 1. Details about the involved dataset.

Patients 153

BC lesion 155
LN+ 128
LN− 27
Series 3D T1-weighted DCE
Mode 3T (Discovery 750; GE Healthcare, Milwaukee, WI, USA)
Dose 0.2 mmol/kg of Gadobenate-dimeglumine

Injection flow rate 2 mL/s

2.5. Pre-Processing

The patients’ clinical data and the frequencies of the tumor histological and MRI
characteristics were reported. The Wilcoxon test was performed to compare these data
between patients with and without LN involvement, setting the statistical significance at
p < 0.05. The statistical analysis was performed using MatLab v. 2020b [23].

2.6. Segmentation

The images were anonymized and uploaded on a dedicated open-source software (3D
Slicer, version 4.8), ([24], November 2012). An identification number (ID) was assigned
to each patient. Bilateral tumors were considered with two different IDs. For each case,
the subtracted post-contrast T1w-MRI was selected. The second phase (60–120 s) was
selected for ROI segmentation, due to its higher contrast resolution. Then, a label map
was created. The lesions were manually drawn through manual and assisted thresholding
segmentation techniques on the axial projection (Figure 1). When present, necrosis was
avoided by segmentation. For multifocal or multicentric tumors, all lesions, even the
smallest, were segmented.
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Figure 1. Tumor lesion segmentation using 3D Slicer software in axial (a), coronal (b), and sagittal
(c) MRI projections during the second phase of the post-contrast sequence as demonstrated in a
case involving a 56-year-old woman with right invasive ductal breast cancer with unifocal mass-like
lesion characterized by spiculated margins and heterogeneous enhancement after contrast medium
administration with curve SI/T type III.

3. Deep Learning Analysis

An assessment of axillary lymph nodes reflects inherent primary tumor features,
whose examination enables the discovery of non-invasive substitutes for the sentinel
node biopsy currently being utilized. Most literature proposals have focused on the
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DCE sequence-extracted hand-crafted characteristics of breast lesions and performed the
classification with ML techniques. The absence of a well-defined, efficient collection of
features in the area of BC has, however, prompted researchers to investigate large and
heterogeneous characteristics, implementing a feature selection step to pick the most
discriminative ones.

The use of CNNs for the ALN metastasis prediction in this study is made possible by
their capacity to automatically learn the set of features that best suits the problem at hand,
thereby eliminating the need for the feature extraction stage common to ML techniques
and resolving the challenge of identifying the most discriminating set of primary tumor
characteristics. Furthermore, we investigate several tumor boundary alternatives that
vary depending on the quantity of healthy tissue to include in order to assess how the
peritumoral area influences the performance of the involved networks.

The implemented analysis consists of three main steps: the imaging data definition,
used to prepare data belonging to the DCE sequences of different patients; the volume
extraction and bounding options, which describe the tumor bounding options; and the
architecture of the CNNs for the ALN assessment, which introduces the involved CNNs
that differ according to the characteristics of the volumes considered as input.

3.1. Imaging Data Definition

The DCE acquisition consists of MRI images (3D volumes) taken before (pre-contrast)
and after (post-contrast) the contrast agent (CA) injection, resulting in 4D data, with three
spatial (x,y,z) dimensions and one temporal (t). Although MRI exams are acquired with the
same instruments, patients may present a different number of acquired volumes, resulting
in a need for the selection of a subset of them. By denoting the number of acquired volumes
for a patient p with Np, with ti the ith acquisition, where t0 and tNp−1 are the pre-contrast
and the last one, respectively, the subtractive series is obtained by considering ti − t0 with
i form 1 to Np − 1. To equalize the number of acquisitions for all patients, four specific
subtractive volumes are selected: the first (t1), second (t2), and last (tNp−1) volumes and
the median index (tm) volume between the third and the second-to-last volume. In this
way, information about the wash-in and wash-out of the CA due is preserved.

3.2. Volume Extraction and Bounding Options

Based on the hypothesis that peritumoral tissue may contain valuable information on
tumor aggressiveness, and thus affects the ALN metastasis spread [19–21], we evaluate how
the amount of the included non-tumor tissue impacts the ALN involvement, considering
that patients differ in the size and number of lesions. In particular, a total of six different
tumor bounding options are proposed and analyzed. They differ according to their included
quantities of healthy tissue, which allows us to evaluate the contribution gathered from the
area surrounding the tumor. Figure 2 shows the differences in the axial projections of the
proposed bounding options.

In the single fixed-size box (SFB), a fixed-size 3D bounding box is centered in the
tumor, completely encompassing the whole tumor region (or of all lesions, in cases of
multifocal or multicentric tumors), and is used to crop each subject. The bounding box
is always the same; it is applied to all four subtractive acquisitions (t1, t2, tm, tNp−1) and
is patient-independent. The amount of non-tumor tissue directly depends on the tumor
lesions’ dimensions: in the case of a single and small lesion, the extracted volume contains
a high portion of healthy tissue compared to a damaged one and vice versa.

In the single variable-size box (SVB), the smallest 3D cubical bounding box is used
to crop each subject in the four subtractive selected acquisitions. In contrast to the SFB,
the cubical box in the SVB option is patient-dependent and aims to limit the amount of
included non-tumor tissue. As a consequence, the amount of non-tumor tissue depends on
the shape of each patient’s tumor region and he difference between the largest and smallest
dimensions. Nevertheless, in cases of multifocal and multicentric tumors, the parenchyma
between lesions is included in the extracted 4D volume.
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SFB, a fixed-size 3D bounding box is used; (b) in the SVB option, the smallest 3D bounding box
circumscribed to the tumor region is considered, and (c) in the SLVB, the SVB option is applied to
each lesion of the patient.

As aforementioned, the DCE sequence of a patient is 4D data, in which each voxel
is associated with information regarding its measurement in millimeters. In more detail,
the attribute of pixel spacing is the physical distance between the centers of each two-
dimensional pixel, specified by two numeric values representing the row and vertical
spacing, while the spacing between slices measures the spacing between slices along the
normal to the first image. The above attributes represent the DCE image resolution. Since
the DCE sequences belonging to different subjects may have different resolutions, in the
single isotropic-size box (SIB) option all the volumes are firstly re-sampled to obtain MRI
images with isotropic voxels, and then the tumor bounding option SVB is applied, as
described above.

In the single lesion variable-size box (SLVB), the SVB option was applied to each tumor
lesion of the considered patient. A box for each tumor lesion is extracted, and, therefore,
the tissue between lesions is excluded in the prediction of the ALN status with the aim of
analyzing how much the parenchyma between lesions in multifocal/multicentric tumors
impacts the ALN assessment.
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In the single lesion isotropic-size box (SLIB), the tumor bounding box involves extract-
ing a different box for each of the involved patient’s lesions that considers a DCE sequence
with 3D volumes re-sampled to obtain isotropic voxels. The SLVB procedure is applied
after having resized each acquisition.

In the two-dimensional slice (2DS) option, we propose applying the SVB procedure
and then cutting the sequence of the 3D cropped volumes along the projection with the
highest spatial resolution, which results in a series of two-dimensional slices with four
temporal instants. For each patient, this process generates a set of 3D slices, with two
spatial dimensions and one temporal, which represents the same section of tissue seen
at four different time points (t1,t2, tm, and tNp−1). It is worth noting that only the slices
containing lesions are taken into account: this is possible since the ALN status assessment
requires lesion segmentation/detection.

Table 2 summarizes the six different bounding options proposed in this paper.

Table 2. Details of the proposed bounding box options.

Bounding Option Details

SFB A fixed-size 3D bounding box is used.
SVB The smallest 3D cubical bounding box is used.

SIB The SVB is applied after resizing the volumes to obtain MRI images
with isotropic voxels.

SLVB The SVB is applied to each lesion.

SLIB The SLVB is applied after resizing the volumes to obtain MRI images
with isotropic voxels.

2DS The SVB is applied, and then the sequence of the 3D cropped volumes
is cut along the projection with the highest spatial resolution.

3.3. CNN Architecture for ALN Assessment

Based on these different bounding box options, we investigate different CNNs, whose
architectures were developed for turning to the characteristics of the volumes considered
as inputs, for their ALN status predictions. Hence, we designed three CNNs: the SFB-
NET, used for the SFB option; the VB-NET, considered when the size of the bounding
box varies according to each tumor lesion, that is, for the SVB, SIB, SLVB, and SLIB; and
the 2DS-NET, introduced for the 2DS bounding option. Each CNN receives four-channel
volumes as input, which represents the considered acquisitions of the DCE sequence. The
proposed networks consist of different reduction layers and two fully connected layers.
The output of each CNN consists of a two-element vector, which, after the application of
the softmax function, is interpreted as the probability that the network associates with each
class, namely the positive (LN+) and negative (LN−) ones.

The SFB-NET is a 3D CNN with three reduction layers, whose architecture is shown
in Figure 3a. Each reduction block consists of a convolutional layer with 5 × 5 × 5 kernels
(the number of kernels depends on the output channels) and a stride set to four.

The architecture of the VB-NET is shown in Figure 3b. It is a 3D CNN, consisting of
five reduction blocks. The 4D input volume represents the smallest cubical box surrounding
the tumor region or each lesion considered at four different time instants. Therefore, the
sequence of the five convolutional layers with 4 × 4 × 4 kernels aims to implement a
gradual dimensionality reduction. The stride is set to two, and the padding is one, except
for the last convolutional layer.

The 2DS-NET is reported in Figure 3c. It presents the same characteristics as described
for the VB-NET and is implemented by replacing the 3D convolutions with the standard
2D ones. In other words, the 2DS-NET is a 2D CNN since the input is a 3D volume that
represents a bidimensional slice with four temporal instants (channels). Each convolutional
layer consists of 4 × 4 kernels, and the stride is set to two. The padding is one, except for
the last convolutional layer.
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3.4. Experimental Setup

The proposed tumor bounding box options result in volumes with different character-
istics. Indeed, in the SFB case, a 160 × 160 × 80 box centered in the lesion center is used,
generating a 160 × 160 × 80 × 4 volume for each patient, which represents the input for
the SFB-NET. The size of the box is chosen in such a way that, for each patient, the tumor is
completely enclosed. Since the SVB, SIB, SLVB, and SLIB options consider a bounding box
size that varies according to each patient’s tumor region, a resize stage with the bilinear
interpolation method provides a standardized size of 64 × 64 × 64 × 4, which then fed the
VB-NET. The resize stage is also needed for the 2DS option. The extracted four-channel
images are resized to a common size of 64 × 64 × 4, before consideration as inputs for the
2DS-NET.

As aforementioned, the SLVB, SLIB, and 2DS bounding options generate a set of
volumes or 3D slices (four-channel images) for each patient. However, the aim is to provide
a unique label for each subject that represents the potential risk of having axillary lymph
node metastasis. As a consequence, the predicted classes of all volumes (or 3D slices)
belonging to the same patient need to be combined. From all of the combining strategies,
majority voting (MV) is used, in which the label for each subject is the most common
predicted class over all of its volumes (or 3D slices).

We select the implemented CNN architectures by choosing the best configurations
obtained by varying the size of the convolutional kernels from three to seven and the
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number of reduction layers from three to five. Moreover, we also take into account the
architecture proposed by Nguyen et al. [25], which is the only architecture that aims to
predict ALN metastasis using the primary tumor DCE-MRI features with a DL approach.
In particular, we consider the solution proposed in [25] as a starting point for providing
different changes.

The performance is evaluated in terms of accuracy (ACC), sensitivity (SENS), speci-
ficity (SPE), area under the ROC curve (AUC), and Cohen’s kappa coefficient (K). All
experiments were run by applying a patient-wise 10-fold cross-validation (CV) to better
assess the generalization ability of each approach, avoiding the use of volumes belonging
to the same subject both in the training and evaluation steps. We split the set of patients
into 10 different folds, and, in each iteration, we use one fold for testing, one for validation,
and the remaining folds for training. In particular, we ensure that each patient is included
once in the validation set and once in the test set by using the i-th iteration, the i-th fold as
the test, and the previous one as the validation, as reported in Figure 4.
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Figure 4. Details about the implemented patient-based 10-fold CV. In the i-th iteration, the i-th fold is
selected as the test (green), and the previous one is selected as the validation (orange). The remaining
folds are included in the training set.

When training the CNNs, we augmented the dataset by applying random rotation
and flipping. In particular, during the training, each volume underwent a vertical and
horizontal flip and a rotation of an angle of either 90, 180, or 270 degrees with a probability
of 0.5. The training set was balanced by replicating some randomly chosen volumes
belonging to the minority class, which relies on data augmentation operations to introduce
variability among the samples. Table 3 shows the details of the number of samples in the
training set before and after the balancing phase and during the validation and test sets
for each CV fold. Moreover, the extracted volumes were normalized in the (0,1) range to
ensure that, in the classification step, the used convolutional neural networks operate with
volumes that have the same scale across different patients. During the experiments, the
maximum number of epochs was set to 500; the batch size was set to 16 for the SFB-NET
and VB-NET and 32 for the 2DS-NET. The learning rate for the cross-entropy loss was set to
10−6. We used the Adam optimizer with a weight decay set to 10−4. To find the appropriate
hyper-parameters, we implemented a grid search by varying the batch size in (8, 64), the
learning rate in (10–7, 10–3), and the weight decay in (0, 10−4).

All experiments were carried out using Pytorch (version 1.10, developed by Meta AI
and now part of the Linux Foundation umbrella), and the pre-processing step, including
the different bounding box options, was implemented in MATLAB 2020b.
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Table 3. Details about the number of samples in the training, validation, and test sets.

Fold Training Set Balanced Training Set Validation Set Test Set

LN+ LN− LN+ LN− LN+ LN− LN+ LN−
1 23 101 101 101 2 13 2 14

21 22 101 101 101 2 14 3 13
32 21 102 102 102 3 13 3 13
43 21 102 102 102 3 13 3 13
54 21 102 102 102 3 13 3 13
65 21 103 103 103 3 13 3 12
76 21 104 104 104 3 12 3 12
87 21 104 104 104 3 12 3 12
98 22 103 103 103 3 12 2 13
109 23 102 102 102 2 13 2 13

4. Results

The clinical characteristics of the patients and the pathological and MRI features of each
tumor are summarized in Table 4. The menopause status, grading, and class significantly
differ (p < 0.05) between patients in cases of lymph node involvement. No other significant
differences were observed between the two examined groups (LN+ vs. LN−).

Table 4. Patient and tumor feature frequencies and relative percentages are reported in relation to the
final label (lymph node LN− involvement). The difference between the two groups (LN+ vs. LN−)
was reported, and the statistical significance was set at 0.05 (*). HT (hormonotherapy), IS curve/T
(intensity signal curve/time), IDC (invasive ductal carcinoma), ILC (invasive lobular carcinoma), TN
(triple negative).

Class Group Frequency Percentage LN+ LN− p Value

Familiarity none 109 70.32% 22 87 0.1314
≥1 fam 46 29.68% 5 41

HT no 141 90.97% 27 114 0.0733
yes 14 9.03% 0 14

Menopause no 67 43.23% 17 50 0.0233 *
yes 88 56.77% 10 78

IS curve/T
I 21 13.55% 3 18 0.2819
II 69 44.52% 10 59
III 65 41.94% 14 51

Margins
regular 7 4.52% 0 7

0.5504irregular 83 53.55% 18 65
lobulated 19 12.26% 3 16
spiculated 46 29.68% 6 40

Histotype IDC 129 83.23% 23 106
0.7351ILC 23 14.84% 4 19

Medullary 3 1.94% 0 3
Grading 1 21 13.55% 1 20

0.0011 *2 69 44.52% 7 62
3 65 41.94% 19 46

Class

Luminal A 61 39.35% 6 55
0.0013 *Luminal B 67 43.23% 9 58

Her2 12 7.74% 6 6
TN 15 9.68% 6 9

Each of the performances of the different CNNs, based on each bounding option, is
shown in Table 5. The best performances in terms of accuracy and AUC are obtained for
the 2DS-NET: 78.63% and 77.86%, respectively. The 2DS-NET also showed the highest
specificity; the highest sensibility was reported for the VB-NET based on the SVB and SIB
as bounding options. Moreover, the solution involving the SIB option obtained the highest
performance in terms of K.
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Table 5. Performance of the CNNs in LNS prediction (LN+ vs. LN−). ACC (accuracy), SPE
(specificity), SENS (sensibility), AUC (area under the curve), K (Cohen’s kappa coefficient), SFB
(single fixed-size box), SVB (single variable-size box), SIB (single isotropic-size box), SLVB (single
lesion variable-size box), SLIB (single lesion isotropic-size box), 2DS (two-dimensional slice), and
NET (network). The best test performances are evident in bold.

Model Option ACC SPE SENS AUC K

Mean Mean Mean Mean Mean
SFB-NET SFB 70.62% 75.92% 43.33% 69.52% 0.1349
VB-NET SVB 76.79% 78.17% 71.67% 75.05% 0.3753
VB-NET SIB 78.13% 78.82% 76.67% 77.13% 0.4487
VB-NET SLVB 52.71% 53.24% 48.33% 53.11% 0.0124
VB-NET SLIB 62.58% 71.79% 18.33% 47.34% −0.0798
2DS-NET 2DS 78.63% 85.75% 46.67% 77.86% 0.2911

Figure 5 shows the ROC curves of the implemented experiments, obtained by plotting
the true positive rate against the false positive rate at various threshold settings. It is
possible to note that when the SLVB and SLIB options are used, the model performs worse
than when a random classifier is used.
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Figure 6 shows the precision-recall curves of the implemented experiments that report
the tradeoff between the precision and recall for different thresholds. When the classes are
severely imbalanced, they are an effective indicator of how well the predictions worked. In
particular, considering LN+ as the positive class and denoting with tp, tn, fp, and fn the true
positive, true negative, the false positive, and the false negative, respectively, the precision
and recall are computed as follows:

Precision =
tp

tp + f p
Recall =

tp
tp + f n

(1)
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In particular, the recall matches the sensitivity, while the precision represents the
fraction of positive instances correctly classified among all the samples predicted as positive.
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Finally, Figure 7 reports the confusion matrices computed by taking into account the
predictions of the implemented models.
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5. Discussion

It is now well established that the ALNS is directly dependent on tumor aggressiveness,
which is reflected in a different representation of the breast lesion during DCE-MRI [12]. It
has also been widely confirmed that the peritumoral tissue is influenced by tumor angio-
and lympho-invasiveness [19–21]. Clinical and anamnestic data are actually not enough to
determine the LNS with certainty, although some of these may benefit the doctors (in our
case, cohort grading, class, and menopause status differ significantly between patients with
lymph node involvement). In the majority of the works present thus far in the literature
that exploits ML classifiers as predictors of the axillary cavity’s status in patients with breast
cancer, generally only the features of the primary lesion have been evaluated, without
considering the breast parenchyma adjacent to the lesions and, in particular, the tissue
between the multiple lesions in cases of multifocality and multicentricity [13,15,16,26].

Furthermore, these works are highly heterogeneous in terms of the involved dataset
sizes, feature extraction/selection methods employed, and trained classifiers. Most litera-
ture proposals extract the shape, texture, morphological, and first-order features, while phar-
macokinetic parameters are exploited only by Liu et al. [27]. In our previous work [14,28]
3D extension of local binary patterns (LBPs) was also explored as features to enrich texture
description. Regarding the proposed classifiers, they are predominantly support vector
machines [29–31], logistic regressions [27,32,33], linear discriminant analyses [34,35], and
random forests [14,36].

In our previous work [14,28], we combined patients’ clinical data, primary breast
tumor histological information, and MRI radiomic features (First-Order, 3D Gray-Level
Co-Occurrence Matrix, Three Orthogonal Planes-Local Binary Patterns) to predict the
ALNS. In more detail, in a very innovative way, in this previous work, we considered both
breast lesions and peritumoral regions for feature extraction considering a convex hull
algorithm, which is the minimum volume bounded into a convex polygon and contains
the ROI [14,28]. The high dimensionality of the problem to solve (257 features) makes the
wrapper features selection method necessary before using a random forest (RF) classifier to
provide the prediction.

In this work, we make a step forward by exploiting DL approaches and CNNs, in
particular, for ALN status prediction. Their ability to autonomously learn the set of features
that fits the specific task to solve makes the feature extraction step unnecessary, which is
typical of ML techniques, thus overcoming the problem of finding the most discriminating
set of primary tumor characteristics. Moreover, we also evaluate how the peritumoral
region affects the performance of the involved networks by investigating several tumor
bounding options that differ according to the amount of healthy tissue to be included.

The implemented methodology consists of three main steps: the imaging data definition,
used to prepare data belonging to the DCE sequences of different patients; the volume
extraction and bounding options, which describe the tumor bounding options; and the
CNN architecture for the ALN assessment, which introduces CNNs that differ according to
the characteristics of the volumes considered as input.

Among all of the experiments, the results obtained involving the SIB option and the
VB-NET showed the best performance. We argue that the obtained result is completely
in accordance with the specific problem to be solved. In the SFB option, the fixed-sized
bounding box may result in the inclusion of an excessive amount of healthy tissue with
respect to the lesioned one, especially in patients with a small tumor lesion. As a conse-
quence, the SFB-NET may focus on areas of the input volumes that do not contain useful
information for the prediction and do not reflect the tumor’s intrinsic behavior. The SVB
and SIB options consider the smallest 3D cubical bounding box circumscribed to the tu-
mor region, which limits the amount of the included peripheral and healthy tissue. As a
result, the VB-NET directly takes the region of interest as input, leading to an increase in
performance. However, the SVB extracts volumes whose voxels have different dimensions
(in terms of mm) along the three spatial axes. In more detail, the spacing between slices
is usually greater than the pixel spacing, resulting in a 3D cubical box whose dimension
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greatly depends on the x- or y-axes. As a consequence, the SVB option may introduce a
high amount of healthy tissue along the z-axis, resulting in the need to introduce the SIB
procedure that considers volumes with isotropic voxels. The considerations made between
the SVB and SIB can be also used for the SLVB and SLIB. However, the results shown in
Table 5 suggest that approaches that deal with a box for each lesion may not be the best
solution. We argue that the presence of multiple lesions may be relevant information for the
prediction of axillary lymph node metastasis. Therefore, if the lesions are split into different
boxes, such information may be lost when considering, in particular, the multifocal and
multicentric tumors as a single entity and not as different tumors. Finally, the 2DS option
that creates a set of 3D slices for each patient, has the advantage of increasing the size of
the dataset. However, when comparing the results with the solution involving the SIB
procedure, it is possible to note a high difference in terms of sensitivity that makes us
confirm the SIB as the preferred bounding option.

Moreover, Table 5 shows that the different bounding box options affect the results. In
particular, the solutions involving the SIB and SVB options are the approaches with the
more balanced results of the two classes, providing also the largest performances in terms
of sensitivity (76.67% and 71.67%, respectively). On the contrary, the other bounding box
options tend to favor the negative class (LN−); we deem that this cannot be considered
a limitation of the work, but rather a result. Indeed, an explanation can be found in the
following reasons:

• In the SFB option, the fixed-sized bounding box may result in an excessive amount of
healthy tissue with respect to the lesioned one;

• We argue that the presence of multiple lesions may be relevant information for the
prediction of axillary lymph node metastasis. Therefore, when the SLVB and SLIB
options are used, such information may be lost;

• The 2DS option considers 2D slices and, thus, does not exploit volumetric features.

To the best of our knowledge, this paper represents the first work exploring the use of
different primary tumor bounding options and convolutional neural networks to evaluate
how the peritumoral region affects the ALNS assessment.

The work proposed by Nguyen et al. [25] represents the only one that has aimed to
predict ALN metastasis using primary tumor DCE-MRI features with a DL approach. In
that work, a 3D CNN is implemented to process the DCE-MRI images using a subtractive
approach that works with the third, fourth, and fifth post-contrast volumes. A 3D cuboidal
bounding box of the size 50 × 50 × 50, encompassing the tumor region, is used to crop the
DCE-MRI data.

Nguyen et al. obtained the best values with 64.64%, 69.29%, 37.37%, and 58.56% for
ACC, SPE, SENS, and AUC, respectively; all are lower compared to our best results (78.06%,
78.91%, 74.07%, and 75.84%), although they are not directly comparable since the datasets
are different.

In our opinion, the fixed-size bounding box used in Nguyen et al. reduces the general-
ization capability of the implemented model. We also consider the absence of significant
differences between our architectural model and that used by Nguyen et al. Further-
more, the authors included patients from two different hospitals, which may influence the
imaging acquisition homogeneity.

Our work demonstrates that the peritumoral parenchyma, and, in particular, ones
located between multiple lesions in the case of a multicentric or multifocal tumor, contains
information not visible to the radiologist’s eye that correlates with the metastatic spread to
the lymph nodes of the axillary cable. Parenchyma near the tumor lesions in current MRI
clinical practice is not considered. In detail, in our work, the bounding box that has shown
the best results is that which includes the parenchyma closest to the lesions and between
multiple lesions but excludes the parenchyma furthest from the lesions themselves. These
data suggest that there is an invisible cellular diffusion near the tumor lesions that artificial
intelligence can help to reveal.
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In our previous works, we have shown how the features contained in the primary tu-
mor, first shown in [13,27], and in the peritumor edema, then explored in [19], significantly
influence the LNS. The demonstration that the contribution of the peritumoral parenchyma
is significant paves the way for new research, which has had little or no exploration in the
current literature.

The main limitation of our study is the small number of patients that belong to a
single medical center. Although the size of the dataset is similar to that used in other
works [16,27,32,33], which analyzed samples in the range of 146–164 patients, a future
perspective aim is to include data collected from different centers and also to evaluate how
different image modalities contribute to the prediction of axillary lymph node metastasis.
Another important limitation is the imbalance of class priors (22 patients with LN+ vs.
128 patients with LN−), which, in several cases, resulted in sensitivity values lower than
the specificity ones, although we implemented standard techniques to cope with this issue.

In our future work, we want to implement data and test CNNs on different datasets
and validate the bounding box technique on different kinds of images and MRI sequences.
Furthermore, we want to investigate the role of the individual histological parameters
reported in this article in relation to the radiomics data in the prediction of LNS.

However, these results are absolutely noteworthy in relation to the role played by the
peritumoral parenchyma.

6. Conclusions

In conclusion, we demonstrated that a selective inclusion of peritumoral tissue in-
creases the performance of the CNNs in predicting lymph node involvement and that the
tissue localized among different tumoral lesions, especially in cases of multifocal and mul-
ticentric cancers, is strongly related to angio- and lymph-invasiveness and to lymph node
metastasis. This tissue is barely evaluated by the radiologist’s eye on all MRI sequences
and, in this way, an AI approach may represent a valid supporting tool.

Of course, more studies are needed to confirm these results. Future perspectives
include increasing the number of patients, in particular patients with a positive LNS, to
test the reproducibility of the results on different samples (different MRI and samples) and
to include semantic features in the CNN analysis.
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