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Structure based pharmacophore 
modeling, virtual screening, 
molecular docking and ADMET 
approaches for identification 
of natural anti‑cancer agents 
targeting XIAP protein
Firoz A. Dain Md Opo1,2, Mohammed M. Rahman3*, Foysal Ahammad4, Istiak Ahmed5, 
Mohiuddin Ahmed Bhuiyan2 & Abdullah M. Asiri3

X‑linked inhibitor of apoptosis protein (XIAP) is a member of inhibitor of apoptosis protein (IAP) 
family responsible for neutralizing the caspases‑3, caspases‑7, and caspases‑9. Overexpression 
of the protein decreased the apoptosis process in the cell and resulting development of cancer. 
Different types of XIAP antagonists are generally used to repair the defective apoptosis process that 
can eliminate carcinoma from living bodies. The chemically synthesis compounds discovered till 
now as XIAP inhibitors exhibiting side effects, which is making difficulties during the treatment of 
chemotherapy. So, the study has design to identifying new natural compounds that are able to induce 
apoptosis by freeing up caspases and will be low toxic. To identify natural compound, a structure‑
based pharmacophore model to the protein active site cavity was generated following by virtual 
screening, molecular docking and molecular dynamics (MD) simulation. Initially, seven hit compounds 
were retrieved and based on molecular docking approach four compounds has chosen for further 
evaluation. To confirm stability of the selected drug candidate to the target protein the MD simulation 
approach were employed, which confirmed stability of the three compounds. Based on the finding, 
three newly obtained compounds namely Caucasicoside A (ZINC77257307), Polygalaxanthone III 
(ZINC247950187), and MCULE‑9896837409 (ZINC107434573) may serve as lead compounds to fight 
against the treatment of XIAP related cancer, although further evaluation through wet lab is necessary 
to measure the efficacy of the compounds.

Hepatocellular carcinoma (HCC) is one of the most predominant type of primary liver cancer that has ranked 
fourth most common cause of cancer-related death  worldwide1,2. Different factors are associated with the devel-
opment of liver cancer including fatty liver disease, consumption of alcohol, hepatitis B and hepatitis C  virus3. 
Early detection rate of the cancer is low and when the symptoms appear, cancer began to spread and be difficult 
to  treat4,5. Liver transplantation, surgery, radiotherapy, chemotherapy are the most common approach to treat 
HCC, but in advance stage of cancer treatment failure rate are  frequent6. To increase the survival rate early detec-
tion of liver cancer and better compounds, which are responsible to inhibit the growth of HCC is important to 
identify to reduce the HCC related disease.

Apoptosis is a type of programmed cell death that help to eliminate unwanted cells from multicellular 
 organisms7. Apoptosis deficiency in the cells is an important cause of cancer that occur due to the IAPs. XIAP 
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is one of the main anti-apoptotic proteins in the IAP family capable of neutralizing caspase-9 via BIR3 domain, 
where the effector caspases-3 and 7 is neutralize by BIR2  domain8. Cancer cells can escape from drug-induced 
death due to defects in pro-apoptotic death regulators or the presence of highly expressed pro-survival proteins, 
which is one of the main reasons for failure of chemotherapy. Oncogenes neutralization has shown the abil-
ity to reduce the lengthy process of chemotherapy and that is helpful to reduce the quantity and dose of drugs 
during cancer treatment. Therefore, XIAP based targeted would be an excellent treatment options for different 
cancer diseases including hepatocellular  carcinoma9. Clinically antisense technology, SMAC-mimetics, siRNA 
has tried to decrease the overexpression of XIAP, but due to the neurotoxicity antisense based treatment (Exam-
ple: AEG35156) were terminated in Phase-I clinical trial. The antisense based treatment process work based on 
reducing the XIAP mRNA level and increasing apoptotic cell death of stem cells. SMAC-mimetics are the most 
important compounds to neutralize the XIAP also work over the IAP families. Three amino acids present in the 
N terminal region of proline at the N-terminus of SMAC/Diablo are able to work over the binding groove of 
XIAP–BIR2 and XIAP–BIR3 domain at the same  time10. Few important side effects have been observed in the 
case of developing of these compounds, SMAC/Diablo protein able to bind all BIR domains of several IAP most 
of are with cIAP1 and cIAP2 lead to the toxic effect or adverse effects due to the higher affinity of binding. To 
minimize adverse effects caused for higher binding affinity, antagonist molecules having the lower micromolar 
affinity to the XIAP-BIR2 domain is urgently need to  develop11,12.

In-silico drug design consist of theoretical and computational approaches can be used to identify novel 
hits or leads against selected biological active  macromolecules13. Nowadays, computer aided drug design 
(CADD) approach like pharmacophore modeling, virtual screening, molecular docking and dynamic simulation 
approaches are widely used to discover, develop, and analyze drugs and similar biologically active  molecules14. In 
CADD approach, structure and ligand-based pharmacophore model can able to identify similar active molecules 
against specific target protein, where binding affinity of a large scale compound with target macromolecule can 
be evaluate easily by in-silico molecular docking  process15. The biological activity of a compound can be evalu-
ating, whenever the compound binds with targeted macromolecule and trigger a specific response. Calculation 
of binding capacity of a compound was time consuming and costly in conventional drug development due to 
require a large-scale in-vitro and in-vivo  experiment16, in that case molecular docking approach make it easier 
within a short time. Pharmacokinetics and pharmacology properties like absorption, distribution, metabolism, 
and excretion (ADME) even toxicity of a compound can predict by using computer aided drug design  process17. 
So, this study focused mainly on computer aided drug design process like structure-based pharmacophore 
modeling, virtual screening, ADMET, molecular docking and dynamic simulation approaches to identify the 
possible natural antagonist against XIAP protein to treat the cancer.

Result and discussion
Structure‑based pharmacophore modeling and virtual screening. Pharmacophore model genera‑
tion. XIAP is a nonredundant modulator of tumor necrosis factor-related apoptosis and best-defined anti-
apoptotic IAP family member that directly neutralizes caspase-9 via its BIR3 domain. Over-expression of the 
protein is responsible for developing different  cancers7. Chemical that has developed targeting XIAP are mostly 
toxic and has adverse effect. Therefore, natural compounds identical to the previously originated antagonist 
can be developed as a drug instead of chemically synthesis compound. Ten (10) chemically synthesis active an-
tagonist of XIAP (Table 1) were collected through ChEMBL and advance literature search, which were docked 
with XIAP protein. The best binding score found for the antagonist Hydroxythio Acetildenafil (PubChem CID: 
46781908) was − 6.8 kcal/mol, binding energy of other 9 molecules has shown in Table 1. Also, the interaction 
between XIAP protein and antagonist has provided in Table S1.

For drug design, protein 3D structure determination is necessary and nowadays the most validated structure 
of protein can be mining from several protein data banks or homology modeling. To identify antagonist against 
desire protein crystal x-ray structure of XIAP protein (PDB: 5OQW) in complex with compound 46781908 
recovered and a structure-based pharmacophore model to the enzymatic cavity was generated. Ligands binding 
capacity to the selected XIAP protein are determined experimentally and validated through x-ray diffraction 
method having  IC50 value 40.0  nM18. The overall expression can be regulated by binding of the inhibitor to the 
active site of XIAP protein. Sometimes proper efficacy of inhibitor against any protein might not be reliable due to 
the improper binding. So, the determination of active series of inhibitors should be examined for sufficient inter-
action to get more biological activity compared to the existing one. LigandScout4.3 essential advance molecular 
design software was used to generate the key chemical features based on pharmacophore model.

The different chemical features were determined, and total number was 14. Among theme four were hydro-
phobics, one positive ionizable bond, three H bond acceptor, 5 H bond donor, 15 exclusion volume features were 
presented as a protein ligand complex interaction (Fig. 1). To maintenance optimum pharmacophore features, 
some features have omitted during the time of pharmacophore model generation.

Obtained pharmacophore features generated from the protein–ligand complex is depicted that hydrophobic 
interactions are predominant formed with the amino acid residues of the selected protein. HBD features have 
been found in several interactions with the protein, whereas nitrogen atoms in the benzine ring interacted with 
the THR308, ASP309, GLU314 amino acid (Fig. 2). One HBD was formed with the oxygen atom of the side chain 
of the amino benzine HOH523 number position. On the other site, HBD formation after ligand–protein interac-
tions was shown as a red mark in the position of THR308, HOH556. HOH565. THR308, HOH556, which were 
bind to the oxygen atom, and nitrogen atom of the benzine ring bind to the HOH565. Partially two interactions 
such as HBD, HBA were formed also with the oxygen atom of HOH565. Positive ionizable pharmacophore fea-
tures have also been found to be formed in GLU314 number position from the complex protein ligand structure.
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Molecule 
PubChem CID

Chemical 
Name

Molecular 
Formula

Chemical Structure IC50 
(nM
)

Binding 
Affinity 
(kcal/mo
)

25022340 AT-406 C32H43N5O4 225 -6.1

3218 Embelin C17H26O4 4100 -5

10281 Thymoquinon
e

C10H12O2 200 -4.4

44182275 MLS-
0391037.0001

C26H37N5O7 9400 -2.1

49836020 Birinapant C42H56F2N8O6 126 -5.9

Table 1.  (continued)
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118169620 ASTX660 C30H42FN5O3 40 -6.5

24737642 LCL161 C26H33FN4O3
S

1050 -6.4

219100 Idronoxil C15H12O3 4010 -6.1

46940575 GDC-0152 C25H34N6O3S 28 -6.2

46781908 Hydroxythio 
Acetildenafil

C25H34N6O3S 23 -6.8

Table 1.  List of 10 known active antagonist of XIAP protein and their binding affinity towards the protein 
generated through molecular docking method.
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Pharmacophore model validation. Validation is necessary to get the authentic pharmacophore analysis as well 
as to evaluate the quality of the molecular  model19. Structure-based pharmacophore model generated in this 
study was validated before database screening to evaluate whether or not our models are capable to distinguish 
the active compounds from decoy set. The pharmacophore model was validated by using 10 actives (Table 1) 
known XIAP antagonists with correspondence 5199 decoy compound (Supplementary file) obtained from 
the enhanced Database of Useful Decoys (DUDe). The active test set with inhibitor constant  IC50 values were 
merged with the decoy compounds and an initial screening was run to validate to model. The performance of a 
classification model like the AUC value and EF value of the compounds was estimated from the receiver operat-
ing characteristic curve (ROC). In general, ROC is a probability graph express the performance of a classifica-
tion model that can give an idea about degree of separability, where AUC is used to describe the summary of 

Figure 1.  (A) The 3D structure-based pharmacophore model of XIAP protein in complex with 46781908 
(CID) ligands derived from the X-ray derived crystal structure of XIAP protein (PDB ID: 5OQW). (B) Several 
pharmacophore features were generated after complex interaction, four yellow spherical shapes indicating 
hydrophobic interaction, one blue star shape depicting the positive ionizable with tolerance 2, three red 
colors arrow and spherical shapes indicating H bond acceptor having tolerance 1.5, five hydrogen bond 
donors represented by green spherical or arrow shape have been identified within the protein–ligand complex 
interaction. 15 exclusion volume, which were generated during pharmacophore modeling has not showed in this 
schematic presentation.

Figure 2.  2D structure obtained during the pharmacophore modeling showing the hydrophobic interaction 
depicting yellow color and the interaction with the amino acid residues in our selected XIAP protein. Hydrogen 
bond donor (HBD) features most frequently participated in ligand–protein interaction were shown in green 
color, whereas the red color showing the interaction of Hydrogen bond acceptors (HBA) to the oxygen, nitrogen 
atom of the benzine ring and its different side chains. Hydrogen atoms as well as restricted area maintain the 
shape and position of the binding pocket did not mention in the figure.
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the model performance. A model with higher AUC value should have better  predictability20. The AUC value is 
ranging between 0 and 1, so the model whose prediction rate is 100% correct has an AUC value 1. In our valida-
tion process, the early enrichment factor (EF1%) was 10.0 with an excellent AUC (area under the ROC curve) 
value in 1% threshold was 0.98 (Fig. 3), which proved that our model has ability to distinguish true actives from 
decoy compounds.

Dataset generation for pharmacophore‑base screening. Database generation is an important part for identifica-
tion the best lead molecule during screening process. ZINC database is a curated collection of commercially 
available chemical compounds form which we can get the information regarding compound’s molecular weight, 
chemical structure, physical and chemical properties against biological active macromolecules. It contains more 
than 230 million purchasable compounds in 3D format to the freely accessible website, which is ready to  dock21. 
It also provides information regarding various compound from different vendor like Ambinter as a natural 
compound database library. To create the database for pharmacophore based virtual screening, the previously 
obtained pharmacophore model generated for each active compound was submitted to  ZINCPharmer22. Ini-
tially, it searches hits from the ZINC database of “ZINC natural products and ZINC natural derivatives” consist 
millions of Drug-like, Natural Products and FDA approved drugs. A maximum of 0.5 Å RMSD from sphere 
centers were used as input parameters for ZINCPharmer and a total 11,000 compounds was retrieved for fur-
ther screening. The database of hit compounds from the ZINCPharmer were saved and downloaded for further 
screening.

Pharmacophore‑based virtual screening. Pharmacophore interaction features generated from the protein–
ligand complex was applied to the 11,000 natural compounds. During the screening process relative pharma-
cophore was used as a scoring function, where all query features were used as a screening mode and maximum 
four (4) features have omitted. It is difficult to match all of the query features during screening process that’s 
why some features have been omitted to increase the pharmacophore fit score. A higher score is desirable for 
optimum fitting with the desire environment than the compound will show better activity against the targeted 
macromolecules. A total seven hit compound with a fit score ranging from 94.75 to 105.31 were generated 
that matches all of the pharmacophore features. Usually, the pharmacophore fit value is shown the geometric 
fit of features to the 3D-structure-based pharmacophore model. The molecule with maximum fit score to the 
validated pharmacophore model should show activity against our desire XIAP protein. The compound, which 
remarked as hit was retrieved and saved for further evaluation.

Molecular docking based virtual screening
Binding site identification and receptor grid generation. Based on the crystal structure, the desire 
XIAP (PDB ID: 5OQW) protein was bounded with three ligands. So, the protein pockets have different attach-
ment site as well as shape for binding the favorable ligand. The binding position of the complex structure was 
retrieved so that the binding site can further utilize during molecular docking simulation. Analysis of the pro-
tein–ligand interaction revealed a salt bridge at the position of GLU314, four pi-alkyl bonds formed to formed 
at the benzine ring and side chain of benzine ring by interacting with TRP323, TYR324, LYS297. Four conven-
tional hydrogen bonds were formed between the ASP309 and THR308 position. One halogen bond has observed 
at VAL298 with the fluorine attached to the benzine ring. At the same time, two carbon-hydrogen bonds were 
formed at GLN319 with the two sides of the same benzine ring (Fig. 4).

Figure 3.  Receiver operating characteristic (ROC) curve generated based on the recognize ability of the active 
to decoy compounds of the structure-based pharmacophore model. The pharmacophore model was validated 
using a set of 10 XIAP active and 5199 decoy Compounds.
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Molecular docking. Molecular docking is an important part in drug design process, which is carried out 
in the study to evaluate the binding ability of the hits compounds to the target XIAP protein. XIAP monomeric 
proteins has decorated with two active chains such as A, B attached with three ligands (A4E, NA, ZN) with the 
protein. The protein was prepared and a receptor grid with box dimeter X = 30.06, Y = − 4.19 and Z = − 22.94 was 
generated depend on the previously obtained binding site to the chain A.

The specific number of drugs like hit (7) compounds were docked with XIAP by utilize PyRx tools Autodock 
vina to evaluate their binding capacity, which satisfied the characteristics of the pharmacophore  model23. Among 
them, four compounds ZINC77257307, ZINC1070004335, ZINC247950187 and ZINC107434573 with binding 
affinity − 8.0 kcal/mol, − 7.8 kcal/mol, − 7.6 kcal/mol, and − 6.9 kcal/mol (Table 2), respectively shown better 
binding affinity than the XIAP antagonist CID: 46781908 (− 6.8 kcal/mol), that has used during main pharma-
cophore model generation. The binding affinity for all of hit shown in Table S2. Interestingly, compound which 
have higher pharmacophore fit score (Table 2) found higher docking score, and higher docking score indicates 
the better binding to the desire protein.

Interpretation of protein‑ligands interactions. Here, it is observed that compound that have bet-
ter pharmacophore fit score gained better binding affinity ZINC77257307 (− 8.0 kcal/mol), ZINC1070004335 
(− 7.8  kcal/mol), ZINC247950187 (− 7.6  kcal/mol) and ZINC107434573 in contrast to the compound CID: 
46781908 (− 6.8  kcal/mol) showed in Table  2. ZINC77257307 formed nine van der walls interactions with 
LYS297, LEU292, GLY304, GLY305, TYR324, GLY306, LEU307, GLN319, LYS311, three conventional hydrogen 
bonds with ASP309, THR308, GLU314, one pi donor hydrogen bond with TRP310, one alkyl bond with LYS299, 
and two Pi-alkyl bonds with TRP323 with desire XIAP protein (Figs. 5 and 6).

In the case of ZINC1070004335 van der walls bond were predominantly formed with LYS334, TYR329, 
ALA263, PHE301, PRO257, ASN255, ARG268, ASP264, TYR265. The position of TRP317, GLN333, GLU332 
acquired three conventional hydrogen bonds, one carbon-hydrogen bond at HIS302 and one alkyl bond with 
ARG286 position (Figs. 5 and 6).

Figure 4.  Depicted figure showing the binding site of the protein with the selected ligand complex (PDB ID: 
5OQW). Several types or interaction were shown by color with different amino acids residues.

Table 2.  Docking score with XIAP protein, pharmacophore fit score and the source of the top four selected 
compounds.

ZINC ID Compound name Docking Score (kcal/mol) Pharm-Fit Score Source of the compounds

ZINC77257307 Caucasicoside A − 8.0 95.53 Helleborus caucasicus

ZINC1070004335 Venturicidin B − 7.8 94.75 Streptomyces aureofaciens

ZINC247950187 POLYGALAXANTHONE III − 7.6 95.70 Polygala tenuifolia

ZINC107434573 MCULE-9896837409 − 6.9 95.72 Unknown
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For the compound ZINC247950187, the number of vans der walls interaction has decreased but increased 
other types of bond such as 5 van der walls interaction at position ASP264, GLN333, PRO257, PHE301, LYS328 
has found to formed, which are less than the previous two compounds. Nine conventional hydrogen bonds with 
ALA263, ARG268, HIS302, GLU332, ASN255 position with four hydrogen atom, one pyridine, and one ben-
zene ring with ARG268 and ALA263 position has found to formed (Figs. 5 and 6). For, ZINC107434573 it has 
observed to formed five carbon-hydrogen bonding in the position of ASN255, HIS302, GLU332, one pi-sigma 
with TYR265, one pi-pi t shaped bond with TYR329, one alkyl and pi alkyl bond with ARG286. The compounds 
also produced 11 van der walls bond with GLY305, PRO251, TYR324, PHE250, TRP323, LYS322, GLN319, 
GLU314, TRP310, ASP309, LEU307, and 3 conventional hydrogen bonds with ASN249, GLY306, THR308 posi-
tion. The protein–ligand interaction mode for all the four compounds has listed in Table 3.

Pharmacophore features analysis. Pharmacophore is a group of steric and electronic features that con-
firm optimal supramolecular interactions during virtual screening on large scale compound databases. It is pow-
erful and more efficient method than molecular docking that can find molecules against specific target to induce 
or inhibit the macromolecular  activity24. The compound which has similar or relevant properties should show 
the same or better activity like to the query compound. In this study, the top four compounds (based on docking 
score) ZINC77257307, ZINC1070004335, ZINC247950187 and ZINC107434573 pharmacophore features was 
analyzed and compared with the features of the antagonist 46781908. All of the compounds have better phar-
macophore properties than the antagonist CID: 46781908, so these compounds should be effective to our target 
protein. The pharmacophore feature found of the four compounds has shown in Fig. 7.

Absorption, distribution, metabolism and excretion (ADME) and toxicity test
Analysis of ADME properties. After administration of the drug through any route to the human body or 
in the animal model, it undergoes the absorption, distribution, metabolism, excretion resulting active or passive 
transport to the target  site25. Interaction with the target biological macromolecules might produce desirable or 
undesirable pharmacological effect. Drug design is a step-by-step evaluation process and lacking the evaluation 
my reason for rejection of the drug, which is costly for any companies. The bioavailability of a drug depends on 
the safety and efficacy, lack of safety and efficacy are the main cause of drug failure, which are mainly depend on 
the ADME properties. Here, we evaluate the ADME properties of the selected four compounds by using in silico 
SwissADME server to see the pharmacokinetic properties such as lipophilicity, water-solubility, drug-likeness, 
medicinal chemistry of the  compounds26. The lipophilicity of compounds means they can easily diffuse through 
the cell membrane; hence the oral preparation is not suitable. Moreover, an injectable dosage form may be a 

Figure 5.  3D interaction between the protein–ligand complex. Here, figure (A) ZINC77257307, (B) 
ZINC1070004335, (C) ZINC247950187, and (D) ZINC107434573 showing the ligand contact with the protein 
XIAP after molecular docking.
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Figure 6.  2D interaction between the protein–ligand complex. Here, figure (A) ZINC77257307, (B) 
ZINC1070004335, (C) ZINC247950187, and (D) ZINC107434573 showing the ligand contact with the protein 
XIAP after molecular docking. Different bonds types were described by different colors such as blue, red, purple, 
light pink, deep pink, green and sky blue.

Table 3.  Interaction result between the selected 4 ligands in complex with the protein XIAP.

Compounds ID
Conventional 
hydrogen bonds

Pi donor hydrogen 
bond Alkyl bond

Carbon hydrogen 
bond

Unfavorable donor-
donor bond

Unfavorable 
acceptor-acceptor Pi-alkyl bond

ZINC77257307
ASP309 (2.26 Å), 
THR308 (2.09 Å), 
GLU314 (2.51 Å)

TRP310 (2.98 Å) LYS299 (5.03 Å) TRP323 (4.36 Å, 
5.03 Å)

ZINC1070004335
TRP317 (2.6 Å), 
GLN333 (2.56 Å), 
GLU332 (2.30 Å)

ARG286 (5.38 Å) HIS302 (3.51 Å)

ZINC247950187

ALA263 (2.32 Å), 
ARG268 (2.08 Å), 
HIS302 (2.51 Å), 
GLU332 (2.53 Å, 
2.90 Å), ASN255 
(3.46 Å, 3.23 Å, 
2.98 Å, 3.57 Å)

Pi-sigma Pi-pi T shaped

ASN255, HIS302 
(3.78 Å), GLU332 
(3.18 Å)

ARG268 (1.60 Å) ALA263 (2.67 Å) ARG286 (4.62 Å, 
5.38 Å)TYR265 (3.67 Å) TYR329 (5.36 Å)

ZINC107434573
ASN249 (2.28 Å), 
GLY306 (2.48 Å), 
THR308 (2.54 Å)
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better option to get a rapid onset of action as the gastrointestinal absorption is low. The ADME properties of the 
selected four compounds has shown in Table 4.

Analysis of toxicity. For better lead compound selection, in-silico toxicity measurement is an important 
procedure before drug candidate undergo clinical  trial25. Computational based in-silico toxicity measurement 
has been widely used due to their accuracy, rapidity, accessibility, which can provide information about any syn-
thesis or natural compounds. To identify the toxicity and adverse effect of the selected four compounds, we used 
both freely accessible TEST  tool27, and ProTox-II  server28. Each software was used to evaluate several toxicologi-
cal parameters such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, 
and the result was achieved based on predicted median lethal dose  (LD50) in mg/kg weight (Table 5). According 
to the ProTox-II server compound ZINC107434573 and ZINC247950187 both were belonging to class 4,  LD50 
range from 300 to 2000 mg/kg, these would be harmful in case of oral delivery. For ZINC1070004335, the  LD50 
value was less than < 50 mg/kg, so oral intake might be toxic or fetal, which were belongs to the toxicity class two 
in ProTox-II. ZINC77257307 was in the toxicity class 6 and the  LD50 value was also more than 5000 mg/kg and 
it is also nontoxic but having some immunotoxicity.

Figure 7.  Pharmacophore features generated from the four selected compounds attach to the desire XIAP 
protein. Ligands attach to the protein (A) 46781908 had four hydrophobic (yellow), one positive ionizable (blue 
star), three H bond acceptor (red), and five hydrogen bond donors (green) pharmacophore features. Comparing 
to this most of our selected compounds (B) ZINC77257307, (C) ZINC1070004335, (D) ZINC247950187 and 
(E) ZINC107434573 have better pharmacophore features than antagonist 46781908.

Table 4.  List of pharmacokinetic properties (physico-chemical, lipophilicity, water solubility, drug likeness, 
and medicinal chemistry) of the selected 4 compounds.

Properties Parameters ZINC77257307 ZINC1070004335 ZINC247950187 ZINC107434573

Physico-chemical properties

MW (g/mol) 606.74 g/mol 706.95 568.48 454.60

Heavy atoms 43 50 40 32

Arom. heavy atoms 0 0 14 0

Rotatable bonds 7 9 6 12

H-bond acceptors 10 10 15 7

H-bond donors 7 4 9 6

Molar Refractivity 157.51 196.06 131.62 127.97

Lipophilicity Log  Po/w 1.58 4.60 3.53 2.87

Water solubility Log S (ESOL) Soluble Poorly soluble Soluble Soluble

Pharmacokinetics GI absorption Low Low Low Low

Drug likeness Lipinski, Violation 2 1 2 1

Medi. chemistry Synth. accessibility 7.82 9.66 5.95 5.96
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Molecular dynamics (MD) simulation
MD simulation is used to explore the binding stability of protein–ligand docking  complexes29. The MD simulation 
also provide information regarding intermolecular interaction within a reference time. Herein, the complexes 
docking file of selected four natural compounds and one reference antagonist bind with XIAP protein were 
analyzed by utilize MD simulation approaches to confirm the stability and intermolecular interactions between 
protein and molecules against 50 ns time interval. Trajectories of MD were extracted by utilize SID in Maestro-
Desmond interface and the simulation result has described based on RMSD, RMSF and Protein–Ligand (P–L) 
interaction mapping.

RMSD analysis. Root mean square deviation (RMSD) in MD simulation is used to measure the average 
distance generated by displacement of a selected atoms for a specific time frame with respect to a reference time 
 frame14. Initially, RMSD value of specific protein structure such as Cα, backbone, sidechain and heavy atoms are 
computed, after that RMSD of the protein fit ligand from all the time frames during the reference time (in our 
case 50 ns) is calculated. RMSD for frame x can be calculated from the following equation (Eq. 1).

Table 5.  List of toxicity properties (Organ Toxicity, Toxicity Endpoints, Tox21-Nuclear receptor signaling 
pathways, Tox21-Stress response pathway, Fathead minnow  LC50 (96 h), Developmental toxicity, Oral rat  LD50, 
Bioaccumulation  factor) of the selected 4 compounds.

Endpoint Target ZINC77257307 ZINC1070004335 ZINC247950187 ZINC107434573

Organ toxicity Hepatotoxicity Inactive Inactive Inactive Inactive

Toxicity endpoints

Carcinogenicity Inactive Inactive Inactive Inactive

Immunotoxicity Active Active Active Inactive

Mutagenicity Inactive Inactive Inactive Inactive

Cytotoxicity Active Inactive Inactive Inactive

LD50 (mg/kg) 6000 50 1469 665

Toxicity class 6 2 4 4

Tox21-Nuclear receptor 
signaling pathways

Androgen Receptor (AR) Inactive Inactive Inactive Inactive

Aryl hydrocarbon Receptor 
(AhR) Inactive Inactive Inactive Inactive

Tox21-Stress response 
pathway

Heat shock factor response 
element Inactive Inactive Inactive Inactive

Fathead minnow LC50 
(96 h) mg/L 0.81 N/A N/A 9.95E−02

48-h Daphnia magna  LC50 mg/L 9.11 11.61 63.28 10.76

Developmental toxicity value 0.47 0.53 0.39 0.36

Oral rat  LD50 mg/kg 53.32 682.02 727.46 1127.01

Bioaccumulation factor Log10 1.57 N/A 1.20 − 0.33
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Figure 8.  RMSD values extracted from Cα of the protein–ligand docked complexes, viz CID: 46781908 (Gray), 
ZINC77257307(orange), ZINC1070004335, ZINC247950187 (Gold), ZINC107434573 (Blue), with respect to 
50 ns simulation time.
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Here, N can define as the number of atoms in the atom selection; tref is the reference time, and r’ define the 
location of the selected atoms within the frame x after superimposing on the reference frame, tx expressed the 
recoding intervals of x.

RMSD of protein. Based on RMSD result, it can be determined that simulation has equilibrated or not. Fluc-
tuations between 1–3 Å within a reference protein structure is perfectly acceptable, where much larger value 
indicate large conformational change of the protein and the system is not stable. Analysis of our four pro-
tein–ligand docking complex found Cα atoms of XIAP showed acceptable fluctuations < 3 Å, except in XIAP- 
ZINC1070004335 complex. The compound ZINC1070004335 exhibited an extended variation 5.1 Å and a maxi-
mum fluctuation 8.81 Å (between 26 and 28 ns) observed during 50 ns simulation run (Fig. 8). From the data 
we can assume that XIAP undergo protein conformation changes influence by the binding of ZINC1070004335.

RMSD of ligand. Furthermore, analysis of RMSD from the data obtained from protein fit ligands showed minimum 
variations (< 3 Å), except for ZINC1070004335 complex (> 4.84 Å) at the end of 50 ns simulation interval (Fig. 9). 
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Figure 9.  RMSD values extracted from protein fit ligand of the protein–ligand docked complexes, viz CID: 
46781908 (Gray), ZINC77257307(orange), ZINC1070004335, ZINC247950187 (Gold), ZINC107434573 (Blue), 
with respect to 50 ns simulation time.
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ZINC1070004335, ZINC247950187 (Gold), ZINC107434573 (Blue), with respect to 50 ns simulation time.
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However, it is necessary to mention that three natural compound ZINC77257307, ZINC247950187, ZINC107434573 
and the chemical antagonist CID: 46781908 docked with XIAP exhibited equilibrium within 10 to 15 ns, with an 
exception for XIAP- ZINC1070004335 complex, which has tried to exhibited state of equilibrium after 25 ns.

RMSF analysis. The Root Mean Square Fluctuation (RMSF) is necessarily important for characterization 
and determination the local conformational change in the protein chain and the compounds utilized as  ligand14. 
The RMSF of the residue i can be calculated by the following equation (Eq. 2).

Here, T can define as the trajectory time; tref is the reference time, and r’ define the location of the selected 
atoms within the residue i after superimposing on the reference frame, and (< >) expressed the average of the 
square distance taken over residue b.

The local structural fluctuations of XIAP protein in complex with natural compound were calculated by using 
the deviations contributed by residues index Cα. Interestingly, residues for all protein have found a minimum 
RMSF values, except in N-terminal minimum 4.18 Å to maximum 12.16 Å (Fig. 10). So, analysis of RMSF and 
RMSD value for all protein–ligand complex supported the combined screened potential compounds except 
compound ZINC1070004335 against XIAP protein.

Protein–ligand interaction analysis. Protein–ligand contact occur through hydrogen bonding, ionic 
bonding, water bridges and hydrophobic bonding play an important role to design a molecule into effective drug. 
Protein–ligand contact occurred to XIAP protein and selected four natural compounds were analyzed from the MD 
trajectories by using default parameters of Desmond module. All the selected natural compounds ZINC77257307, 
ZINC247950187, ZINC107434573 and ZINC1070004335 showed tangible contact with most of the protein resi-
dues (Fig. 11), i.e., ASN 249 and LYS 299 except compound ZINC247950187 but maintain optimum binding with 
other residue like GLU 332 of the XIAP protein. Interestingly, the residue GLU332 were also found in the respective 
ligand–protein complex docking structure of the selected compounds (Table 3). Moreover, the four compounds 
screened through different filtering process exhibited considerable intermolecular interaction.

Conclusions
In this in-silico approach, three new natural compound ZINC77257307, ZINC247950187, and ZINC107434573 
have discovered that may be able to induce apoptosis through freeing up caspases. These selected compounds 
have a higher binding affinity ranging between − 6.9 and − 8.0 kcal/mol with desire XIAP protein. Based on the 
in-silico toxicity test, they have found a lower toxicity, and ADME analysis determined the easily absorbability 
to the tissue site, which is readily fat soluble. Initially, a structure-based pharmacophore model was developed 
following by virtual screening, molecular docking, ADMET analysis and MD simulation. Four compounds were 
reached at the last step until MD simulation, but stability of the compound ZINC1070004335 was unfavorable 
to the protein XIAP in MD simulation, which has rejected. The top three natural compound that exist during 
the A-to-Z virtual screening process may serve as lead molecules to fight against cancer.

Material and methods
Structure‑based pharmacophore modeling and virtual screening. Structure‑based pharmacophore 
modeling. The active antagonists of X-linked inhibitor of apoptosis protein (XIAP) were generated by collecting 
all available target annotations from ChEMBL (on the basis of high-confidence activity data) and extensive litera-
ture  search30. In order to generate a structure-based pharmacophore models, the 10 active antagonists (Table 1) 
obtained from ChEMBL (https:// www. ebi. ac. uk/ chembl/) and literature search have docked with the XIAP (PDB 
ID: 5OQW) protein by utilizing the PyRx AutoDock Vina option based on scoring functions. The best compound 
with highest binding affinity (kcal/mol) was selected for structure-based pharmacophore modeling. Top scoring 
compound in complex with XIAP protein was used to interact with the natural compounds resulting retrieval 
of hits. LigandScout 4.3 advance software was used to produce a structure-based pharmacophore  model31. This 
advanced software works by making the interaction between inhibitors and critical amino acids of the active sites 
in our target protein. This software interprets ligand-receptor interaction with different pharmacophore features 
such as hydrogen bond donor, charge transfer, hydrophilic and hydrophobic regions, and hydrogen bond accep-
tors. We have detected other features using stepwise algorithms such as the number of aromatic rings, hybridiza-
tion state, the pattern of binding, the distance of receptor  molecules32. For identify better and optimum compound 
structure, we deleted hydrophilic properties from the protein by using ligand scout, excluded or included features 
to the active site necessary to maintain sterically circumference of the macromolecule.

Pharmacophore model validation. Pharmacophore validation helps to evaluate the potential features of active 
and inactive compounds usually can be obtained from specific protein–ligand  interaction33. Pharmacophore 
model generated from the protein–ligand complex was validated for its performance to distinguish active com-
pounds from decoys by screening a set of 10 known actives and correspondence 5199 decoy correspondence 
obtained from DUD-E decoys  database34. The ten active antagonists obtained from ChEMBL (https:// www. ebi. 
ac. uk/ chembl/) was remarked as “active” against XIAP, which was experimentally validated that’s why the com-
pounds have chosen for further experiment. The database from DUD-E was converted in the .ldb format before 
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Figure 11.  Protein–ligand contact mapping for XIAP with potential natural compounds, i.e. (A) 
ZINC77257307, (B) ZINC1070004335, (C) ZINC247950187, and (D) ZINC107434573 extracted from 50 ns 
MD simulations.
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screening by the “create screening database” menu of LigandScout 4.331. Here, it has been assessed the quality of 
the structure-based model based on the GH score and early enrichment factor (EF).

Dataset Generation for pharmacophore‑base screening. It can be identified the structurally novel and active 
molecules by the completion of virtual screening depending on the generated pharmacophore  model35. ZINC 
(https:// zinc. docki ng. org/) is a freely available chemical database, which is being utilized to identify the poten-
tial lead  compounds21. Compounds from the database can be searched depending on the structure, name of the 
compound, or using the chemical smile ID. Physical and chemical properties such as 2D and 3D structure deter-
mination, the boiling point, the melting point were analyzed. Molecular weight, crystal structure, and biological 
application information can be also obtained of the desired compound. In the case of the desired compound, it 
has given priority, the compound having the most similar features matches the required pharmacophore features 
and can easily interact with our target protein. It has been chosen the possible hit compounds whose maximum 
features were matched to query pharmacophore. For the study, initially we have screened ZINC natural product 
library by using ZINCPharmer (http:// zincp harmer. csb. pitt. edu/ pharm er. html) server for target XIAP based on 
pharmacophore  features22.

Pharmacophore‑based virtual screening. Database generated from ZINCPharmer was subject to screen against 
the validated structural based pharmacophores features. LigandScout 4.3 advanced help to make and getting 
a 3D model in case of protein–ligand interaction and worked to change compounds into the specific (idb) file 
format. These compounds were passed directly into the database list for quick pharmacophore features based 
virtual screening. The securitizing has been completed by selecting relative pharmacophore-fit as a getting few 
functions based on omitting some features more than 2. Fitted hit compounds were arranged based on the phar-
macophore fit score and subject to further validation.

Molecular docking based virtual screening
Protein and ligand preparation. Protein preparation in computational biology is a process by which 
macromolecular structure are converted into more suitable form for a computational  experiment36. Prior to 
docking crystal structures of protein is needed to prepare which are not part of the x-ray crystal structure refine-
ment process such as addition and optimization hydrogen bonds, remove atomic clashes, and perform other 
operations. For the study, desired 3D structure of XIAP protein was obtained from the protein data bank (PDB 
ID: 5OQW), which was determined experimentally and validated through X-ray diffraction method having 
resolution 2.31 Å and R-value free score 0.246 that is significantly less than standard value 0.25. The X-ray crys-
tallography structure of our desire protein was prepared by the following steps (i) water, metal ion and cofactors 
were removed, (ii) polar hydrogen bond was added and non-polar H was merged and (iii) gasteiger charges were 
calculated by using AutoDockTools (ADT) 1.5.636,37. Selected hit compounds reterived from Ligandscout was 
prepared and the energy was minimized and bond angle was opitimized by default of the Universal Force Field 
(UFF) for each ligand.

Active site identification and grid generation. Binding of ligand or drug molecules to the specific 
site of protein is the key strategy to treat a particular disease. Improper attachment of ligand may show several 
side effects in the body with higher possibities of toxicities  also38. These bininding affinities depend on several 
features H bond donars, hydropohobic or hydrophilic interaction, ionization, chelation of zinc compound. In 
the study, we used BIOVA Discovery Studio Visualizer Tool 16.1.0 to find the binding site of our desire protein. 
Moreover PrankWeb (https:// prank web. cz/) server was used to analyze the all probable binding site of the desire 
protein  structure39. The server utilizes novel machine learning-based method for prediction of ligand binding 
sites from protein structure. Receptor grid was generated after selection of the active site of protein by using the 
PyRx software.

Molecular docking. Selected hits compounds obtained by pharmacophore screening were subject to molec-
ular docking, which was carried out by PyRx virtual screening software. In computational biology, PyRx is utilize 
as a virtual screening software that has identified many potential drug candidate against several  diseases40. The 
software includes both AutoDock and AutoDock Vina with the Lamarckian genetic algorithm (LGA) as scoring 
function. This study used PyRx tools AutoDock Vina to proceed the molecular docking interactions. Resultant 
docked compound with better binding affinity (kcal/mol) were retrieved and visualized by using BIOVA Discov-
ery Studio Visualizer Tool 16.1.0.41.

Absorption, distribution, metabolism and excretion (ADME) and toxicity test
Absorption, distribution, metabolism and excretion (ADME). Evaluation of Absorption, Distribu-
tion, Metabolism and Excretion (ADME) properties is one of the major criteria before developing molecule into 
a  drug29,42. Previously many drug candidate could not fit the clinical trial demand and so the computer-based 
prediction is important for the early stage of prediction. Physiochemical properties, hydrophobicity, lipophilic-
ity, gastrointestinal environment, blood brain barrier are directly affected by the ADME profile before the excre-
tion of drug from body through urine and  feces43. The freely accessible Swiss-ADME (http:// www. swiss adme. 
ch/) server was used to evaluate the ADME properties such as solubility profile, GIT absorption, bioavailability 
profile of the selected  compounds26.

https://zinc.docking.org/
http://zincpharmer.csb.pitt.edu/pharmer.html
https://prankweb.cz/
http://www.swissadme.ch/
http://www.swissadme.ch/
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Toxicity test. Computational based approach has made it possible to measure the toxicity by in silico meth-
ods for accessing the safety profile of the desired compounds. Otherwise, these compounds may show the harm-
ful effect on human and animals. Toxicity profile can evaluate and determine the mutagenicity, carcinogenicity, 
 LD50 value, immunotoxicity in both quantitatively and  qualitatively44. Toxicity Estimation Software Tool (TEST) 
is freely accessible software, which was used in this study to estimate toxicity of our compounds without requir-
ing any other external  programs27. The toxicity estimator TEST tools are being used for selective molecules that is 
work based on Quantitative Structure–Activity Relationships (QSARs) methodologies. Additionally, ProTox-II 
(http:// tox. chari te. de/ protox_ II) server was used to determine the toxic effect of the selected four  compounds28. 
Different toxicological pathways including nuclear receptor signaling pathways, stress response pathways can be 
obtained from this site.

Molecular dynamics (MD) simulation
Explicit‑solvent MD simulation. In order to further evaluate of protein toward the binding mode of our 
candidate molecules, the best poses obtained from re-docking studies were evaluated through 50 ns molecular 
dynamics (MD) simulations for measuring the complex stability. The MD simulations was carried out by using 
Desmond module in Schrödinger Release 2020-3 (Academic version) suite under Linux  environment[÷45. The 
complex protein–ligand interaction was first solvated with simple point charge (SPC) water model with bound-
ary condition orthorhombic box shape. Buffer box calculation method with box distance 15 Å (a = 5 Å, b = 5 Å, 
and c = 5 Å) on both side for all of the complex’s atoms has assigned. The system was neutralized by adding  Na+ 
and  Cl- with a salt concentration 0.15 M. NPT ensemble was performed at constant pressure (1.01325 bar) and 
temperature (300 K) with recoding intervals 50 ps with energy 1.2, where OPLS-2005 force field was utilized to 
carried out the MD simulation.

Post‑dynamics trajectory analysis. The trajectories generated after completing the MD simulation were 
further analyzed by using Simulation Interaction Diagram (SID) of Desmond module in Schrödinger package. 
Based on the simulation’s trajectories, the stability of the ligand–protein complexes was determined according 
root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF) and Protein–Ligand contacts.
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