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Simple Summary: Not all patients with advanced or metastatic non-small cell lung cancer (NSCLC)
respond to pembrolizumab, even if their tumor expresses PD-L1. This is a monocentric study
aimed at identifying potential predictive biomarkers for pembrolizumab first-line treatment. Tu-
mor microenvironment was characterized by gene expression analysis in 46 tumor samples from
25 NSCLC patients with and 21 without durable clinical benefit. As expected, patients achieving
clinical benefit had a greater infiltration of immune cells. In particular, CD8 T-cell and NK cell scores
were strongly associated with durable benefit. Single immune cell markers such as XCL1/2 showed
a high performance in predicting durable response to pembrolizumab with an AUC of 0.85. In the
same series PD-L1 expression levels had an AUC equal to 0.61. Identified predictive biomarkers can
improve patients’ selection, thus optimizing treatment definition.

Abstract: Pembrolizumab has been approved as first-line treatment for advanced Non-small cell
lung cancer (NSCLC) patients with tumors expressing PD-L1 and in the absence of other targetable
alterations. However, not all patients that meet these criteria have a durable benefit. In this monocen-
tric study, we aimed at refining the selection of patients based on the expression of immune genes.
Forty-six consecutive advanced NSCLC patients treated with pembrolizumab in first-line setting
were enrolled. The expression levels of 770 genes involved in the regulation of the immune system
was analysed by the nanoString system. PD-L1 expression was evaluated by immunohistochemistry.
Patients with durable clinical benefit had a greater infiltration of cytotoxic cells, exhausted CD8,
B-cells, CD45, T-cells, CD8 T-cells and NK cells. Immune cell scores such as CD8 T-cell and NK cell
were good predictors of durable response with an AUC of 0.82. Among the immune cell markers,
XCL1/2 showed the better performance in predicting durable benefit to pembrolizumab, with an
AUC of 0.85. Additionally, CD8A, CD8B and EOMES showed a high specificity (>0.86) in identifying
patients with a good response to treatment. In the same series, PD-L1 expression levels had an AUC
of 0.61. The characterization of tumor microenvironment, even with the use of single markers, can
improve patients’ selection for pembrolizumab treatment.

Keywords: lung cancer; immunotherapy; tumor microenvironment; predictive biomarkers; pem-
brolizumab; gene expression; PD-L1; XCL1; XCL2; CD8A; CD8B; EOMES

1. Introduction

Immunotherapy improved the treatment options for advanced and metastatic non-
small cell lung cancer (NSCLC) without actionable driver mutations [1,2]. In particular, the
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use of checkpoint inhibitors (ICIs) against anti-programed death 1 (PD-1) (pembrolizumab
and nivolumab) and anti-programed death ligand 1 (PD-L1) (atezolizumab) has consid-
erably improved patients’ outcome [2–7]. Among them, pembrolizumab was the first ICI
approved as single agent for the first-line treatment of NSCLC expressing PD-L1 [3,4,8].
Although pembrolizumab proved to be more effective than conventional chemotherapy, the
overall response rate is not completely satisfying [3,8]. Nowadays, the evaluation of PD-L1
expression by immunohistochemistry (IHC) is the current standard to drive the selection
of patient for pembrolizumab administration [1]. Although a high PD-L1 expression has
been associated with better responses to pembrolizumab, the sensitivity and specificity of
this biomarker is limited. In the Keynote 024 trial, the overall response rate was 45% even
if all the enrolled patients had PD-L1 levels greater than 50% [4]. In the Keynote 042 trial,
118 out of 299 patients (39%) with a PD-L1 tumor proportion score (TPS) greater than or
equal to 50% had an objective response to treatment [8]. Considering the complexity and
the heterogeneity of tumor-immune system interaction, it is unlikely that PD-L1 alone can
discriminate immunogenic from non-immunogenic tumors. In fact, tumor cells can use also
alternative checkpoints (e.g., CTLA4, LAG3, IDO, VISTA) and escape mechanisms [9–11].

Other predictive biomarkers have been proposed, mainly divided into two groups:
biomarkers associated with high tumor antigenicity, including tumor mutational burden
(TMB) and microsatellite instability (MSI-H)/mismatch repair deficiency (MMRd); and
biomarkers associated with intense tumor inflammation, including tumor infiltrating
lymphocytes and immune gene signatures [2,10].

A high TMB has been correlated with a better response to ICI in lung cancer, and
it has been reported as independent from PD-L1 expression levels [5,12]. Recently, the
Food and Drug Administration (FDA) approved pembrolizumab for adults and pediatric
patients with TMB greater than 10 mutations/megabase that have progressed following
prior treatments. However, the lack of technical standardization (whole exome or targeted
panels) and of a universally accepted cut-off, together with the high costs and execution
time has always limited its introduction in clinical practice [13]. In the same way, MSI-H
and MMRd can predict a high neoantigen load; they have been approved by the FDA as
agnostic biomarkers to treat with pembrolizumab patients with inoperable or metastatic
solid tumor that have progressed following prior treatments [14]. However, the prevalence
of MSI-H in NSCLC is very low (about 0.6%), and data for ICIs in NSCLC with MSI-H are
still poor [15].

Tumor infiltrating lymphocytes (TIL) are directly correlated with improved survival in
NSCLC, and the presence of cluster of differentiation 8 (CD8) and cytotoxic T lymphocytes
in the tumor stroma has been associated with a good ICI response [16–18]. Besides the
assessment of TIL, inflamed and non-inflamed tumors can be discriminated also by the
analysis of immune gene expression signatures. Among suggested gene signatures, Ayers
and collaborators defined an 18-mRNA gene expression panel (i.e., the T cell-inflamed
gene expression profile (GEP) signature) related to IFN-γ and activated T-cells associated
with response to pembrolizumab across different tumor types [19]. More recently, Hwang
et al. by evaluating the expression of about 395 immune-related genes identified two
signatures “M1” and “peripheral T cell” and two biomarkers (CD137 and PSMB9) able
to discriminate NSCLC patients achieving durable clinical benefit to pembrolizumab
treatment [20]. Likewise, two studies reported immune cell scores as predictors of durable
benefit from checkpoint inhibitors using the nCounter technology [21,22].

Although the promising results related to both characterization of tumor antigenicity
and inflammation status, no biomarkers other than PD-L1 have been introduced in NSCLC
to select patients for first-line treatment with pembrolizumab [1]. In some cases, prospec-
tive validation and a clear correlation with the progression free survival (PFS) and overall
survival (OS) are still missing. Moreover, the translation of some tests (i.e., TMB or gene
signatures) in routine procedures is challenging. In fact, most of the NSCLC patients in
advanced stage of disease are no candidates for surgery, and small biopsies or cytology
samples are the only available diagnostic material in more than 50% of cases [23,24]. In
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addition, precision medicine in NSCLC includes both ICI and targeted therapies, requir-
ing the characterization of several predictive biomarkers [25,26]. As a consequence, the
biological material is almost always a limiting factor for molecular testing in advanced or
metastatic NSCLC.

In this context, the search for predictive biomarkers for ICI is still ongoing and
strictly necessary.

In this study, we investigated the tumor microenvironment of a consecutive series of
NSCLC patients treated with first-line pembrolizumab in the absence of other targetable
alterations. The expression profile of 770 genes involved in the regulation of the immune
system was evaluated in order to identify predictive biomarkers applicable in clinical
practice able to improve patients’ selection.

2. Materials and Methods
2.1. Study Population

In this study, 46 consecutive patients with advanced or metastatic NSCLC (including
both adenocarcinoma and squamous cell carcinoma) were enrolled at the University Hos-
pital of Pisa. All patients were negative for targetable alterations within EGFR, ALK, ROS1,
BRAF, MET and ERBB2 genes, and all tumors expressed PD-L1 in more than 50% of tumor
cells. Enrolled patients received pembrolizumab as single agent first-line treatment.

Patients’ clinical evaluation has been performed every 3 months from the beginning
of treatment and responses were defined according to the Response Evaluation Criteria in
the Solid Tumors (RECIST) guidelines, version 1.1. Treatment was continued until disease
progression or intolerable toxicity, physician’s or patient’s decision. Patients were divided
into two groups: those achieving durable clinical benefit (DCB) defined as progression-free
interval >6 months, and non-durable clinical benefit (NCB).

For all patients, formalin-fixed paraffin-embedded (FFPE) tumor biopsies or cell-
blocks from fine needle aspiration, brushing and pleural effusion specimens obtained
before pembrolizumab treatment were used for gene expression analysis.

This study was conducted according to the guidelines of the Declaration of Helsinki
and it was approved by the local Ethics Committee.

2.2. PD-L1 and Gene Expression Tests

The expression of PD-L1 was determined by IHC. In details, 3µ-thick FFPE sections
were incubated with the rabbit monoclonal primary antibody SP263 (Roche, Monza, Italy).
Staining was performed by the Ventana Benchmark Ultra staining platform (Ventana
Medical Systems, Tucson, AZ, USA). The percentage of PD-L1 expression on tumor cells
was blindly determined by two expert pathologists and the median value was considered.
The PD-L1 expression was evaluated by TPS, which is defined as the percentage of viable
tumor cells with partial or complete membrane staining of any intensity (≥1+) relative to
all viable tumor cells in the examined section [27]. At least 100 viable tumor cells must be
present for the evaluation.

For all samples, tumor cell percentage was estimated independently by two expert
pathologists and tumor component was enriched by manual macrodissection before nucleic
acid extraction. In detail, total RNA was purified from three-to-four unstained FFPE
sections (5 µm-thick) using the Qiagen RNeasy FFPE kit (Qiagen, Hilden, Germany), and
according to the manufacturer’s procedures. RNA quality and concentration were assessed
using an Xpose spectrophotometer (Trinean, Gentbrugge, Belgium). About 100 ng of
total RNA were used for gene expression analysis using the nCounter system (nanoString
Technologies, Seattle, WA, USA). Total RNA was hybridized with capture and reporter
probes at 60 ◦C for 18 h; cleanup of samples and counts of digital reports were performed
as described by the manufacturer (nanoString Technologies).

Expression levels of genes included in the nanoString PanCancer IO 360 Panel code
set were evaluated. This code set is a 770-gene expression panel, allowing the evaluation of
different immune pathways [28].
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2.3. Data Analyses and Statistics

Raw counts were normalized using the Advanced Analysis module of the nSolver
v.4.0 (nanoString Technologies). Normalized expression counts were log2-transformed,
and genes with raw counts as low as 20 were omitted from further analyses. Differ-
entially expressed genes (DEG) were computed by a mixture negative binomial model,
a simplified negative binomial model or a log-linear model according to the best converg-
ing algorithm for each gene. Patients with NCB were used as baseline. p-values were
adjusted with the Benjamini–Yekutieli method, and a false discovery rate (FDR) below
0.05 was deemed significant. Cell type scores were computed using the method described
by Danaher [29]; only cell types with at least two specific markers were considered. The
lists of transcripts used to compute cell type scores are reported in Supplementary Table
S1. DEG and cell type scores were computed using the Advanced Analysis module of the
nSolver. Differences among cell types were computed by the Welch’s t-test. A p-value of
0.05 was used as significance cut-off. The Gene Set Enrichment Analysis (GSEA) was run
using the fold-change-ranked gene list and a minimum of ten genes per gene set as cut-
off; the analysis was performed following the procedures of clusterProfiler Bioconductor
package v.3.13 and using the Hallmark collection as reference. The Benjamini–Hochberg
procedure was used to adjust p-values, and an FDR below 0.05 was considered significant.
Correlation among continuous variables was tested by Pearson’s method using a p-value
of 0.05 as significance cut-off. The T cell-inflamed gene expression profile (GEP) [19] was
calculated by averaging the expression of 16 out of 18 genes of the original signature that
were analyzed by the nanoString assay, namely IL2RG, CXCR6, CD3D, CD2, HLA-DRA,
CCL5, NKG7, CD3E, HLA-E, GZMB, GZMK, CXCL13, CXCL10, IDO1, LAG3 and STAT1. To
identify predictors of DCB, the receiver operating characteristics (ROC) curves analysis
was performed following the procedures of pROC R package v. 1.17.0.1. The 95% confi-
dence intervals (CI) were calculated by 2000 bootstrap replicates, and the best cut-off was
computed using the Youden’s J statistics. Univariate survival analysis was performed by
Cox regression using log2 gene expression levels as continuous variables and following
the procedures of the survival R package v.3.2-11. All analyses and plots were generated in
R environment (https://www.r-project.org/, v.4.1.0, last accessed on 18 June 2021) unless
otherwise specified.

3. Results
3.1. Population

Forty-six patients fulfilled all the inclusion criteria and were enrolled in this study.
Characteristics of study population are summarized in Table 1.

3.2. Immune Activation in Patients with DCB

After normalization, 712 genes were considered. Contrasting patients with DCB vs.
NCB, there were marked gene expression imbalances; in fact, 330 genes (46% of total)
had a p < 0.05 with a great predominance of up-regulation. However, after adjustment
for multiple comparisons, only 11 genes were significantly up-regulated (FDR < 0.05),
namely CXCR3, BCL2, NCR1, CXCL13, FASLG, TSLP, XCL1/2, NFKBIA, CCL5, PIK3R1 and
IL11RA (Figure 1A). The complete results of DEG analysis is reported in Supplementary
Table S2. Patients with DCB had a significant activation of the Allograft Rejection gene set,
while the G2M Checkpoint and E2F Targets gene sets were activated in patients with NCB
(Figure 1B–D).

As regards immune cells, patients with DCB had a greater infiltration of cytotoxic
cells, exhausted CD8, B-cells, CD45, T-cells, CD8 T-cells and NK cells (Figure 2).

https://www.r-project.org/
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3.3. Correlation of PD-L1 and RAS/RAF Mutation with Immune Cells and Durable Response

PD-L1 IHC levels positively correlated with CD274 transcript abundance (R = 0.64,
p = 0.0001). PD-L1 levels were significantly higher in tumors with mutation in BRAF
(non-V600E) or the RAS genes (p = 0.04). PD-L1 levels were negatively correlated with
mast cell score (p = 0.006, R = −0.40), but were not significantly correlated with others cell
types. Similarly, the presence of RAS/RAF mutations was not associated with immune cells
abundance. In addition, neither RAS/RAF mutations nor the exact percentage of PD-L1
accurately predicted a durable benefit to pembrolizumab (area under the curve, AUC 0.54,
95% CI: 0.40–0.68, and AUC 0.61, 95% CI: 0.44–0.78, respectively).

3.4. Cell Type Abundance and Markers to Predict Durable Benefit to Pembrolizumab

Almost all cell type scores had a better performance in predicting durable benefit
to pembrolizumab compared to the exact PD-L1 percentage. In particular, exhausted
CD8, CD8 T-cell and NK cell abundance had an AUC > 0.80 (Table 2). Similarly, Ayers’ T
cell-inflamed GEP signature had an AUC of 0.80 (95% CI 0.67–0.91) and was associated
with a better PFS (p = 0.0001, HR = 0.51, 95% CI 0.36–0.74).

Table 1. Clinical features of patients according to response group to pembrolizumab.

Clinical Features DCB, n (%) (Total 25, 54.3%) NCB, n (%) (Total 21, 45.7%) p-Value

Age (years) 0.29
mean ± SD 69.2 ± 7.7 66.6 ± 8.5

Gender 1
Male 19 (76.0) 16 (76.2)

Histology 0.79
ADC 14 (56.0) 11 (52.4)
SCC 7 (28.0) 5 (23.8)
NOS 4 (16.0) 5 (23.8)

Stage 0.57
III 9 (36.0) 5 (23.8)
IV 16 (64.0) 16 (76.2)

Smoking status 0.73
smoker 6 (24.0) 3 (14.3)
former 18 (72.0) 17 (80.9)
never 1 (4.0) 1 (4.8)

ECOG PS 0.12
0 6 (24.0) 3 (14.3)
1 17 (68.0) 11 (52.4)
2 2 (8.0) 7 (33.3)

Toxicity 0.04
yes 14 (56.0) 5 (23.8)
no 11 (44.0) 16 (76.2)

RAS or BRAF(non-V600E) mutation 0.83
yes 10 (40.0) 10 (47.6)
no 15 (60.0) 11 (52.4)

PFS (months) <0.0001
median (CI) 30.6 (22.4–NR) 2.8 (2.0–4.2)

OS (months) <0.0001
median (CI) NR (27.5–NR) 5.6 (3.6–13.5)

DCB, durable clinical benefit; NCB, non-durable clinical benefit; SD, standard deviation; ADC, adenocarcinoma; SCC, squamous cell
carcinoma; NOS, not otherwise specified; ECOG PS, Eastern Cooperative Oncology Group performance status; PFS, progression-free
survival; OS, overall survival; NR, not reached.
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Figure 1. Gene expression differences between patients with and without durable clinical benefit to pembrolizumab.
Patients with non-durable clinical benefit were used as baseline. (A) Volcano plot. Log2 fold changes (x-axis) and −Log10
of false discovery rate (y-axis) were plotted. Red denotes genes that are significantly different. (B–D) Gene sets differentially
activated based on GSEA analysis; in detail, Allograft rejection (B) is activated in patients with durable benefit, while G2M
checkpoint (C) and E2F targets (D) are activated in patients who progressed early. NES, normalized enrichment score; FDR,
false discovery rate.

In order to find useful markers associated with durable benefit, we considered the
marker genes of the cell types with AUC greater than 0.80, namely CD244, LAG3, EOMES
and PTGER4 for exhausted CD8; CD8A and CD8B for CD8 T-cell; XCL1/2 and NCR1 for NK
cell. Among these, XCL1/2 showed the better performance in predicting durable benefit to
pembrolizumab, with an AUC of 0.85 (95% CI: 0.74–0.95, Table 3, Figure 3).
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Table 2. Usefulness of cell type scores to predict durable response to pembrolizumab.

Cell Type AUC (95% CI) p-Value * HR (95% CI) p-Value *

Cytotoxic cell 0.74 (0.59–0.87) 0.003 0.59 (0.42–0.82) 0.002
Macrophage 0.63 (0.46–0.79) 0.18 0.78 (0.54–1.27) 0.2
Dendritic cell 0.67 (0.51–0.83) 0.06 0.69 (0.50–0.94) 0.02

Exhausted CD8 0.80 (0.67–0.92) 0.0002 0.46 (0.30–0.70) 0.0004
B-cell 0.71 (0.56–0.86) 0.01 0.72 (0.54–0.94) 0.02
CD45 0.71 (0.55–0.85) 0.008 0.65 (0.47–0.89) 0.007

Neutrophil 0.58 (0.42–0.74) 0.38 0.90 (0.61–1.34) 0.6
T-cell 0.76 (0.62–0.89) 0.004 0.60 (0.44–0.83) 0.002

Mast cell 0.63 (0.46–0.79) 0.07 0.77 (0.61–0.96) 0.02
CD8 T-cell 0.82 (0.68–0.93) 0.0003 0.56 (0.41–0.76) 0.0003

NK cell 0.82 (0.70–0.93) 0.0003 0.48 (0.33–0.71) 0.0003
PD-L1 ** 0.61 (0.44–0.78) 0.20 0.99 (0.96–1.01) 0.32

* p-Value refers to difference between DCB and NCB. ** tumor proportion score; AUC, area under the curve;
CI, confi-dence interval; HR, hazard ratio.
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Table 3. Usefulness of cell type markers to predict durable response to pembrolizumab.

Marker Cell Type AUC
(95% CI)

Sensitivity §

(95% CI) *
Specificity §

(95% CI) *
Accuracy

(95% CI) *

Correlation
with PD-L1 **,
R *** (p-Value)

HR (95% CI),
p-Value

CD244 exhausted
CD8

0.68
(0.52–0.84)

0.84
(0.44–1)

0.57
(0.29–0.95)

0.72
(0.61–0.83) 0.06 (0.71)

0.65
(0.48–0.89),

0.007

LAG3 exhausted
CD8

0.75
(0.61–0.89)

0.68
(0.44–0.92)

0.86
(0.57–1)

0.76
(0.65–0.87) 0.24 (0.11)

0.66
(0.48–0.90),

0.009

EOMES exhausted
CD8

0.82
(0.69–0.92)

0.68
(0.44–1)

0.95
(0.48–1)

0.78
(0.67–0.89) 0.25 (0.09)

0.48
(0.34–0.67),

0.00002

PTGER4 exhausted
CD8

0.75
(0.61–0.87)

0.64
(0.40–1)

0.90
(0.43–1)

0.74
(0.63–0.85) 0.03 (0.82)

0.47
(0.27–0.81),

0.007

CD8A CD8 T-cell 0.79
(0.66–0.91)

0.68
(0.48–0.92)

0.95
(0.71–1)

0.78
(0.70–0.89) 0.10 (0.51)

0.61
(0.46–0.82),

0.001

CD8B CD8 T-cell 0.82
(0.69–0.93)

0.76
(0.56–0.96)

0.86
(0.62–1)

0.80
(0.70–0.91) 0.13 (0.38)

0.52
(0.38–0.73),

0.0001

XCL1/2 NK cell 0.85
(0.74–0.95)

0.88
(0.56–1)

0.81
(0.57–1)

0.83
(0.74–0.93) −0.08 (0.62)

0.48
(0.34–0.66),

0.000007

NCR1 NK cell 0.67
(0.51–0.82)

0.88
(0.28–1)

0.57
(0.38–1)

0.72
(0.59–0.85) 0.17 (0.26)

0.75
(0.53–1.07),

0.12

PD-L1 ** NA 0.61
(0.44–0.78)

0.88
(0.20–1)

0.43
(0.19–1)

0.67
(0.54–0.78) NA

0.99
(0.96–1.01),

0.32

* Sensitivity, specificity and accuracy were computed using the better cut-off according to the Youden’s J statistics. ** Exact percentage.
*** R, Pearson’s correlation. § Sensitivity and specificity refer to the best cut-off according to the Youden J statistics. AUC, area under the
curve; CI, confidence interval; NA, not applicable; HR, hazard ratio.

4. Discussion

After the superiority to standard chemotherapy showed in the KEYNOTE-024 trial,
pembrolizumab was the first anti-PD-1 drug approved as single agent for first-line set-
ting in advanced NSCLC [4]. The eligibility for pembrolizumab treatment requires the
absence of targetable alterations and the expression of PD-L1 evaluated by IHC. At the
first approval, the PD-L1 cut-off was set as 50% of positive tumor cells. Since a significant
benefit was observed also in a proportion of patients with tumor expressing lower levels
of PD-L1, the cut-off was than lowered to 1% [30]. Despite the PD-L1-driven selection
of patients, the overall response rates are not completely satisfying, and only a small
proportion of patients achieve a durable benefit [4,8]. In this study we analysed the tumor
microenvironment in 46 consecutive advanced NSCLC patients who received first-line pem-
brolizumab, and whose tumors express more than 50% of PD-L1. We divided patients into
two groups: patients who achieved a durable clinical benefit (DCB, i.e., more than 6 months)
and those who progressed within 6 months (non-durable clinical benefit, NCB). Overall,
25 patients (54.3%) had a DCB with a median PFS of 30.6 months (95% CI 22.4 to not
reached), while 21 patients (45.7%) were included in the NCB group with a median PFS
of 2.8 (95% CI 2.0 to 4.2). Indeed, a median PFS of 30 months is exceptionally high even
referred to a DCB group. The selection based on the 50% PD-L1 cut-off as well as the
presence of stage III patients (about one third) might have influenced these data. Patients
in the DCB group had a substantial up-regulation of immune genes. On the other hand, the
activation of the G2M checkpoint and E2F targets signatures was enriched in patients who
progressed early. Although higher G2M and E2F targets scores had been associated with
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a greater PD-L1 expression in NSCLC [31], the G2M checkpoint activation in pancreatic
and breast cancer was linked to Th2 response [32,33], which is typically associated with
the promotion of tumor growth and the repression of anti-tumor immunity. Similarly,
CDK4/6 inhibition, which suppress the activity of E2F targets, demonstrated to trigger
anti-tumor immunity, thus uncovering a new function of E2F targets beyond the regulation
of cell cycle [34,35]. KRAS and BRAF non-V600E mutations are more frequent in smokers
and have been reported as correlated with an immunogenic tumor microenvironment [36].
However, in our series, neither the PD-L1 TPS nor the presence of RAS/RAF mutations
were associated with a DCB. In addition, both PD-L1 and RAS/RAF mutations did not
correlate with the infiltration of immune cells, thus suggesting that immune cell scores are
independent biomarkers.

Notably, almost all immune cell scores, especially CD8 T-cell and NK cells, showed
a good performance in predicting a DCB. The results are slightly different from those
obtained by Budczies and colleagues, who have reported that only B-cell and total TIL
abundance predict benefit from immune checkpoint blockade [21]. These differences
could be due to randomness, which is relevant in presence of small sample size, but the
50% cut-off selection of the present study might account for higher levels of immune
infiltrates. On the other hand, Frigola and colleagues have found several immune scores
associated with durable benefit to checkpoint inhibitors, including B-cell, NK, CD8 and
Treg [22]. Of note, Ayers T-cell-inflamed GEP signature was strongly associated with DCB,
similarly to CD8 T-cell and NK cell. CD8 T-cell and NK cell infiltration have already been
associated with improved survival of lung cancer patients and with a longer PFS after
treatment with ICIs [22,37]. These evidences suggest that the use of gene signatures for the
characterization of the immune infiltrate could be useful to refine the selection of patients
for ICIs administration. Indeed, the analysis of gene signatures should be harmonized
since the type of the platform, the markers used and the algorithm can influence the
outcome. For this reason, single immune cell markers combined with PD-L1 could be
a simple and effective strategy. In our series, XCL1/2 showed the highest performance in
predicting a DCB. XCL1 and XCL2 are chemokines produced by NK cells and are essential
for the recruitment of conventional type I dendritic cells (cDC1) [38]. Along with the cross-
priming of CD8 T-cell, cDC1 exert several pro-inflammatory functions within the tumor
microenvironment, which result in an enhanced anti-tumor immunity thus increasing
the responsiveness to ICIs [39,40]. Other markers, such as CD8A and CD8B, which are
specific for CD8 T-cell, and EOMES—a marker of exhausted CD8—showed a very high
specificity in predicting a DCB. CD8A was already associated with a prolonged survival
and a longer PFS after treatment with the anti-PD-1 nivolumab [41]. In addition, EOMES
was suggested—alongside with CD8/CD4, CD69 and CD45RO—as a marker of memory
T-cells that associate with an improved response to anti-PD-1 blockade, both as single agent
or combination therapy [42]. The other immune markers, namely CD244, LAG3, PTGER4
and NCR1 showed a lower performance in predicting durable benefit. Nevertheless, these
genes are expressed mostly by immune cells, and they play important roles in modulating
the immune response. For instance, CD244 encodes for a receptor expressed in cytotoxic
cells that is essential for tuning the effector activity [43]. LAG3 is expressed on exhausted
T-cells and represents an alternative immune checkpoint to PD1/PD-L1 axis. Targeting
LAG3 is therefore an attractive strategy to overcome immune resistance [44]. PTGER4
encodes for a receptor of prostaglandin E2, which is not exclusively expressed by immune
cells. However, this receptor is crucial for the regulation of immune response as suggested
by its involvement in chronic immune diseases [45,46]. Finally, NCR1 is a marker of NK
cell activation, but, under chronic viral infection, it was reported that NCR1-FcRγ complex
dampens T-cell activity thus favoring chronic infection [47,48].

There are some limitations that should be acknowledged. First, the sample size of the
study is limited; moreover, all cases had more than 50% of PD-L1 since they were gathered
before the cut-off change for pembrolizumab administration. Nevertheless, our findings
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are based on a consecutive real-life series and warrant further validation also in the light of
the 1% PD-L1 cut-off.

In closing, we reported that just over 50% of advanced NSCLC achieved a durable
clinical benefit after first-line treatment with pembrolizumab despite the selection based on
the 50% PD-L1 TPS. The analysis of the tumor immune infiltrate can assist the selection,
and even the use of single markers of CD8 T-cell and NK cells can identify patients that
achieve a durable benefit.

5. Conclusions

The PD-L1–based selection of patients for pembrolizumab administration as single
agent in first-line setting is not satisfactory. The analysis of immune cell infiltrate can
refine the identification of patients likely to achieve a durable clinical benefit. The use of
single CD8 T-cell and NK cell markers such as CD8A/B and XCL1/2 could be a simple and
effective strategy for clinical practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13153828/s1, Table S1: Lists of transcripts used to compute cell type scores; Table S2:
Differentially expressed genes. In Table S2 are reported differentially expressed genes between patients
achieving durable clinical benefit and non-clinical benefit after first line pembrolizumab treatment.
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