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An improved blood vessel segmentation algorithm on the basis of traditional Frangi filtering and the mathematical morphological
method was proposed to solve the low accuracy of automatic blood vessel segmentation of fundus retinal images and high
complexity of algorithms. First, a global enhanced image was generated by using the contrast-limited adaptive histogram
equalization algorithm of the retinal image. An improved Frangi Hessian model was constructed by introducing the scale
equivalence factor and eigenvector direction angle of the Hessian matrix into the traditional Frangi filtering algorithm to
enhance blood vessels of the global enhanced image. Next, noise interferences surrounding small blood vessels were eliminated
through the improved mathematical morphological method. Then, blood vessels were segmented using the Otsu threshold
method. The improved algorithm was tested by the public DRIVE and STARE data sets. According to the test results, the
average segmentation accuracy, sensitivity, and specificity of retinal images in DRIVE and STARE are 95.54%, 69.42%, and
98.02% and 94.92%, 70.19%, and 97.71%, respectively. The improved algorithm achieved high average segmentation accuracy
and low complexity while promising segmentation sensitivity. This improved algorithm can segment retinal vessels more
accurately than other algorithms.

1. Introduction

Blood vessel segmentation of fundus retinal images can help
doctors in diagnosing multiple eye diseases. Segmenting blood
vessels integrally and accurately is necessary for accurate anal-
ysis of main blood vessels and branches [1]. Currently, physi-
cians mark blood vessels manually according to experiences,
which is characterized by low efficiency and easy interference
by subjective factors [2, 3]. Therefore, the automatic segmen-
tation of retinal vessels is of important significance [4, 5].

Gray distribution of fundus retinal images is uneven due
to influences of noises, artifacts, and illuminations, accompa-
nied by low contrast between blood vessels and background.
Moreover, arteries and veins in images cross over and super-
pose mutually, thereby resulting in difficulties of segmenta-
tion. The existing blood vessel segmentation methods of
fundus retinal images include supervised and unsupervised
learning. The former requires training according to the pro-

vided standard training set and uses the trained classifier to
segment blood vessels in unknown images. The latter requires
no training but segments blood vessels through thresholding
the filtering response or depending on methods on the basis
of certain rules.

Without artificial prior marking information, the retinal
vessel segmentation method on the basis of unsupervised
learning has a small workload and high working efficiency.
Currently, unsupervised segmentation methods include
methods on the basis of windows [6–13], vessel tracking
[14–20], and morphological operations [21–23].

Chaudhuri et al. [6] were the first to propose blood vessel
segmentation by using the Gaussian filter. Subsequently, Li
et al. [7] proposed a segmentation technique by combining
a multiscale matched filter and dual-threshold method. Kaur
and Sinha [8] proposed a segmentation algorithm on the
basis of Gabor filter and gray cooccurrence matrix. Wang
et al. [9] processed the coarse and fine blood vessels by using
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the multiscale 2D Gabor wavelet. Singh and Srivastava [10]
proposed a method on the basis of the extended matched
filter. Cruz-Aceves et al. [11] segmented blood vessels by
using a multiscale Gabor filter and threshold segmentation
method on the basis of multiobjective optimization.
Aguirre-Ramos et al. [12] enhanced the blood vessel struc-
ture and its profile by using the Gabor filter and Gaussian dis-
tribution derivatives. Singh and Srivastava [13] proposed a
matched filtering technique centered at the Gumbel proba-
bility distribution function to improve retinal vessel segmen-
tation performances. These methods, which are based on
windows, can maintain the original vessel structure but
require the processing of each pixel, thus leading to heavy
computational workloads and long segmentation time.

Frangi et al. [14] introduced the Hessian matrix into the
extraction of characteristic directions of images. Kumar
et al. [15] extracted blood vessels from retinal images on
the basis of inherent characteristics of LoG and MF, which
avoided misclassification of nonvascular pixels. Fathi and
Naghsh-Nilchi [16] proposed a multiscale vessel segmenta-
tion algorithm based on continuous wavelet transform. Qian
Zhao et al. [17] put forward an algorithm on the basis of level
set and regional growth. Rezaee et al. [18] proposed an
optimized segmentation technique of retinal vessels that
combined adaptive filtering, fuzzy entropy, and skeletoniza-
tion. Ghoshal et al. [19] proposed a method to enhance fine
blood vessels by vascular area and axial ratio. Zhao et al.
[20] developed an infinite activity profile model for retinal
vessel segmentation through the information of the image
hybrid region. These methods on the basis of vessel tracking
can acquire local features of blood vessels. However, they
cannot realize continuous tracking due to branches or inter-
sections, resulting in poor segmentation accuracy.

Rodrigues and Marengoni [21] proposed an optic disc
detection algorithm on the basis of wavelet transform and
mathematical morphology. The proposed algorithm seg-
mented veins and arteries in retinal images according to tubu-
lar characteristics of blood vessels. Rodrigues and Bezerra [22]
applied morphology and topology extractor to extract pixels of
the vascular tree and discovered topological vascular charac-
teristics and connectivity. Neto et al. [23] proposed a coarse-
to-fine vascular detection method of retinal images. First, this
method implemented general vessel segmentation. Second,
refined vessel segmentation was performed on the basis of
curvature analysis and morphological reconstruction. These
methods on the basis of morphology are fast, highly efficient,
and satisfactorily inhibit noise. However, they rely highly on
the selection of structural elements.

In this study, a vessel segmentation method of fundus
retinal images on the basis of the improved Frangi and math-
ematical morphology was proposed by combining vessel
tracking and morphological operation. First, the fundus reti-
nal image was preprocessed by global enhancement. Second,
blood vessels were enhanced by the improved Frangi filtering
method. Third, noise interferences surrounding the fine
blood vessels were eliminated by the improved mathematical
morphological method. Last, vessel segmentation of the reti-
nal image was performed through the Otsu threshold seg-
mentation method.

2. Vessel Segmentation of Retinal Images

2.1. Image Preprocessing. Fundus retinal images are in RGB
format, which generally have to be transformed to single-
channel images for the convenience of computer processing.
Images in R, G, and B channels were compared (Figure 1).
Blood vessels in the G channel image have high contrast with
the background. Therefore, the G channel image was chosen
for preprocessing.

Enhancement of fundus retinal images can distinguish
blood vessels from other background regions. Histogram
equalization processing can enhance the contrast of each
object in a specific image, in which the scope of image inten-
sity will be extended. As fundus retinal images have low con-
trast and the vascular region is dark with low contrast, the
global histogram equalization method fails to achieve the
ideal enhancement of blood vessels (Figure 2(a)).

Adaptive histogram equalization (AHE) implements his-
togram enhancement on each pixel by calculating the trans-
formation function of each pixel neighbor domain. AHE is
more appropriate to the local contrast of images and
enhanced image edges to gain additional details. For retinal
vascular images, AHE may amplify noises surrounding fine
blood vessels in images while enhancing the contrast. There-
fore, using contrast-limited adaptive histogram equalization
(CLAHE) algorithm is essential to enhance retinal vessels
because it can inhibit noise enhancement. Moreover, the
CLAHE algorithm has a simple calculation and determines
only one parameter of the amplitude limit. Figure 2(b) shows
the processing result of the CLAHE algorithm.

The enhancement results of Figure 2 were compared. The
AHE algorithm increased the noises surrounding the fine
blood vessels and in the image background while enhancing
blood vessels. This feature resulted in the uneven brightness
distribution of the image. On the contrary, the CLAHE algo-
rithm decreased noise interferences while enhancing the con-
trast between blood vessels and background effectively.

2.2. Improved Frangi Filter Algorithm. Blood vessels present a
linear tubular structure in fundus retinal images, and the
diameter range falls within a limit. From Gaussian function
and original image convolution, most structures that are
smaller than scale s in the image can be inhibited, whereas
those with a width equivalent to s are enhanced. Therefore,
vascular responses under different scales could be expressed
by convolution of the original image Iðx, yÞ and Gaussian
kernel Gðx, y ; sÞ, whose scale s is the radius of the vessels:

Is x, y ; sð Þ = I x, yð Þ ⊗ G x, y ; sð Þ, ð1Þ

where the Gaussian function is

G x, y ; sð Þ = 1
2πs2

e −
x2 + y2

2s2
: ð2Þ

The original Hessian matrix of a two-dimensional image
Isðx, y ; sÞ is defined as
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(a) (b)

(c)

Figure 1: Images of R, G, and B channels: (a) R channel; (b) G channel; (c) B channel.

(a) (b)

Figure 2: Contrast enhancement images: (a) Enhancement by histogram equalization; (b) enhancement by CLAHE.
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H =
∂xxIs ∂xyIs
∂yxIs ∂yyIs

 !
, ð3Þ

where ∂xxIs, ∂xyIs, ∂yxIs, and ∂yyIs are second-order
partial derivatives of the image. Numerical values of these
four parameters can be approximate to the linear convolu-
tion of the image and the scale-normalized derivative of
Gaussian kernel function [24]:

∂nIs x, y ; sð Þ = I x, yð Þ ⊗ sn∂nG x, y ; sð Þ: ð4Þ

Therefore, the Hessian matrix of the point p0 in the image
is defined as

H p0, sð Þ = I x, yð Þ ⊗ s2 ∗ ∂2G x, y ; sð Þ� �
: ð5Þ

In a two-dimensional image, the Hessian matrix is a two-
dimensional positive definite matrix that has two eigenvalues
and corresponding eigenvectors. When blood vessels are
low-dark tubular structures relative to the background, the
Hessian matrix of the pixels at blood vessels has high positive
eigenvalue λ1, small eigenvalue λ2, and jλ1j≫ ∣λ2 ∣ . More-
over, λ1 is higher when the brightness of the pixel at the
blood vessel is lower and the blood vessel diameter is larger.
Therefore, an equivalence factor d = 2s was introduced into
the vascular response function to normalize responses of
blood vessels under different scales.

In retinal images, eigenvalues of the Hessian matrix
represent curvature intensity of blood vessels, whereas eigen-
vectors represent the curvature direction of blood vessels. As
λ1 and λ2 are two eigenvalues of the matrix and jλ1j≫ ∣λ2 ∣ ,
the eigenvector μ1 corresponding to λ1 reflects the direction
of maximum curvature (perpendicular to the axial direction
of the blood vessel). By contrast, that of λ2 reflects the direc-
tion of minimum curvature (axial direction of the blood
vessel). Hence, another parameter of arctan ðλ2/λ1Þ that rep-
resents the direction angle of the eigenvectors was introduced

in [25–28]. Therefore, the proposed new vascular response
function is

f p0, sð Þ = e−arctan λ2/λ1ð Þ2∗ λ1/dð Þ: ð6Þ

The output result under multiscale is

f p0ð Þ = max
smin≤s≤smax

f p0, sð Þ, ð7Þ

where smin and smax are the minimum and maximum radii of
blood vessels in fundus retinal images, respectively.

Figure 3 depicts the blood vessel enhancement effects on
the basis of the traditional and improved Frangi filter. The
vascular response function on the basis of the traditional
Frangi filter will strengthen noises to a large extent while
enhancing blood vessels. Thus, many false-positive pixels
are generated in the marginal area of field of view (FOV),
which influences follow-up elimination of margins of the
FOV region through masking. However, the improved
Frangi filter can increase the overall performance of images
significantly while enhancing blood vessels. The improved
Frangi filter enhances coarse blood vessels and maintains
the fine ones to the maximum extent, without influencing
edges of the FOV region.

2.3. Otsu Segmentation Algorithm on the Basis of Improved
Mathematical Morphology

2.3.1. Improved Mathematical Morphology. After the fundus
retinal image is enhanced by the improved Frangi filter, small
branches of blood vessels are enhanced. At the same time, the
noises in the background are increased. Therefore, the pri-
mary goal is to eliminate noise interferences in the back-
ground region of the image while retaining fine blood
vessels as much as possible before image segmentation.

(a) (b)

Figure 3: Multiscale vessel enhanced images: (a) Frangi filter enhancement; (b) improved Frangi filter enhancement.
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Basic operations of mathematical morphology include
dilation and erosion, which are defined, respectively, as

Id = I ⊗ Se, ð8Þ

Ie = IΘSe, ð9Þ
where I is an image for processing, Se is a structural element
of morphology, and Id and Ie are images after dilation and
erosion, respectively.

Open operation in morphology refers to the erosion
operation of the image by using the structural element Se
and then implementing the dilation operation. Open opera-
tion can eliminate bright regions of the image that are smaller
than structural elements without affecting other details.
Open operation is defined as

Iopen = I ∘ Se = IΘSeð Þ ⊕ Se: ð10Þ

The structural element in mathematical morphology is
very important to image processing. The linear structure

was chosen as the structural element considering that blood
vessels in fundus retinal images have tubular structures. This
structural element has two parameters, namely, length and
angle. Traditional mathematical morphology can only use
the same linear structural elements (length and angle in the
structural element are fixed) to process the entire image.
Blood vessels in the fundus retinal image are in network dis-
tribution and have different diameters and directions. There-
fore, traditional mathematical morphological processing fails
to achieve the ideal effect (Figure 4(a)). Thus, an improved
mathematical morphological method was proposed [29–31].

First, the lengths of linear structural element increase
from the minimum diameter (2 pixels) of blood vessels to
the maximum diameter (12 pixels) for every 1 pixel. Second,
the angles of the linear structural element are determined
every 10° from 0° to 170° given that the direction of blood ves-
sel sections ranges between 0° and 360° and is symmetric. In
this way, open operation results of 198 templates could be
gained. If the gray value of the open operation results of kth
template at the pixel point ði, jÞ is Iopenði, jÞ, then the gray
value of each pixel point after final morphological processing

(a) (b)

(c) (d)

Figure 4: Mathematical morphology processing: (a) traditional mathematical morphology; (b) subregion magnification of (a); (c) improved
mathematical morphology; (d) subregion magnification of (c).
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(a)

(b)

(c)

(d)

Figure 5: Continued.
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chooses the maximum of 198 operation results at the corre-
sponding position:

IR =max
k

Iopenk i, jð Þ, ð11Þ

where IR is the image processed by the improved mathemat-
ical morphology. Figure 4(c) shows the result.

Figures 4(a) and 4(c) depict the processing results of the
traditional and improvedmathematical morphologies, respec-
tively. Moreover, Figures 4(b) and 4(d) show the magnifica-
tions of corresponding subregions. Traditional mathematical
morphology decreases partial noises but causes serious distor-
tion of the image, and some vascular information is lost. How-
ever, the improvedmathematical morphology decreases image
noises significantly and sharpens image profiles and details,
without causing loss of image information. These features
are beneficial for subsequent segmentation.

2.3.2. Otsu Segmentation Algorithm. Otsu algorithm is a
high-efficiency and simple algorithm for image binarization.
According to gray characteristics of images, the Otsu algo-
rithm divides an image into background and foreground.
Then, gray histograms of the background and foreground
pixels were calculated, and their variances were compared
to find the optimal threshold. This threshold refers to the
threshold at the maximum variance and is used to distinguish
background and foreground pixels.

For an image, t is the segmentation threshold of the back-
ground and foreground pixels. ω0 refers to the proportion of
foreground pixels in the image, and μ0 pertains to the average
gray level. ω1 is the proportion of background pixels in the
image, and μ1 is the average gray level.

The overall average gray level of the image is

μ = ω0 ∗ μ0 + ω1 ∗ μ1: ð12Þ

The variances of foreground and background pixels are

g = ω0 ∗ ω1 ∗ μ0 − μ1ð Þ ∗ μ0 − μ1ð Þ: ð13Þ

When the variance g is at maximum, the difference
between the foreground and background also reaches the
maximum. At this moment, the gray level t is the optimal
threshold.

3. Experimental Results and Analysis

In this study, the proposed algorithm was tested on the test
set of public fundus retinal images by the DRIVE and STARE
data sets. Qualitative and quantitative contrast analyses
among segmentation results of the proposed method and
manual segmentation of two experts and traditional Frangi
filter processing were carried out. For comparative assess-
ment, segmentation effects of the proposed method were
compared with those of new algorithms. The traditional
Frangi filtering process is also performed after the CLAHE-

(e)

Figure 5: The comparison of blood vessel segmentation effect of fundus retinal image. (a) Original color fundus retinal images; (b) results of
manual segmentation by the first expert; (c) results of manual segmentation by the second expert; (d) results processed by traditional Frangi
filter; (e) results processed by the proposed method.
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Figure 6: 1D cross sections of the middle row of marked subarea in
the first image in Figure 5.
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enhanced image, and then, improved mathematical mor-
phology operations and Otsu algorithm are used for
segmentation.

3.1. Segmentation Effect. The manual segmentation results of
the two experts are the most important indicators to assess
the segmentation effect of fundus retinal images. Figure 5
shows the comparison of the vascular segmentation results of
the proposed method, the manual segmentation results of
two experts, and the results of traditional Frangi filtering. These
images were chosen randomly from the DRIVE data set.
Figure 5(a) illustrates the original colorful fundus retinal
images. Figures 5(b) and 5(c) show the manual segmentation
results of the first and second experts, respectively. Moreover,
Figures 5(d) and 5(e) depict the segmentation results of the
traditional Frangi filter and the proposed method, respectively.

The results of manual segmentation by experts, tradi-
tional Frangi filtering segmentation, and the proposed
method segmentation of three fundus retinal images which
were chosen randomly from the DRIVE data set are shown
in Figure 5. Figure 6 illustrates the 1D cross sections of the
middle row of marked subarea (the framed part in the first
column of images in Figure 5) in the above three segmenta-
tion results. This figure also shows that the width of blood
vessels segmented by the proposed algorithm is consistent
with that of the manual segmentation of experts, whereas
the blood vessels segmented by the traditional Frangi filter
are coarse. When using the traditional Frangi filter to
enhance blood vessels, optic disk pixels are very easy to be
determined as vascular pixels compared with those of
Figure 5. Moreover, the traditional Frangi filter tends to
coarsen veins and arteries in the center, thus generating
false-positive pixels surrounding blood vessels. However,
the proposed method shows a good segmentation effect of
retinal vessels and assures the integrity and accuracy of vessel
segmentation.

Figure 7 shows the comparison of the detailed segmenta-
tion effects of the above three methods. After the traditional
Frangi filtering segmentation, many vascular pixels at ends
of blood vessels are lost, and many fine blood vessels that

are important to analyze retinal images are missing. Compar-
atively, the proposed method maintains many fine blood
vessels, and the whole retinal vessels are still in good struc-
ture and connectivity.

3.2. Performance Analysis. For the objective evaluation of the
segmentation effect of blood vessels, accuracy (Acc), sensitiv-
ity (Se), and specificity (Sp) are generally applied in quantita-
tive assessment. Acc refers to the proportion of accurately
classified pixels in total pixels of fundus retinal image. Se
and Sp refer to the proportion of vascular and nonvascular
pixels that are recognized accurately in the segmentation
result, respectively. Table 1 shows the calculation formulas
of these three indicators.

In Table 1, TP and FP refer to vascular and background
pixels that are judged as a blood vessel in the segmentation
result, respectively. FN and TN refer to vascular and back-
ground pixels that are judged as a background in the segmen-
tation result, respectively.

Figure 8 shows the comparisons of accuracy and sensitiv-
ity between the traditional Frangi filter and the proposed
method on the test set. The proposed method is superior to
the traditional Frangi filter in terms of the segmentation
effect of most fundus retinal images. The two images in the
proposed method have lesser sensitivity but significantly
higher sensitivity on the remaining images compared with
those in the traditional Frangi filter. Moreover, accuracy is
increased while significantly improving sensitivity.

For a better assessment, the proposed method was com-
pared with other relatively new algorithms in terms of

(a) (b) (c) (d)

Figure 7: Detailed comparison of segmentation results. (a) Segmentation results of the proposed method; (b)~(d) are the enlarged maps of
the marked detail area of the results of expert manual segmentation, traditional Frangi filter processing, and the proposed method
segmentation, respectively.

Table 1: The calculation formulas of blood vessel segmentation
evaluation indicators in fundus retinal image.

Evaluation indicators Calculation formulas

Accuracy (Acc) Acc = TP + TNð Þ/ TP + FP + TN + FNð Þ
Sensitivity (Se) Se = TP/ TP + FNð Þ
Specificity (Sp) Sp = TN/ TN + FPð Þ
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accuracy, sensitivity, and specificity. Performance comparison
of the proposed method with some of the existing methods on
both the DRIVE and STARE data sets was also conducted, as
shown in Tables 2 and 3.

From the performance comparison of the methods in
Tables 2 and 3, the method proposed by Budak et al. [36]
has the highest accuracy in the DRIVE and STARE data sets,
respectively, 0.9685 and 0.9735, which are higher than the
proposed method’s 0.0131 and 0.0243, respectively. The
method proposed by Guo et al. [35] has the highest sensitiv-
ity, respectively, 0.9589 and 0.9861, which are much higher
than all other methods, but this method tends to make the
specificity very low, only 0.7046 and 0.5628, respectively.

Fu et al. [34], Guo et al. [35], Budak et al. [36], and Guo
et al. [37] are all based on deep learning methods for blood
vessel segmentation. The disadvantage is that a large amount
of data is required for learning. For medical images such as
the fundus retina, obtaining enough fundus retina images is
itself a challenging problem. The amount of data in the exist-
ing fundus image database is also very small, and there are
large differences between different data sets. The proposed
method is the same as the methods proposed by Chaudhuri

et al. [6], Li et al. [7], and Barkana et al. [32]. It only uses
image features and attributes to process. Compared with
the methods of Chaudhuri et al. [6], the proposed method
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Figure 8: Comparisons of evaluation indicators between traditional Frangi filter and the proposed method.

Table 2: Performance comparison of blood vessel segmentation
methods with the DRIVE data set.

Methods
Evaluation indicators

Acc Se Sp

Chaudhuri et al. [6] 0.8773 0.3357 0.9794

Li et al. [7] 0.9343 0.7154 0.9716

Barkana et al. [32] 0.9502 0.7224 0.9840

Hassanien et al. [33] 0.9388 0.7210 0.9710

Rezaee et al. [18] 0.9463 0.7189 0.9793

Zhao et al. [17] 0.9477 0.7354 0.9789

Fu et al. [34] 0.9470 0.7294 —

Guo et al. [35] 0.9613 0.9859 0.7046

Budak et al. [36] 0.9685 0.7439 0.9900

Guo et al. [37] 0.9075 0.8990 0.9283

The proposed method 0.9554 0.6942 0.9802
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has the highest accuracy in the DRIVE data set, and the
method is simple and easy to implement. Under the condi-
tion of ensuring the sensitivity, the overall accuracy is high,
and the balance of the three indicators is ensured.

Vessel segmentation of fine blood vessels for fundus ret-
inal images is difficult. Compared with other classical
methods, the proposed method achieves higher accuracy
because it can segment fine blood vessels well while protect-
ing the integrity of the trunk after segmentation. Using the
improved Frangi Hessian model in enhancing blood vessels
not only extracts vascular feature maps under multiscale
but also enhances fine branches of blood vessels effectively.
In addition, the proposed method eliminates noise interfer-
ences surrounding fine blood vessels through the improved
mathematical morphological operation. Hence, the proposed
method highlights fine blood vessels, thus enabling accurate
segmentation.

4. Conclusions

A blood vessel segmentation algorithm of fundus retinal
images on the basis of the improved Frangi and mathematical
morphology is proposed in this study. The proposed method
uses the improved Frangi Hessian model to enhance blood
vessels, thereby achieving the extraction of blood vessel
feature maps under multiscale conditions and enhancing
small blood vessels. Moreover, an improved mathematical
morphological operation is used to eliminate noise interfer-
ences surrounding the fine blood vessels, considering the
diameter and direction of blood vessels. Hence, fine blood
vessels can be recognized as blood vessel pixels accurately
in the final Otsu segmentation. The proposed method is
tested by the public DRIVE and STARE data sets. According
to the test results, the average segmentation accuracy, sensi-
tivity, and specificity of retinal images in DRIVE and STARE
are 95.54%, 69.42%, and 98.02% and 94.92%, 70.19%, and
97.71%, respectively. Moreover, the proposed method can
maintain relatively high segmentation accuracy under the
premise of ensuring segmentation sensitivity and shows good
overall performances. However, the optic disk may interfere,
thus influencing the segmentation effect. Hence, future stud-
ies may focus on eliminating such influences on the segmen-
tation effect.

Data Availability

In this study, the proposed algorithm was tested on the test
set of public fundus retinal images by the DRIVE database.
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