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Abstract: Laser-induced breakdown spectroscopy (LIBS) analysers are becoming increasingly
common for material classification purposes. However, to achieve good classification accuracy,
mostly noncompact units are used based on their stability and reproducibility. In addition,
computational algorithms that require significant hardware resources are commonly applied.
For performing measurement campaigns in hard-to-access environments, such as mining sites,
there is a need for compact, portable, or even handheld devices capable of reaching high measurement
accuracy. The optics and hardware of small (i.e., handheld) devices are limited by space and power
consumption and require a compromise of the achievable spectral quality. As long as the size of
such a device is a major constraint, the software is the primary field for improvement. In this
study, we propose a novel combination of handheld LIBS with non-negative tensor factorisation to
investigate its classification capabilities of copper minerals. The proposed approach is based on the
extraction of source spectra for each mineral (with the use of tensor methods) and their labelling based
on the percentage contribution within the dataset. These latent spectra are then used in a regression
model for validation purposes. The application of such an approach leads to an increase in the
classification score by approximately 5% compared to that obtained using commonly used classifiers
such as support vector machines, linear discriminant analysis, and the k-nearest neighbours algorithm.

Keywords: LIBS; NTF; HALS; classification; copper minerals

1. Introduction

Laser-induced breakdown spectroscopy (LIBS) [1] is a remote sensing technique used for both
qualitative and quantitative analysis of various materials. The operational principle is to use a high
pulse energy laser to instantaneously heat the matter to evaporate a small amount of the substrate
and eject it as a plasma plume. Then, the light emitted by the plasma is dispersed and registered by
a camera. After the specified time of continuous wavelength radiation, a time window exists with
the quickly cooling plasma, whereas the individual spectral lines representing the elemental material
composition can be recorded.

The LIBS itself (apart from intensity of elements’ spectral lines) does not deliver analytically
relevant information, such as classification or quantification. For these purposes, software methods
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must be engaged based on the input spectra and some mathematical operations to deliver the expected
measurement outcome. The algorithms used for such spectral data analysis are numerous and cover a
large area of statistics and machine learning fields of study [2,3]. Among them, the most frequently
used with LIBS are: classifiers (linear discriminant analysis (LDA) [4], support vector machines
(SVM) [5], and k-nearest neighbours (KNN) [6])); regression models (partial least squares [7], lasso [8],
and Bayesian regression [9])); clustering algorithms (k-means [10]) and artificial neural networks
(ANN)) [11].

There are numerous fields where LIBS analysers are used [12], such as basic scrap metal analysis [13],
classification of alloys [14], or mapping of geological cores [15]. Additional uses include sophisticated
applications such as adulteration detection in milk [16], discrimination of heavy-metal-contamination
in seafood [17], analysis of pathological tissues [18], or precision agriculture [19]. They are even
used with the most demanding space missions [20] and biohazard detection [21]. The size of the
LIBS equipment can vary from small handheld devices to large workstations. The size is usually
commensurate with the increase in resolution, limit of detection, repeatability, and general unit
functionality. However, the device size limits its usage in many in-situ applications where a handy
analyser is perfect. Such situations occur when the amount of equipment is limited by personal lifting
capacity or where the measurement location is extremely tight (i.e., mines and other geological sites).

In this study, we focus on the possibility of using a compact handheld LIBS to analyse the
geological samples online—on-site. The materials analysed will be copper minerals existing in a
natural state on their base substrate, so no sample preparations will be made. The outcome for the
measurements should be a mineral identification of the rocks exposed to laser radiation. However, this is
a nontrivial task because the mineral samples are very heterogeneous with irregular geometrical shapes.
This heterogeneity makes it difficult for classification learners as the labels may be incorrectly assigned
or impure, leading to misclassifications between minerals. Conversely, the irregular mineral shape
becomes challenging for the optics and lasing capabilities of the handheld device, and the registered
spectra will differ significantly in intensity and spectral channel coverage. Our proposed approach
is to use a linear regression model for the classification purpose, while the regressors originate from
a blind source separation algorithm. This algorithm will be capable of distinguishing the mineral
spectra of interest from the base rock or other impurities of the analysed sample. In this case, a novel
combination of LIBS with a non-negative tensor factorisation (NTF) [22] method was applied.

The NTF is an unsupervised learning method for extracting mode-related non-negative latent
components from a multiway array (tensor). Assuming that the measured LIBS spectra from multiple
measurement points can be collected to a 3-way tensor, the aim of NTF is to extract a few artificial
(latent) spectra from each mineral in a given dataset, and then use them as predictors in a regression
model for classification purposes. The latent spectra can be regarded as common patterns in the
observed LIBS spectra and have a multilinear relationship with the spectra across each mode of the
observed tensor. Such multimodal relationships cannot be revealed with matrix factorisation models,
such as principal component analysis (PCA). Moreover, due to nonnegativity constraints, NTF yields
spectra that have a physical sense and easy interpretation, whereas PCA provides only some orthogonal
components (with negative entries) that could not be used as predictors in a regression model.

The final intent of this work is to create an analytical method that could be embedded within
handheld or other mobile LIBS devices or systems, which can be used as a support and verification
tool for geologists while prospecting for copper deposits.

2. Materials

2.1. Overview

This work is based on the analysis of 62 different copper minerals whose copper content varies
significantly. Those minerals are: azurite, malachite, brochantite, copiapite, devilline, fornacite,
langite, nakauriite, natrochalcite, osarizawaite, posnjakite, vauquelinite, arthurite, chenevixite,
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clinoclase, conichalcite, cornetite (co0), cornubite, descloizite, duftite, libethenite, mottramite,
olivenite, parnauite, pseudomalachite, richelsdorfite, tsumebite, turquoise, tyrolite, ajoite, allophane,
chrysocolla, creaseyite, dioptase, halloysite, plancheite, vesuvianite, algodonite, antimonpearceite,
bornite, bournonite, chalcopyrite, colusite, covellite, digenite, enargite, freibergite, germanite, gladite,
idaite, jaskolskiite, krupkaite, seligmannite, stannite, stromeyerite, tetrahedrite, umangite, boleite,
kinoite, cuprite, delafossite, and tenorite.

To shed light on the given classification problem and understand the general similarities of the
minerals, they were all grouped in accordance with the Strunz Classes [23] given in Table 1. The first
three characters of each mineral name (indicated with bold font in the above list) together with a
Strunz Class number constitute short names used in the remainder of this article (with one exception
for cornetite being co0–8). The exact Strunz Class assignment for each mineral is given in Table S1 in
the supplementary data.

Table 1. List of mineral classes of analysed samples (based on original Strunz Class [23]).

Mineral Class Name Class Number C

Sulfides 2
Halides 3

Oxides and Hydroxides 4
Carbonates and Nitrates 5

Sulfates 7
Phosphates 8

Silicates 9

The material suppliers were chosen from among different countries and/or geographical regions
to differentiate the population of rocks with specific minerals and make the database more versatile.
The origins of the samples include six continents, 29 countries, and 65 different regions as follows:

Australia (Kambalda), Austria (Tirol, Steiermark), Belarus (Rhodopien), Chile (Calama, Taltal,
Atacama, Chuquicamata), Czechia (Severocesky, Horni Slavkov, Morava, Sredocesky), Democratic
Republic Congo (Katanga), France (Corsica), Germany (Aachen, Harz, Hessen, Westerwald,
Sauerland, Schwarzwald, Osthessen, Bad Ems, Saxony, Thuringia, Mansfeld), Greece (Laurion),
Hungary (Rudabanya), Italy (Udine, Neapel), Japan (Aichi), Kazakhstan (Dzhezkazgan, Majkojyn),
Morocco (Agadir, Bou Azzer, Bou Skour), Mexico (Durango), Namibia (Otavi, Kaokoveld),
Peru (Huanzala), Poland (Polkowice), Portugal (Estremoz), Russia (Jakutien, Ural), Slovakia (Piesky,
Michalovce, Lubjetova), Spain, Switzerland (Grisons, Wallis), Sweden (Gruvasen, Vena), Tajikistan
(Mushiston Deposit), UK (Bristol, Cornwall), Ukraine (Nagolny Krjazh), USA (Nevada, Arizona,
Montana, Utah, New Mexico, Missouri, California, Michigan, Montana), and Zambia (Kitwe).

The mineral shapes and sizes attached to the rocks were extremely diverse, from perfect crystals
spread on the surface of the base rock to thin layers, often combined with the base rock, with unknown
percentage distributions of both. Figure 1 presents examples of such mineral shapes. Examples are
for chalcopyrite, azurite, and malachite, where each pair of photos (Figure 1a–f, respectively) shows
two cases: (1) a well-built and clear crystal structure without impurities attached to the base rock,
and (2) evenly distributed mineral over the rock surface with an unknown percentage mix with the
base rock. Moreover, the attached crystal sizes differed from large, as in the case of chalcopyrite
(Figure 1a), to very small as in the case of azurite (Figure 1c).
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Figure 1. Examples of mineral distribution on the rock samples.

A total of 127 rock samples were taken into consideration. The statistics for the number of rock
samples per mineral are presented in Figure S2 in the supplementary data.

2.2. Element Composition

As the chemical bonds are destroyed during the plasma creation, the analysed spectral signal is
primarily dependent on the elements that existed in the material before the laser action. All 62 minerals
are described in Table S1 in the supplementary data by their empirical element composition taken
from [24], where a total of 27 elements were found. Then, based on the elemental composition,
an investigation of the similarities between them was conducted with the use of PCA to find
theoretically undistinguishable minerals by LIBS. In this way, a new N-dimensional (N = 27) space was
created with new orthogonal variables called principal components (PCs) that describe the dataset
sorted from the highest to the lowest variance [25]. Even with such PCA transformation, it was
impossible to find good representative PCs to determine how the minerals are distinguishable from
each other in a lower dimensional space (i.e., 3D representation).

In that case, N-dimensional measures are used to find mineral pairs that are most like each
other. For this purpose, the Matlab® pdist function was used with four selected distance measures:
Euclidean d2

st = (xs − xt)
T(xs − xt), City block dst =

∑
j

∣∣∣xsj − xt j
∣∣∣, Chebyshev, dst = max j

{∣∣∣xsj − xt j
∣∣∣},

and cosine dst = 1− xT
s xt

||xs ||||xt ||
[26]. The final computation was an average of those four measures as they

gave similar yet different orders of hard to distinguish mineral pairs.
Figure 2a presents the least distinguishable 21 pairs of minerals. The worst cases were the mal-5

and azu-5 groups as well as a group consisting of lan-7, pos-7, and bro-7. These two barely reach
2% of the maximum distance between minerals in the PCA space. Figure 2b presents the worst-case
groups of minerals extracted from Figure 2a with the other minerals distributed within the space
of the first two PCs. Those groups are the already mentioned lan-7/pos-7/bro-7 and mal-5/azu-5 as
well as co0-8/lib-8/pse-8, cli-8/cor-8/oli-8, dio-9/chr-9/ajo-9, hal-9/all-9, gla-2/kru-2, and the last one,
tsu-8/vau-7, which is actually the first pair that shows close similarity above the Strunz Class division;
hence, there is no need to search for another similar groups.
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Figure 2. PCA analysis of the mineral dataset based on element composition: (a) the N-dimensional
distance measure between the closest pairs of minerals; (b) 2D PCs plot indicating the most similar
groups of minerals extracted.

Further analysis of the elemental composition values (Figure 3) clearly indicated that malachite
and azurite as well as the group of langite, posnjakite, and brochantite cannot be distinguished from
each other. As a result, new mineral labels were created: a+m for the mal-5/azu-5 and blp for the other
three. These minerals were combined and labelled together for further classification. The full heatmap
with all 27 elements and 62 minerals is shown in Figure S3 in the supplementary data.
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Figure 3. Heatmap (with values) representing elemental composition among the most similar minerals
in accordance with the mineral’s empirical formula [24]. The sorting from left to right was performed
based on the outcome of Figure 2.
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3. Experimental

The measurements were performed using a handheld LIBS device (Z-300, SciAps). The DPSS
Nd:YAG laser emits radiation at a wavelength of 1064 nm, with a repetition rate up to 50 Hz, a pulse
energy of 5–6 mJ, and a pulse duration of 1–2 ns. The spectrometer covers a range of 190–950 nm.
Immediately before and during the measurement, the measuring region was purged with Ar gas to
remove ambient air and enhance the LIBS signals. Each specific measurement point (MP) on the rock
sample consisted of 64 single shots in an 8 × 8 grid covering an area of roughly 2–4 mm2. It is worth
noting that the device did not save spectra below a specific intensity threshold. Therefore, in some
cases, fewer than 64 spectra were recorded per MP.

The mineral crystals on the surface were uniform, and the area covered by the 8 × 8 grid
often extended beyond the crystal of interest. For that reason, all MPs had to be manually labelled.
An example of such labelling is shown in Figure 4 and Table 2.
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Table 2. Example description table of the sample shown in Figure 4.

MP Mineral Reference Coverage

1 azurite 0 80
2 azurite 0 20
3 azurite 1 90
4 azurite 0 30
5 azurite 0 60

When an MP seems to cover more than 90% of the interesting mineral, it is flagged as a possible
reference, and can then be used for both training and validation. If not flagged with logic 1 in the
Reference column, then the MP remains as validation only. In the Coverage column of the description
table, a percentage value of the mineral of interest within the 8 × 8 grid is provided. These values are
rough assessments (limited to a difference of +/−5%) made just after the LIBS measurement, based on
the pattern of laser spots on the sample and descriptions of the minerals of interest made by geologists.
This will assist with further automated validation of MPs (because if they reach that percentage
value, it means that classification succeeded). Even if the coverage description may in some cases be
slightly inaccurate, this does not favour our proposed NTF method as the bias remains the same for all
classification algorithms used.

During further classification, the MP is a single entity and the 8 × 8 grid spots will not be separated
or analysed exclusively. In total, 458 MPs were recorded, of which 311 were flagged as possible
reference and 147 as validation only. The full statistics of MPs per mineral are given in Figure S1 in the
supplementary data.
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4. Method

4.1. Latent Spectrum Extraction

The latent spectrum extraction in its principal form is used to select some underlying (latent)
spectra from observed LIBS spectra that are considered as mixtures of multiple latent components
generated by multiple spectral sources. The latent spectra are more frequent and have a common
pattern across all observed LIBS spectra. In an ideal case, after the extraction, one latent spectrum should
resemble an artificial spectrum of the desired source. In practise, we obtain few latent components that
approximately represent the true spectra of the analysed minerals.

In the investigated case, each object is probed with several to a dozen measuring points.

Thus, each MP contains a maximum of 64 spectra. Let y(m)
i1,i2
∈ RI(m)

3
+ be the i1-th spectrum of the

m-th object, measured in the i2-th MP. Each MP is assumed to provide I(m)
1 spectra, and the number

of MPs is equal to I(m)
2 , where i2 = 1, . . . , I(m)

2 . The space of non-negative numbers is expressed by

R+. The spectra in each MP are indexed according to a lexicographical order, that is, i1 = 1, . . . , I(m)
1 .

The number I(m)
1 is usually lower than 64 because some shots that correspond to the spectra of a low

variance (below a threshold) must be neglected. The spectral resolution is determined by the number of
samples in each spectrum, that is, the number I(m)

3 . Because the spectral resolution is the same for each

observed spectrum, then ∀m : I3 = I(m)
3 . We analyse M objects, where m = 1, . . . , M, assuming that each

registered spectrum y(m)
i1,i2

can be regarded as a superposition of latent spectra that could be pure spectra
of analysed minerals (endmembers) or other unwanted or perturbing spectra. The latent spectra for

the m-th object can be collected into the matrix U(m,3) =
[
u(m,3)

1 , . . . , u(m,3)
Jm

]
∈ RI3×Jm

+ , where Jm is the

number of latent spectra in the m-th object. Considering the above, the spectrum y(m)
i1,i2

can be expressed
by the following superposition rule:

y(m)
i1,i2

= ξi1,i2,1u(m,3)
1 + . . .+ ξi1,i2,Jm u(m,3)

Jm
=

Jm∑
jm=1

ξi1,i2, jm u(m,3)
jm

, (1)

where the coefficient ξi1,i2, jm ≥ 0 determines the contribution of the jm-th latent spectrum to the i1-th
observed spectrum of the i2-th MP in the m-th object. The coefficient ξi1,i2, jm can then be factorised as

ξi1,i2, jm = u(m,1)
i1, jm

u(m,2)
i2, jm

, where u(m,1)
i1, jm

≥ 0 represents the contribution from the i1-th shot and u(m,2)
i2, jm

≥ 0

refers to the contribution from the i2-th MP. Let u(m,1)
jm

=
[
u(m,1)

i1, jm

]
∈ RI(m)

1
+ be a vector of coefficients u(m,1)

i1, jm

for i1 = 1, . . . , I(m)
1 , and u(m,2)

jm
=

[
u(m,2)

i2, jm

]
∈ RI(m)

2
+ for i2 = 1, . . . , I(m)

2 . Sweeping over the indices i1 and i2,

letY(m) =
[
y(m)

i1,i2

]
∈ RI(m)

1 ×I(m)
2 ×I3

+ be a 3-way array (3-modal tensor) created from a set of spectra
{
y(m)

i1,i2

}
for the m-th object. It is thus easy to notice that model (1) takes the form

Y
(m) =

Jm∑
jm=1

u(m,1)
jm
◦ u(m,2)

jm
◦ u(m,3)

jm
, (2)

where the symbol ◦ denotes the outer product. Model (2) can be equivalently expressed in the form

Y
(m) = Jm ×1 U(m,1)

×2 U(m,2)
×3 U(m,3), (3)
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where U(m,1) =
[
u(m,1)

1 , . . . , u(m,1)
Jm

]
∈ RI(m)

1 ×Jm
+ , U(m,2) =

[
u(m,2)

1 , . . . , u(m,2)
Jm

]
∈ RI(m)

2 ×Jm
+ , Jm ∈ RJm×Jm×Jm

+ is

a superdiagonal identity tensor, and the symbol ×n stands for the tensor-matrix product across the n-th
mode.

Note that all factor matrices
{
U(m,1), U(m,2), U(m,3)

}
contain only nonnegative numbers, and hence,

model (3) can be regarded as the standard non-negative tensor factorisation (NTF) [22], which is a
particular case of the CANDECOMP/PARAFAC (CP) decomposition [27,28].

Factor U(m,3) contains Jm latent spectra, and U(m,1) and U(m,2) represent the contribution coefficients
(concentrations) of the latent spectra to observations across the first and second modes of the tensor
Y

(m), respectively. The latent spectra can thus be obtained by performing the NTF ofY(m), given the
assumed number Jm.

There are numerous computational strategies for NTF, and nearly all of them are based on an
alternating optimisation scheme with unfolding imposed on each mode. Model (3) expressed in the
unfolded version takes the form

Y(m)

(n)
= U(m,n)

(
�p,nU(m,p)

)T
, (4)

where Y(m)

(n)
∈ R

I(m)
n ×

∏
p,n

I(m)
p

+ is a matrix obtained by the unfolding tensor Y(m) along its n-th mode;
where n = 1, 2, 3, and the symbol � stands for the Khatri-Rao product. Note that the system in (4) is
considerably overdetermined because

∏
p,n I(m)

p � Jn. To alleviate the problem of scaling ambiguity in

the NTF, the columns in matrices U(m,2) and U(m,3) are normalised to the unit l1-norm. The system of
linear equations in (4) can be solved with numerous linear solvers subject to nonnegativity constraints.
In our study, we used the hierarchical alternating least-squares (HALS) algorithm proposed in [29],
and then computationally improved in [30]. It belongs to a family of block coordinate descent

update algorithms with monotonic convergence and computational complexity of O
(
NJm

∏N
n=1 I(m)

n

)
.

The graphical representation of the NTF model is presented in Figure S4 of the supplementary data.

4.2. Regression Model Using Latent Spectra

To estimate the percentage rate of minerals in a newly measured MP, the latent spectra are extracted
from the known MPs labelled with the so-called strong reference. We assume that Jm latent spectra are
extracted from the m-th labelled object using the NTF. The latent spectra after being postprocessed
can be regarded as regressors for predicting the percentage of minerals in such an unknown MP.
Any unknown spectrum ỹ ∈ RI3

+ is assumed to be approximated by a linear regression model,

ỹ �
M∑

m=1

Jm∑
jm=1

α
(m)
jm

u(m,3)
jm

, where
M∑

m=1

Jm∑
jm=1

α
(m)
jm

= 1. (5)

Coefficient α
(m)
jm

represents the contribution of the jm-th latent spectrum from the m-th

object to the unknown spectrum ỹ. Let U =
[
U(1,3), . . . , U(M,3)

]
∈ RI3×

∑M
m=1 Jm

+ and

α =
[
α
(1)
1 , . . . ,α(1)

J1
,α(2)

1 , . . . ,α(M)
JM

]
∈ R

∑M
m=1 Jm

+ . Coefficient α
(m)
jm

can be estimated from model (5) by

solving the following regularised constrained least-squares problem:

α∗ = argmin
α

1
2

∣∣∣∣∣∣̃y−Uα
∣∣∣∣∣∣2

2 +
λ
2
||α||22, s.t. α ≥ 0, and ||α||1 = 1, (6)

where λ ≥ 0 is a regularisation parameter that controls the overfitting. In this study, problem (6) was
solved using the interior-point least-squares algorithms for regularised box-constrained problems,
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implemented in the function lsqlin in Matlab® 2016a. Note that coefficients in vector α∗ can also be
regarded as unknown percentages of expected minerals in the analysed MP.

4.3. Determining the Number of Latent Spectra per Mineral

The last problem to be solved is how to determine the correct (sufficient) Jm number of latent
spectra for each m-th object. The problem would be trivial if only pure mineral samples were analysed,
since only a single latent spectrum may represent the desired mineral. However, in our measurements,
impurities in the spectra resulting from base rocks and other minerals will occur. Moreover, the NTF is
sensitive to the difference in light intensity distribution between spectrometer channels, which is not
constant because the light is propagated inside the device and thus can cause additional perturbations
of the desired m-th object spectra. In that case, the assumption was made that we will search for Jm

latent spectra in which most of them represent the scattered spectra of the desired mineral. The less
contributing examples after the so-called self-regression will be labelled as unknown spectra (U).

In such a case, we developed an iterative process in which we start from Jm = 2 (Jm = 1 will be
similar to a weighted average of the data) and increment the number until reaching a break loop
condition. The loop breaking condition is based on two parameters: level L and ratio R, which will be
set up prior to this procedure.

The L-condition is superior and relates to the cumulative contribution given by the sum of

coefficients
{
α
(m)
jm

}
of the first K latent spectra ( jm = 1, . . . , K), sorted in descending order of their

contributions. Note that number K cannot be equal to Jm, which means that at least one latent spectrum
should be classified as undefined U. If the cumulative contribution of K latent spectra in a given iterative
step is equal to or greater than the L value, then the first K spectra are assigned as the desired mineral,
and the last Jm-K spectra are labelled as U. Otherwise, Jm is incremented and again the L-condition
is checked.

If the L-condition is satisfied, then the second R-condition should be checked. This condition
requires the minimum ratio between the last (K-th) spectrum assigned as a mineral to the first (Jm-K+1)
spectrum assigned as U. This relation is very important, as for a higher value of Jm, the distribution of
latent spectra contributions might end up equal. Therefore, it may be difficult to assess the U spectra, as
the difference between the last labelled as mineral and first labelled as U may be only a few percentage
points. If the R-condition is not met, Jm is incremented, and the L-condition is checked.

After meeting these two (L and R) conditions, we achieve the solution for which we have the
desired level of contributions and the ratio of the contributions of the last mineral spectrum to the first
U spectrum large enough to assume the U spectra are really the unwanted signals. An example of such
a loop operation with given L/R conditions is shown in Figure S5 of the supplementary data.

Obviously, for some combination of R and L in a given m-th object, such a pair of conditions can
never be met. To avoid an infinite loop, parameter J(max)

m is introduced, which is the maximum Jm

number to be incremented in the loop. If the conditions are not met after Jm = J(max)
m , then a given pair

of L/R conditions is excluded from consideration for all m objects.
Figure 5 presents an example of such latent spectra extraction for malachite with R set to 1.8 and L

to 0.96. In this case, three components were extracted as scattered in the m-th object and one as the
U spectrum.

For the final validation process of a new unknown MP, the scattered K latent spectra of each m-th
object become different regressors. Finally, the predicted percentage contribution for the m-th object in
the new MP becomes the sum of the single K contributions of the m-th object scattered latent spectra.
The classifying label is then decided on the mineral that has the top percentage contribution.
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5. Results

5.1. Setup

The number of MPs flagged as validation only differs among minerals, some do not even have such
or have only one. To make the proportion of training and validation data equal among the minerals,
some of the MPs flagged as possible reference were also moved to be validation data. This new division
can be observed in Figure S6 of the supplementary data.

The parameters that were set for our algorithm were a maximum number of latent spectra
(J(max)

m = 20), ratios R (from 1.1 to 2.0), and levels L (from 0.80 to 0.98). The following sections present
10 × 10 heatmaps with classification measures from which we can select the best parameters for the
analysis of the confusion matrix.

Because we deal with an imbalanced dataset, there is a risk of the results being overwhelmed
by the outcome of the larger mineral classes. Thus, the metrics of precision and recall are introduced
together with their bounding metric called F-measure [31]:

Precision =
tp

tp + f p
, Recall =

tp
tp + f n

, F = 2 ∗
Precision ∗Recall
Precision + Recall

, (7)

where tp is the true positive rate, fp is the false positive rate, and fn is the false negative rate.
The proposed NTF-based classification also introduces the U class (Section 4.3), which should be

included in some way in the metrics in (7). For that purpose, we propose to differentiate two cases:
Uin and Uex.
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The Uin case assumes that we include MPs labelled as U in the classification score calculation.
However, the metrics in (7) require, among others, true positive rates, which in the case of U class,
will never exist (U is not a true class). This will result in precision and recall being zero all the time and
independently from the number of MPs labelled as U, the F-measure (if calculated) for U class will
always be zero and, therefore, lower the total F-measure for all the classes together. The only way to
introduce the U class into the F-measure, therefore, is assuming that if any MP is going to be assigned
as U class, it will appear as a false negative value for the original true class (i.e., azurite labelled as U).

The Uex case totally excludes MPs labelled as U from the classification score calculation.
This decision was made on the assumption that U labels give us the information that the measurement
outcome is uncertain and the user should repeat the measurement on such a sample for more confidence
(this is not yet an error at that point but restrains us from introducing false positive rates into another
class).

Again, as U is not a true class, the false positive rates will never exist for it, so, actually, the only
difference between Uin and Uex scores will be held by the recall part of the equation in (7) (the precision
will stay the same for both).

The NaN values within the heat maps are related to the L/R pairs with which the algorithm could
not find a latent extraction solution for at least one mineral. For improved clarity, each heatmap has
the top three L/R solutions listed in its title.

The result of the proposed algorithm is contrasted with the performance of the Matlab®

built-in classification algorithms: SVM (templateSVM: KernelFunction—linear; BoxConstraint—1;
standardised input), LDA (fitcdiscr: DiscrimType—linear; standardised input), and KNN
(fitcknn: Distance—Euclidean; NumNeighbors—1; DistanceWeight—equal, standardised input) [2].

As the confusion matrices in the case of our 59 classes were very large, they were added as
supplementary data (Figures S8–S11).

5.2. Analysis of Training Data

The first portion of the results is focussed on finding the ideal combination of parameters for
our proposed method. To do this, the model was trained and validated using the same training data
(Figure S6—supplementary data). This is reasonable, as while the proposed algorithm extracts the
latent spectra, it does it within a single mineral class and is unaware of the existence of other classes.
Because of this, it is unlikely for the model with so many classes to reach a 100% score even when
trained and validated with the same data (which is different in the case of the SVM that reached 100%
under the same conditions). However, this gives us an opportunity to revise the model on the basis of
training data and determine the best combination of R and L values for the given dataset.

From Figure 6, we see that the F-measure score increased with increasing L value. Moreover, it
is clear that we reached the parameterisation boundary from each side of the 10 × 10 matrices, as it
was impossible to deliver results for L equal or greater than 0.98 and R equal to 1.8 (or greater). If the
L values were taken from the range [0.8, 0.82], we had few possible solutions and much lower scores.
Finally, it was futile to use R values smaller than 1.1 because 1.0 would designate equality.

The best results for both FUin (Figure 6a) and FUex (Figure 6b) are a combination of R = 1.5 and
L = 0.96, and those parameters will be selected as a final solution with the validation dataset.
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Figure 6. F-measure output for the parameterisation of the NTF method with R and L variables (training
data vs. training data): (a) FUin—scores with U class included as an error; (b) FUex—scores with U class
excluded from measure.

5.3. Analysis of Validation Data

For this section, analyses were taken with separate training and validation data, in accordance
with Figure S6 in the supplementary data. Although we already selected parameters in the previous
section, we decided to perform the same parameterisation of R and L, resulting in 10 × 10 matrices to
verify that the selection was accurate.

Similar to Figure 6, the results in Figure 7 indicate (with few exceptions) that the F-measure score
increased with an increase in L. The boundary parameters also remained the same as the learned model,
as in the previous section.

Figure 7 presents the F-measure results of the parameterisation, but apart from the scores
for the Uin and Uex cases, it also presents the results in comparison to the best selected classifier
(Figure 7c,d), which, in our case, was SVM scoring 67.22%. It is important to note here that this was
the highest value that was possible to reach for an SVM trying different kernel functions and their
parameterisation. In fact, the basic linear SVM scored the best among all SVM variants that was
investigated. The additional results for NTF covering the F-measure’s partial scores—precision and
recall—are presented in Figure S7 in the supplementary data.

Although the best results in the case of Figure 7 were not for R = 1.5 and L = 0.96, these results
were selected as final because they could be foreseen (Section 5.2) and did not differ much from the
other high scores, especially in the case of the highest results such as FUex.

Table 3 presents the discussed measures obtained for the NTF-based method and three standard
classifiers for the analysed validation data. The best built-in solution was SVM, which reached an
F-measure of approximately 17.5% better than that associated with KNN and LDA. The proposed
algorithm reached 1.87% (Uin) and 5.02% (Uex) of the F-measure score with respect to the second-best
SVM, followed by increases in every other case where RUex had the highest gain of 6.92%.

Table 3. Classification measures of the validation dataset with the use of analysed methods. Brackets
indicate the NTF accuracy gain in comparison to the best SVM classifier.

Measure SVM KNN LDA NTFUin NTFUex

Precision (%) 71.76 51.77 52.01 74.74
(+2.98)

74.74
(+2.98)

Recall (%) 68.48 54.97 54.16 70.13
(+1.65)

75.40
(+6.92)

F-Measure (%) 67.22 49.48 49.77 69.09
(+1.87)

72.24
(+5.02)
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mineral classes had a 100% score, and the most confusing was all-5 (16 false positives). The KNN 

(Figure S10—supplementary data) performed similarly to LDA for the final F-measure score, while 

13 mineral classes were perfectly assessed, and the classes that caused the most errors were a+m (19 

false positives) and ajo-5 (13 false positives). Using the NTF method (Figure S11—supplementary 

Figure 7. Classification F-measure output for the parameterisation of the NTF method with R and L
variables (validation dataset): (a) FUin—scores with U class included as an error; (b) FUex—scores with
U class excluded from measure; (c) FUin—scores with U class included as an error in accordance with
the best SVM result from Table 3; (d) FUex—scores with U class excluded from measure in accordance
with the best SVM result from Table 3.

The confusion matrices for the built-in classifiers present a trend to seek a host for the more
likely hard-to-assess samples. In the case of the best out of three SVM (Figure S8—supplementary
data), 23 mineral classes had a 100% score, and the classes that caused the most errors were blp (19
false positives) and a+m (12 false positives). For LDA (Figure S9—supplementary data), only 11
mineral classes had a 100% score, and the most confusing was all-5 (16 false positives). The KNN
(Figure S10—supplementary data) performed similarly to LDA for the final F-measure score, while 13
mineral classes were perfectly assessed, and the classes that caused the most errors were a+m (19 false
positives) and ajo-5 (13 false positives). Using the NTF method (Figure S11—supplementary data),
we managed to classify the top F-measure score and the top 25 mineral classes without error. The U
class perfectly took the top host position for the hardest to assess samples (17 false positives), followed
by cha-2 (14 false positives) and cup-4 (8 false positives), which is very reasonable.

The CPU time and disk space usage of the above methods are compared in Table S12 in the
supplementary data. It is clear from this table that the proposed NTF-based method requires less disk
space and needs half the time for data validation compared to the competing SVM.

5.4. Example of Mineral Contribution for Selected MPs

The regression method proposed, apart from classifying the MPs, also gives the mineral percentage
contribution followed by their geometrical distribution within the 8 × 8 shooting grid. Figure 8 presents
the results for MP1 from the selected chalcopyrite sample. The bar plot presents the single contributions
of the regressors (Jm latent spectra) summed for each mineral. In this MP case, the top count goes to
chalcopyrite (almost 80%), leaving all the other minerals far behind, so the given classification label is
correct. The geometrical distributions of the four main minerals (m-th objects) and the unknown class
were equal within the 8 × 8 grid. Both can be confirmed with the MP photo, as the surface looks like an
equal mineral distribution without any sign of the base rock.
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Figure 8. Mineral contribution for selected MP of chalcopyrite sample. Bar chart presents the total
percentage rate of minerals per MP, the image indicates the place of measurement on the sample surface
and the heatmaps present the geometrical distribution of the four main minerals and unknown class
within 8 × 8 shooting grid. Black fields are missing spectra.

However, as mentioned in Section 2, there were also samples that did not have a consistent
mineral distribution on the surface, and the crystal size was even smaller than the 8 × 8 shooting
grid. An example of such a situation is the selected azurite sample presented in Figure 9. From the
photo, we observe that the azurite crystal actually covers less than one-quarter of the visible, burned in
laser pattern. This fact is clearly visible in the mineral distribution heatmaps of a+m, cha-2, and chr-9,
where in the case of the proper azurite (a+m) class in the bottom-left quarter, we observe a higher
contribution of that mineral, while in the same area on the cha-2 and chr-9 heatmaps, there is almost
zero contribution. The total sum of a+m contribution on the bar plot is almost 30%, which perfectly
covers one-quarter of the crystal that fits within the 8 × 8 shooting grid plus some average error of the
latent spectra contribution.
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Figure 9. Mineral contribution for selected MP of azurite sample. Bar chart presents the total percentage
rate of minerals per MP, the image indicates the place of measurement on the sample surface and the
heatmaps present the geometrical distribution of the four main minerals and unknown class within
8 × 8 shooting grid. Black fields are missing spectra.
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In both cases, as the classification labels were correctly set, the U class did not play an important
role in the final percentage rate within those MPs. Both MPs are missing some spectra.

6. Conclusions

In this research, we hypothesised that it is possible to extract artificial (latent) spectra for each of
the investigated minerals and use them as predictors in a linear regression model. For this purpose,
NTF was used. Because of the heterogeneity of the mineral samples and weak reproducibility of
the spectra acquired with the use of a handheld LIBS device, the procedure for proper latent spectra
selection was proposed. In such a procedure, a parameterisation of ratio R and level L variables is
required. The results show that these variables can be limited, with high accuracy, to one selection by
performing validation with the use of the same data as for the model training.

The NTF-based classification performed well, reaching higher F-measure scores of around 1.9%
(when the Unknown class was included in the measures) and around 5.0% (when the Unknown class
was excluded from the measures), both in accordance with the best SVM classifier. The standard
methods seem to find a host class for the hardest-to-assess samples, so using the method that already
contains an Unknown class inside its model was even more reasonable here.

In addition to the output labelling required for classification purposes, a percentage contribution
of the minerals within measuring points is given. Such additional information on the MPs allows the
creation of 2D mapping of the shooting area 8 × 8 grids with a smooth distribution of the mineral
classes among them.

The final regression model can be stored using low disk space, and the regression function is not
as memory- and CPU-intensive (compared to the commonly used classifiers SVM, LDA, and KNN).
Such a model may even be implemented in mobiles and other handheld LIBS devices and thus increase
their functionality as fast, on-site mineral analysers.

Future research will be devoted to applying the method to minerals other than those containing
copper as their primary element and verifying its universal usability. The NTF was confirmed as a
method for extracting artificial spectra for the mineral classes and was successfully used as a regressor
in a linear model.
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evenly match the dataset among mineral classes; Figure S7: classification precision and recall output for the
parametrisation of the NTF method with R and L variables (validation dataset), Figure S8: confusion matrix
of SVM classifier for validation dataset; Figure S9: confusion matrix of KNN classifier for validation dataset;
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