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Dorso-Lateral Frontal Cortex of the 
Ferret Encodes Perceptual Difficulty 
during Visual Discrimination
Zhe Charles Zhou1,2, Chunxiu Yu1, Kristin K. Sellers1,2 & Flavio Fröhlich1,2,3,4,5,6

Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing 
understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal 
cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how 
neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-
alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-
thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task 
difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias 
was found for target location. In individual neurons, this preference for specific task types was limited 
to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC 
before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted 
in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity 
is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting 
signal may provide top-down behavioral inhibition.

Prefrontal cortex (PFC) is widely interconnected with other cortical and sub-cortical areas1–4. Neurons in PFC are 
therefore ideally situated to (1) prioritize and integrate sensory signals, (2) prepare behavioral responses, and (3) 
assess outcomes. Indeed, PFC neurons encode a broad range of task-related signals. PFC neurons preferentially 
respond to behaviorally relevant sensory input5–7, provide top-down control signals that shape sensory processing 
by allocating attention in preparation for goal-directed actions8–11, and provide behavioral inhibition to overcome 
habitual responses10,12–15.

Together, these findings support a model in which goal-directed behavior arises through the interaction of 
bottom-up signals from sensory areas and top-down control signals from PFC. Sensory discrimination tasks pro-
vide a behavioral assay of how bottom-up sensory signals are processed and how they lead to goal-directed behav-
ior. Indeed, visual discrimination between two stimuli is a common element of many tasks that are used to study 
the neuronal correlates of perception. Accordingly, the role of (cortical) visual areas in tasks that require discrim-
ination between different visual stimuli has been extensively studied16–19. In contrast, the role of PFC in visual 
discrimination, in particular as a function of perceptual difficulty, has remained mostly unstudied. To address 
this gap, we investigated the neuronal spiking dynamics in dorso-lateral frontal cortex (dl-FC) of freely-moving 
ferrets during a two-alternative forced choice, visual discrimination task with two levels of perceptual difficulty. 
We hypothesized that dl-FC neurons dynamically encode task variables and that they are differentially recruited 
in trials with high perceptual difficulty. We further hypothesized that this brain area is causally involved in per-
forming the discrimination task.

To test these hypotheses, we trained ferrets to perform a touchscreen-based visual discrimination task. In this 
task, the animals initiated trials, selected the conditioned stimulus out of two simultaneously presented images, 
and retrieved a water reward at the end of successful trials. One group of animals was implanted with electrode 
arrays in left dl-FC20 for recording single-unit action potentials. We first investigated the preference of neuronal 
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spiking responses by fitting linear models that predicted binned (instantaneous) firing rate as a function of the 
task difficulty (“easy” or “hard” corresponding to “high” and “low” visual contrast) and the target location on the 
touchscreen (“left” or “right”). We next used support vector machine analysis to assess how well the population 
activity encoded these task properties21,22. In a second group of animals, we expressed ArchT23,24 in dl-FC to elu-
cidate the functional implications of dl-FC activity during this task.

Material and Methods
All animal procedures were performed in compliance with the National Institutes of Health guide for the care and 
use of laboratory animals (NIH Publications No. 8023, revised 1978) and approved by the Institutional Animal 
Care and Use Committee of the University of North Carolina at Chapel Hill.

Behavioral Task.  Spayed adult female ferrets (Mustela putoris furo, n =  3 for electrophysiology experiments, 
n =  5 for optogenetics experiments; group housed in a 12 hr light/12 hr dark cycle) were trained to perform a 
two-choice visual discrimination task. The task was carried out in a custom-made sound-attenuated behavioral 
box fitted with a touchscreen monitor (IRTOUCH, Beijing, China) to display stimulus images and to record 
nose-poke responses (Fig. 1A). A black Plexiglas sheet with left and right square cutouts was mounted in front 
of the touchscreen. Auditory tones were delivered through a speaker (HP Compact 2.0 Speaker) mounted on the 
opposite wall. A spout for water delivery and an infrared sensor to detect nose-poke initiation were positioned 
in the same wall 5 cm above the floor. A houselight mounted on the ceiling was turned on for the duration of the 
session, except during incorrect trials.

The task was adapted from an established behavioral protocol, and consisted of five training stages25,26. Each 
ferret learned to nose-poke one image (conditioned stimulus, CS+ ) of a pair to obtain water. The ferrets initi-
ated each trial by nose-poke of the infrared sensor (Fig. 1). Following initiation, each image within the pair was 
simultaneously presented in the left or right windows of the touchscreen monitor (geometric black and white 
images from the Microsoft Clipart Gallery). CS+  and CS−  locations were randomized for each trial with the 

Figure 1.  Experimental task design and behavioral performance. (A) Operant behavioral chamber. Ferrets 
were trained to perform a visual discrimination task in an operant chamber fitted with a touchscreen monitor. 
Ferrets initiated trials by nose-poking an infrared sensor positioned within the water spout in the rear of 
the chamber. Upon water release after nose-poke of the correct stimulus, the animal returned to the spout 
for reward acquisition. Neural activity was recorded using a wireless headstage. Visual stimuli shown in the 
figure are similar to the ones used in the study. (B) Two-alternative forced choice, visual discrimination task. 
Upon initiation of a trial at the water spout, an image pair was simultaneously presented in the left and right 
windows of the touchscreen. Trials were randomly interleaved with easy and hard image pairs. Nose-poke 
to the conditioned stimulus window triggered a tone and a water reward at the spout. (C) Mean accuracy 
performance in “easy” (black), “hard” (gray), “left” (yellow), and “right” (green) trials for each ferret. The dashed 
line represents chance performance. Error bars, standard error of the mean (SEM) across sessions. *p <  0.05; 
**p <  0.01. (D) Mean reaction time to target touch in easy (black), hard (gray), left (yellow), and right (green) 
trials for each ferret. Error bars, SEM across trials. *p <  0.05; **p <  0.001.
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added contingency that the CS+  could not appear in the same location for more than three consecutive trials. 
Upon nose-poke of the CS+  window, the stimuli were extinguished, an auditory pure tone (200 Hz, 63.5 dB, 
500 ms duration) was played, and a water reward was released at the back of the behavioral chamber. The reac-
tion time to touch the stimulus (time from trial initiation to stimulus touch), and thus the duration of stimulus 
presentation, depended on when the animal nose-poked the screen. Incorrect responses resulted in extinguishing 
the houselight for five seconds. For electrophysiological experiments, trials with high and low contrast versions 
of the image pair were randomly interleaved to assess behavior and network dynamics for low (“hard”) and high 
(“easy”) signal-to-noise sensory inputs. In a typical session, the animal would complete 56 trials consisting of 
equal numbers of all four trial types (“easy, CS+  left,” “easy, CS+  right,” “hard, CS+  left,” and “hard, CS+  right” 
trials). For the first session, image contrasts in the hard condition were set based on an initial calibration session 
where accuracy was assessed for different contrast levels. For each animal, the image contrast that produced 
around 75% accuracy was designated for the first test session. For subsequent sessions, image contrast for the hard 
condition was adjusted based on the performance in the previous session such that the accuracy of each ferret 
was within the range of 60% to 90%. The goal of this calibration was to make sure that the hard trials remained 
difficult enough such that the animal would make mistakes throughout the session.

Prior to behavioral training and testing, the animals were water restricted to enhance motivation to perform 
the task (5 days on water restriction/2 days off). Water sources were removed from animal home cages each 
Sunday before weekdays of behavioral testing. The water intake of each animal was maintained at 60 mL/kg/day 
as a sum of the water received during the behavioral task and supplemental water at the end of the day. Water 
sources were returned to the animal home cages on Friday night. Ferrets were trained twice a day (50 trials per 
session) and performed the final task once a day in the afternoon.

Surgery and Electrode Implantation.  Electrode implantation surgery was performed for each ani-
mal (n =  3) after completion of behavioral training. After initial anesthesia induction with intramuscular (IM) 
injection of ketamine/xylazine (30 mg/kg of ketamine, 1–2 mg/kg of xylazine), ferrets were intubated and deep 
anesthesia was maintained with isoflurane (0.5–2% in 100% oxygen). Throughout the procedure, partial oxygen 
saturation, end-tidal CO2, electrocardiogram, and rectal temperature were monitored. The body temperature 
was maintained at 38–39 °C and end-title CO2 at 30 to 50 mmHg. Using aseptic technique, tissue and muscle 
were resected to expose the skull surface. A small craniotomy was made above the anterior sigmoid gyrus (5 mm 
anterior of bregma and 2 mm lateral to the midline). Sixteen channel micro-electrode arrays (tungsten electrodes 
oriented in a 2 by 8 fashion, Innovative Neurophysiology, Durham, NC) were positioned above the craniotomy 
using a stereotaxic arm, gradually lowered to target deep layers of cortex, and fixed with dental cement. Muscle 
and tissue around the implant were then sutured together. Following surgery, animals were allowed to recover in 
their home cage for two weeks before behavioral testing. Animals were administered meloxicam for pain relief 
(0.2 mg/kg IM injection) and antibiotics (enrofloxacin, 5 mg/kg IM injection) during recovery.

Viral Delivery and Fiber Implantation.  The viral delivery and optical fiber implantation surgery was 
performed in a separate set of animals (n =  5) once the behavioral training (identical to the one for animals for 
electrophysiology) was complete. Similar asceptic surgery procedures as for the electrode implantation were used. 
For the virus delivery, we prepared either rAAV5-CamKII-ArchT-GFP (titer of 7.5 ×  1012 vg/ml; UNC Vector 
Core, Chapel Hill, NC) or rAAV5-CamKII-GFP (titer of 6 ×  1012 vg/ml; UNC Vector Core, Chapel Hill, NC) con-
structs in a 1 μL Hamilton syringe (Hamilton Company, Reno, NV) prior to injection. At the location of electrode 
implantation in the first set of animals, 1 μL of virus was delivered (0.1 μL/min) bilaterally at a depth of 0.9 mm 
below the surface of cortex. Ferrules with 200 um fibers (validated with > 80% transmission) were positioned 
above the virus delivery location and secured using dental cement. A custom designed plastic cylinder implant 
was cemented around the ferrule to provide stability during behavior. Custom fiber implants and patch cables 
were fabricated according to previously published guidelines27.

Optogenetic Experiments.  Animals that had undergone virus injection and fiber implantation (ArchT: 
n =  3, GFP: n =  2, one ArchT animal was excluded from the analysis due to only minimal virus expression deter-
mined by post-mortem histology) were subject to optogenetic experiments four weeks post-surgery. Animals 
were water-restricted and essentially performed the same visual discrimination task as the animals implanted 
with recording electrodes. The task structure differed in that each session was composed of (1) counterbalanced 
trials with stimulation or no stimulation and, (2) a single difficulty level (high or low contrast). A 532 nm laser 
(GL532T3-150; Shanghai Laser & Optics Century, Shanghai, China) coupled to an optical commutator (Doric, 
Quebec, Canada) was used to deliver green light to the neuron population of interest. Custom-made or commer-
cially available (Doric, Quebec, Canada) patch cables from a 1 ×  2 rotary commutator (Doric, Quebec, Canada) 
were secured to the ferrule implant with a ceramic sleeve and stabilized with the plastic cylinder implant. Prior to 
each behavioral session, optical emission from the patch cable fiber tips was calibrated to 15–25 mW. For stimula-
tion trials, the laser was turned on for a time window that ranged from trial initiation to stimulus touch (constant 
stimulation over the duration of stimulus presentation, also referred to as reaction time to touch). For a subset of 
the sessions, stimulation was applied from stimulus touch to reward acquisition. Prior to behavioral data analysis, 
trials where reaction time to touch exceeded 15 seconds were excluded. For the reaction time to touch analysis, 
we exclusively analyzed trials with correct responses. For each animal, we analyzed mean across-session accu-
racy, and across-trial reaction time to touch or drink for each condition (grouped by stimulation/no-stimulation 
and difficulty). Two-way ANOVA tests were performed on accuracy (across- session) and reaction time (pooled 
across trials and sessions) data. Significant results were determined based on a threshold alpha level of 0.05. 
Significance shown in figures was determined post-hoc using Tukey’s honest significant difference test.
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Histology.  When animals reached their scientific end-point, electrolytic lesions were produced by passing 
current (5 μA, 10 s, unipolar) through the middle and outer metal electrodes of the recording array. Animals were 
then humanely euthanized with an overdose of sodium pentobarbital and immediately perfused with 0.1 M PBS 
and 4% paraformaldehyde solution in 0.1 M PBS. For histological verification of electrode recording sites, brains 
were segmented into 60 micron slices using a cryostat (CM3050S, Leica Microsystems). Brain slices were then 
washed with 0.1 M PBS and stained for cytochrome oxidase28,29. Slides were subsequently imaged using a wide-
field microscope (Nikon Eclipse 80i; Nikon Instruments, Melville, NY).

Tissue from animals used in the optogenetic experiment was segmented into 50 micron slices and mounted 
with DAPI (Sigma-Aldrich, St. Louis, MO). Slides were subsequently imaged using a confocal microscope with a 
10×  objective (Zeiss LSM 780; Zeiss, Jena, Germany).

In Vivo Electrophysiological Recordings.  Electrophysiological data (from 30 sessions across animals) 
were acquired at a sampling rate of 10 kHz through wireless headstages with a bandwidth of 1 Hz to 5 kHz (Multi 
Channel Systems, Reutlingen, Germany). All electrophysiological data were analyzed using custom-written 
MATLAB scripts (Mathworks, Natick, MA). Raw traces were high-pass filtered (4th order butterworth filter at 
300 Hz) and spikes were extracted each time when the trace crossed the threshold of − 4-times the standard devi-
ation (2 ms deadtime). Trials exhibiting clear artifacts in the broadband trace were excluded from the analysis.

Single-Unit Analysis.  Spikes were sorted into putative single units (SUs) based on similar waveform char-
acteristics using k-means overclustering and subsequent linkage analysis30. First, a subset of spike waveforms 
(5000 spikes) in a session was sorted into a large number of groups using k-means clustering. Next, similar spike 
waveform clusters were combined using linkage analysis in order to create templates of single unit waveforms. 
Finally, all spikes within the session were matched and sorted into the waveform templates. Corresponding 
spike times were extracted for subsequent analyses. Previous studies have revealed differences in action poten-
tial waveform duration, measured by the peak-to-trough time, between regular-spiking (RS) pyramidal and 
fast-spiking (FS) interneurons31,32. To determine the cutoff point for the classification of RS and FS units, we 
calculated the 10th percentile value of the distribution of spike peak-to-trough durations. This threshold was 
motivated by the non-normal property of the distribution (Kolmogorov-Smirnov test comparing to normal dis-
tribution, p <  0.0001) and its heavy tail towards short durations. Accordingly, we classified putative RS and FS 
units by peak-to-trough durations of greater than or less than 0.52 ms, respectively. The peri-event time histo-
grams (PETH) of the firing rate (FR) were calculated using bin widths of 200 ms for each trial. The trial PETHs 
were then z-score normalized by subtracting the mean baseline FR (calculated from the preceding seven second 
portion of the intertrial interval) from each bin and dividing by the standard deviation.

General Linear Model.  We used a multi-variable linear model to explain how task conditions contribute to 
the variability in single unit firing response and to identify single units that displayed differential firing rates as 
a function of the trial type33. For each single unit, a general linear model was generated for each time bin of the 
analysis window. The linear model was set up using the following equation:

β β ε= + +r i t( , ) Difficulty Location (1)1 2

where the dependent variable r(i, t), the z-scored firing rate values across trials for single unit i at time bin t, is 
modeled as the linear combination of the independent task variables, conditions Difficulty and Location across 
trials. The β  coefficients were used to create regression coefficient time-series; the model included an error term, 
ε . Task conditions were encoded with the following values: task difficulty (easy =  − 1, hard =  + 1) and target 
location (left =  − 1, right =  + 1). The time-series of the regression coefficients derived from the linear model 
then represented the dynamics of condition preference. For example, a positive task difficulty coefficient value 
indicated higher firing rate in the hard condition compared to the easy condition in that particular time bin. This 
approach also provided the linear model F-statistics that corresponded to the regression coefficient time-series. 
To determine which single units exhibited significant preference, we set a threshold for the minimum number of 
contiguous significant bins (F-statistics) (function to find contiguous bins adapted from MATLAB File Exchange, 
David Fass). Specifically, we performed bootstrap analysis (100 times per single unit) of the linear model with 
shuffled condition identifiers, and pooled the number of contiguous significant bins found. We obtained the 95th 
confidence interval cutoff as the threshold value of 1 significant bin. Any single unit exhibiting at least 2 contigu-
ous significant bins was deemed to have preference for a task condition. To validate the linear model and shuffle 
control, we plotted regression coefficient time-series of SUs that passed the contiguous bins criteria in the shuffled 
analysis; we found substantially fewer SUs (< 10% of un-shuffled analysis) and no observable pattern in the peaks. 
We included an interaction term to the linear model in a subsequent analysis, and identified which SUs exhibited 
a significant main effect and interaction.

Clustering Analysis.  We clustered regression coefficient time-series into groups with similar preference 
dynamics. Our primary approach was to use hierarchical linkage clustering and dendrogram analysis on the coef-
ficient peak times of units grouped by cell type and condition (positive or negative coefficient peak) of preference 
(Supplementary Fig. S3). We used this method to capture the salient feature that the preference time-series typ-
ically peaked at a given moment in time of a trial. In contrast, clustering of the whole time-series de-emphasizes 
these peaks since it considers the entire trial-duration to which the preference peak is only a small contributor 
due to its short duration. We first sorted peak times into hierarchical clusters with Ward’s method which mini-
mizes within cluster variance. Using these clusters created from the linkage analysis, we constructed dendrograms 
to visualize the hierarchical tree. We determined the number of cluster families required to optimally separate 
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coefficient time-series as the number of dendrogram tree leaves at 95% of the full tree. Hierarchical clusters were 
then merged to create cluster families.

Support Vector Machine.  To test the effectiveness of population decoding of task properties, we performed 
support vector machine (SVM) analysis on session-averaged population FR data21,22 for each of the two task 
variables. FR was calculated using a 400 ms sliding window (100 ms steps) across the analysis window centered 
at target touch. We utilized a “leave-one-out” algorithm for computing the SVM where, for each FR bin in each 
session, the model was trained on data from all except one test trial. In other words, the FR data for each bin was 
a matrix with the dimensions of SU by non-test trials, and was used to predict the trial task conditions (a vector 
of trial identifiers coding for either difficulty or location). We performed multiple iterations of the SVM such 
that each trial was tested in the model. Prediction accuracy for each time bin was calculated by taking the ratio of 
correctly predicted trials to total trials.

We compared population decoding of task variables between session-averaged and session-pooled data. In 
the former analysis, we performed SVM analysis on each session and took the average accuracy across sessions 
(average of 20 SUs per session). In the latter analysis, we trained the SVM on pooled SU activity across sessions. In 
this analysis, we randomly selected 20 trials for each of the two task variables (hard versus easy, left versus right, 
respectively). The FR data matrix and trial condition vector were organized in such a way that all trials of one 
condition were positioned in the first half of the matrices and trials of the other condition were positioned in the 
second half. This method ultimately allowed for assessment of population encoding pooled across sessions in a 
pseudo-simultaneous manner34. Fifteen iterations of the session-pooled SVM analysis was performed in order to 
include the majority of trials and to perform statistics.

To determine significance, we first calculated chance performance by training the decoder with the same 
data but with shuffled trial identifiers. After decoding accuracy time-series were calculated, paired t-tests were 
performed for each bin between test data, and shuffle control data. Confidence intervals were calculated across 
sessions for the session-averaged analysis and across iterations for the session-pooled analysis. Gray significance 
bars in figures were determined using Bonferroni-corrected paired t-tests.

Results
Task Performance.  Ferrets were trained to perform a two-choice visual discrimination task adapted from 
an existing rodent paradigm26. To initiate a trial, the animals triggered an IR sensor at the back of the behavioral 
apparatus. Upon initiation, a pair of images (abstract shapes) was simultaneously presented in the left and right 
windows of the touchscreen monitor (Fig. 1A). Prior to electrode array implantation, each animal was trained 
to associate one image (conditioned stimulus: CS+ ) of an image pair with subsequent reward delivery. Different 
stimulus pairs were used for different animals. Upon nose-poke touch of the window displaying the CS+ , an 
auditory pure tone (200 Hz, 63.5 dB) was played and a water reward was released at a central lickspout in the back 
of the behavioral chamber (Fig. 1B). The visual stimuli remained on the screen until animals made a nose-poke to 
one of the windows. Trials with high and low contrast image pairs were randomly interleaved to assess behavior 
and dl-FC activity for sensory inputs with high (“easy”) and low (“hard”) signal-to-noise ratios.

We first determined behavioral performance with respect to the task components that varied from trial to trial: 
task difficulty (easy or hard conditions) and target CS+  location (left or right conditions, i.e. stimulus presentation 
ipsi- and contralateral to the recording location in left dl-FC, respectively). We predicted, based on the fact that 
low signal-to-noise sensory stimuli require longer integration times35,36, that the low contrast condition would 
result in not only lower accuracy rates but also longer reaction times compared to the high-contrast condition. 
We indeed found that percent accuracy in the low contrast condition (Fig. 1C, animal 1: 92.3 ±  2.20%, animal 
2: 73.5 ±  3.16%, animal 3: 89.4 ±  1.31%; mean ±  SEM, n =  12 sessions, n =  24 sessions, n =  11 sessions, respec-
tively) was lower than in the high contrast condition (Fig. 1C, animal 1: 99.5 ±  0.45%, animal 2: 99.0 ±  0.53%, 
animal 3: 98.4 ±  1.47%; paired t-test, p <  0.05, p <  0.001, p <  0.01). Reaction times to touch the CS+  were sig-
nificantly longer in the low contrast condition (Fig. 1D, pooled across sessions, animal 1: 5.35 ±  0.275 s, animal 
2: 5.52 ±  0.203 s, animal 3: 6.22 ±  0.307 s) than in the high contrast condition (Fig. 1D, animal 1: 4.59 ±  0.254 s, 
animal 2: 3.87 ±  0.120 s, animal 3: 4.82 ±  0.259 s; unpaired t-test, p <  0.05, p <  0.001, p <  0.001). These results 
support the designation of low and high contrast trials as hard and easy, respectively. We did not find significant 
differences between reaction time for left and right target locations; however, one animal displayed a significant 
difference in accuracy with respect to target location (animal 1; left: 92.8%, right: 98.5%; paired t-test, p =  0.03). 
Further, reaction times for left and right windows split by difficulty were also not significant (unpaired t-test, left 
vs. right in easy trials, p >  0.05 for all animals; left vs. right in hard trials, p >  0.05 for all animals). 

Electrophysiological Recordings.  Electrode arrays were targeted to rostral anterior sigmoid gyrus 
(1–3 mm from midline) that has been suggested to be the ferret analogue to the primate PFC due to reciprocal 
connections with mediodorsal thalamus20. Electrodes arrays were implanted in the left hemisphere and electrode 
locations were confirmed through histological methods (Fig. 2A, Supplementary Fig. S1). We refer to this area 
as dl-FC due to the limited anatomical characterization of the ferret frontal cortex37 and continued contention 
about the definition of PFC across species. We classified single units (SUs) based on action potential duration 
measured by peak-to-trough time which provides optimal differentiation between regular-spiking (RS) neurons 
and fast-spiking (FS) interneurons31. Putative RS and FS units were identified by peak-to-trough durations of 
> 0.52 ms and < 0.52 ms, respectively (Fig. 2B). Out of the total of 587 SUs identified, we found 525 (89.4%) puta-
tive RS and 62 (10.6%) putative FS neurons. FS units exhibited significantly higher baseline activity compared to 
RS units (mean firing rate ±  SEM, RS: 2.88 ±  0.004 Hz, FS: 6.56 ±  0.091 Hz, unpaired t-test, p <  0.001).
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Task-evoked Modulation of Neuronal Firing Activity in dl-FC.  Frontal cortex is key to a diverse range 
of cognitive functions, including stimulus categorization, adaptive decision making, attentional processing, and 
working memory1,11,33,38. We therefore anticipated that neurons in dl-FC would exhibit task-evoked modulation 
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red boxes. Middle images show electrode insertion site at higher magnification. Black arrows indicate the 
insertion points of the electrode arrays. Data from two animals are shown, histology from third animal shown 
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spiking (RS) or fast spiking (FS) based on the 10th percentile cut-off point in peak-to-trough times. RS units 
(blue) were identified by long duration (> 0.52 ms). FS units (red) were identified by short duration < 0.52 ms. 
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of firing rates (FR) during behavior. As expected, we found modulation of spiking activity in SUs recorded during 
the behavioral task; averaged across trials, units exhibited both time-locked enhancement and suppression of 
their firing rate as a function of time. Activity modulation occurred throughout the behavioral task including 
the pre-touch stimulus viewing and approach (relative to stimulus touch, − 2 to − 0.5 seconds), touch (− 0.5 to 
0.5 seconds), and post-touch reward acquisition (0.5 to 3 seconds) epochs (Fig. 3). The task was self-paced; as a 
result, reaction times from stimulus onset to stimulus touch varied from trial to trial. We performed subsequent 
analyses exclusively on correct trials. Accordingly, we refer to touching of the correct stimulus as “target touch.”

Encoding of Task Variables.  We first asked if neuronal firing in dl-FC was modulated by task variables 
difficulty and target location. We defined preference as an elevated firing rate for trials with one versus the other 
value of a task variable. First, we asked if neurons in dl-FC encode one or both task variables. We performed a 
general linear model analysis (see details in methods). For each SU, a general linear model was generated for each 
time bin of the analysis window33. We used task conditions as independent variables and FR values across trials 
as dependent variables in the model. The resulting time-series of regression coefficients represented the dynamics 
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of condition preference; the sign of the regression coefficients indicated which condition was preferred and the 
magnitude indicated the strength of preference.

We next identified SUs that exhibited contiguous significant time-series bins through bootstrap analysis in 
which we shuffled trial identifiers. We obtained a 95th confidence interval cutoff value for the number of signifi-
cant bins required for the SU coefficient time-series to exhibit significant preference for a task condition. Using 
this criterion, we identified SUs (394 of 587, 67.1%; RS: 66.9%; FS: 69.4%) that had significant preference for at 
least one of the two task conditions (Table 1). Substantially more cells exclusively encoded location (RS: 165 units, 
31.4%. FS: 11 units, 17.7%; 52 of these units exhibited a significant interaction term) than task difficulty (RS: 
97 units, 18.5%. FS: 12 units, 19.4%; 34 of these units exhibited a significant interaction term; Chi-square com-
paring number of units with preference for difficulty or location, Chi-square (1, 285) =  20.8, p <  0.001). We also 
found units that encoded both task variables (RS: 89, 17.0%. FS: 20, 32.3%; 34 of these units exhibited a significant 
interaction term). To ensure that these results were not produced by an artifact of the shuffled bootstrap analysis, 
we plotted the coefficient time-series of spurious “significant” SUs (less than 10% of all units) from the shuffled 
data and confirmed the absence of a meaningful pattern.

dl-FC Single Units Encode Task Difficulty.  First, we studied how dl-FC represents differential task dif-
ficulty, i.e. the contrast of the visual stimuli. We hypothesized that the difficult stimuli require more engagement 
of neurons in dl-FC. To test this hypothesis, we analyzed coefficient time-series of SUs with significant difficulty 
preference grouped by cell type (Fig. 4, sorted by time of peak value). Indeed, we found a larger number of RS 
units (Fig. 4A, top, n =  106; Chi-square (1, 186) =  7.3, p <  0.01) that exhibited preferential activity for the hard 
condition compared to RS units that exhibited preference for the easy condition (Fig. 4A, bottom, n =  80), while 
the number of FS units that showed preference for either conditions was equal (Fig. 4B, n =  16, for both condi-
tions). This difference indicates a functional dissociation between RS and FS neurons in dl-FC where RS neuron 
recruitment varied as a function of task difficulty, whereas FS neuron recruitment remained constant.

Then, we asked if the preference for easy or hard trials was maintained through the trial or restricted to a 
certain epoch. We found that the differential activity peaks of individual units were constrained to certain epochs 
within trials, and that these epochs were distributed across time at the population level (Fig. 4, blue and red 
histograms). This suggests the presence of a temporal information-binding mechanism in dl-FC neuron popula-
tions that encode task information across the span of the trial. Interestingly, the distribution of peak preference 
values was not uniformly distributed across time (Kolmogorov-Smirnov test comparing to uniform distribution, 
p <  0.001). Importantly, units not only showed preferential activity for a given condition prior to target touch 
(t <  0 seconds), but their patterns of temporally constrained preference peaks also persisted into touch and sub-
sequent reward acquisition epochs (t >  0 seconds). In addition, we observed that a majority of RS units exhibited 
preferential activity in the hard condition later in time, i.e. shorter time before target touch, in comparison to 
the RS units that preferred the easy trials (Fig. 4A, top and bottom, unpaired t-test of peak times, p <  0.05). 
Interestingly, about two-thirds of hard-preferring FS units peaked in differential activity prior to target touch; 
however, the distributions for both FS groups were not statistically different from uniform distributions, likely 
due to the comparably low number of FS units (Fig. 4B, Kolmogorov-Smirnov test comparing to uniform dis-
tribution, p >  0.05 for both). Due to the nature of the task, the time elapsed between stimulus onset (triggered 
by approaching the lick spout) and stimulus offset (caused by stimulus touch) was determined by the animal. 
Therefore, the observed sequential patterns could be an artifact caused by different average response times for 
different sessions such that all units from a given session would correspond to one of the peaks in the preference 
signal. To exclude this explanation, we plotted the histogram of reaction times for the sessions during which each 
neuron was recorded from (Supplementary Fig. S2A). These plots show that the behavior was consistent across 
sessions and that there was no structure that would correspond to the one found for the coefficient time-series, 
confirming that SU preferential activity indeed reflected the temporal evolution of population activity.

Due to the widespread distribution of preference peaks across time, we further quantified these population 
preference profiles by clustering SUs according to the time of peak in the coefficient time-series (preference peak 
time). We restricted our clustering analyses to RS units due to the low FS unit count. We performed linkage clus-
tering analysis to identify SUs that displayed similar preference peak times (Supplementary Fig. S3). We then cal-
culated population-averaged coefficient time-series and FR PETHs for each cluster (separately for easy and hard 
trials). We found a large cluster of RS units that preferred the hard condition prior to target touch (Fig. 5A, cluster 
1: n =  64) and a small cluster of RS units that preferred the easy condition (Fig. 5A, cluster 3: n =  22); cluster 3 
exhibited an earlier peak in its preference for the easy condition than cluster 1 in its preference for the hard con-
dition (unpaired t-test of peak times, p <  0.01). In the case of cluster 1, preference for the hard condition resulted 

Preference RS Units FS Units

Difficulty 97 18.5% 66.9%  
significant 
preference

12 19.4% 69.4%  
significant  
preference

Location 165 31.4% 11 17.7%

Both 89 17.0% 20 32.3%

None 174 33.1% 19 30.6%

Total 525 100% 62 100%

Table 1.  Distribution of single units by cell type and task component preference. A total of 587 units were 
included in the analysis. The table summarizes the number of units that were found to exhibit significant (or 
absence of) preference in the linear model analysis.



www.nature.com/scientificreports/

9Scientific Reports | 6:23568 | DOI: 10.1038/srep23568

from an increase and decrease in firing rate for hard and easy trials, respectively (Fig. 5A, mean firing rate in 
interval [− 2 − 0.5] seconds relative to target touch ±  SEM; hard: 0.15 ±  0.032, easy: − 0.04 ±  0.025; paired t-test, 
p <  0.0001, n =  64). The corresponding peaks and troughs in firing rate occurred at the same time (unpaired 
t-test of peak times, p =  0.16, n =  64). In cluster 3, we found the opposite dynamics; preference for the easy con-
dition at target touch resulted from a decrease and increase in firing rate for hard and easy trials, respectively 
(Fig. 5A, mean firing rate in interval [− 2 − 0.5] seconds relative to target touch ±  SEM; hard: − 0.11 ±  0.035, 
easy: 0.19 ±  0.047; paired t-test, p <  0.0001, n =  22). This pattern in differential FR could also be seen earlier in 
the trial, near trial initiation (Supplementary Fig. S4, cluster 3, mean firing rate in interval [0 2] seconds relative 
to trial initiation ±  SEM; hard: 0.005 ±  0.0290, easy: 0.16 ±  0.037; paired t-test, p <  0.001, n =  22). Two further 
clusters (Fig. 5A, Cluster 2: hard, n =  42; Cluster 4: easy, n =  58) demonstrated significant preference during 
reward acquisition (paired t-test of firing rates in the interval [0.5 2.5] seconds relative to target touch; cluster 
2: p <  0.001, cluster 4: p <  0.001). In summary, clusters 1 and 3 contained the neurons that showed pronounced 
preference for one of the two difficulty levels during the decision-making process and the goal-directed action of 
touching the stimulus. The number of SUs that were preferentially active during hard trials greatly outnumbered 
the SUs that preferred easy trials (64 versus 22 SUs).

dl-FC Single Units Encode Target Location.  Given this bias towards difficult trials, we next asked (1) 
if the dl-FC neurons that encoded the target location exhibited a similar bias to one of the two locations, and 
(2) if the target-location encoding exhibited a similar distributed population representation. To answer these 
questions, we examined the SUs that displayed preference for either of the target locations (Fig. 6). The electrode 
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arrays were implanted in the left hemisphere, thus targets on the left are ipsilateral whereas targets on the right are 
contralateral. We found similar numbers of ipsilateral and contralateral preferring RS units (ipsilateral: n =  124, 
contralateral: n =  130; Chi-square (1,254) =  0.28, p =  0.60; Fig. 6A) and FS units (ipsilateral: n =  15, contralateral: 
n =  16; Fig. 6B) and therefore a lack of differential recruitment of left dl-FC neurons for ipsilateral and contralat-
eral target locations. However, we found distinct dynamics in the temporal evolution of location preference. RS 
units with preference for presentation of the CS+  in the contralateral window showed peak differential activity 
in a nearly uniform distribution across the behavioral epoch with modest concentration prior to target touch 
(Fig. 6A, Kolmogorov-Smirnov test comparing to uniform distribution, p <  0.001). In contrast, nearly half of 
the SUs with preference for ipsilateral CS+  images exhibited peak preference around the time of target touch 
(Kolmogorov-Smirnov test comparing to uniform distribution, p <  0.001). Peak time distributions for FS units 
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were not statistically different from uniform distributions (Fig. 6B, Kolmogorov-Smirnov test comparing to uni-
form distribution, p >  0.05 for both).

We again plotted session-specific reaction time distributions for each SU in the same order as Fig. 6 
(Supplementary Fig. S2B), and found no observable pattern. We also examined if extension of the analysis win-
dow would alter results: the prescribed results for both difficulty and location heatmaps were unchanged when we 
performed the same linear model analysis on the window from [− 6 3] seconds relative to target touch.

We then further dissected these population response dynamics for target location preference by clustering the 
task coefficient time-courses by their peak value (Fig. 7). RS units with contralateral preference (Fig. 7A, cluster 
1: n =  79) peaked in location preference prior to target touch, while units with ipsilateral preference (Fig. 7A, 
cluster 3: n =  87) peaked later at around the time of target touch (unpaired t-test of peak times, p =  0.01). The 
PETHs of contralateral preferring units (Fig. 7A, cluster 1) suggest that firing activity was suppressed around 
target touch for ipsilateral trials, while firing activity increased for preferred, contralateral trials. Indeed, there 
was a significant difference in average firing rate between the two trial types (Fig. 7A, mean firing rate in interval 
[− 2 − 0.5] seconds relative to target touch ±  SEM; ipsilateral: − 0.04 ±  0.023; contralateral: 0.10 ±  0.030; paired 
t-test, p <  0.001, n =  79). We observed the same pattern of differential FR earlier in the trial, closer to trial initia-
tion (Supplementary Fig. S5, cluster 1, mean firing rate in interval [0 2] seconds relative to trial initiation ±  SEM; 
ipsilateral: − 0.02 ±  0.017, contralateral: 0.04 ±  0.018; paired t-test, p <  0.001, n =  79). For cluster 3, there was 
the opposite response pattern with an increase and decrease for ipsilateral and contralateral trials, respectively 
(Fig. 7A, mean firing rate in interval [− 1 1] seconds relative to target touch ±  SEM; ipsilateral: 0.30 ±  0.037, 
contralateral: 0.06 ±  0.026; paired t-test, p <  0.001, n =  87). For both clusters (1 and 3), firing rate peaks and 
troughs for the contralateral trials occurred before those of the ipsilateral trials (unpaired t-test of peak times, 
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cluster 1: p <  0.05, n =  79; cluster 3: p <  0.01, n =  87). We also found that more RS units exhibited preference for 
contralateral (n =  51) than ipsilateral (n =  37) trials during reward retrieval (Fig. 7A, clusters 2 and 4, Chi-square 
(1, 88) =  4.5, p <  0.05).

Next, we were interested in the population of neurons that modulated their activity during the task, but 
lacked preference for a task component. To examine the activity of these units, we calculated FR PETHs for the 
remaining non-selective RS SUs (Supplementary Fig. S6, left, n =  174) and FS units (Supplementary Fig. S6, right, 
n =  19). Interestingly, RS and FS units displayed different firing behaviors. For RS units, the largest increases 
in normalized firing rate occurred shortly after target touch and reward acquisition (unpaired t-test between 
FR of neurons with peaks within [0.5 1.5] and [2, 3] seconds and FR of all other neurons, both p <  0.0001); 
in fact about a third of all non-selective RS units peaked in their FR in this early phase of reward acquisition 
([0.5 1.5] seconds relative to target touch, 30.5% of total RS units). On the other hand, non-selective FS units 
exhibited the most concentrated and strongest peak FR changes during the stimulus viewing epoch (42.1% of FS 
units, unpaired t-test between FR of neurons with peaks within [− 2 − 0.5] seconds and FR of all other neurons, 
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p <  0.0001). We found that RS units exhibited significantly higher FRs compared to FS units within the [0.5 3] 
second epoch (mean ±  SEM, RS: 0.169 ±  0.0004, FS: 0.07 ±  0.002, unpaired t-test, p <  0.001). On the other hand, 
FS units exhibited significantly higher FRs within the [− 2 − 0.5] second epoch (mean ±  SEM, RS: 0.13 ±  0.001, 
FS: 0.61 ±  0.008, unpaired t-test, p <  0.001). In summary, non-selective RS units increased their activity leading 
up to and during reward acquisition, whereas FS units increased their activity during stimulus viewing. This 
suggests that non-selective RS and FS units play a role in general reward and stimulus processing, respectively.

Population Decoding of Task Properties.  So far, we have provided evidence that single units in dl-FC 
show differential activity for difficulty and location conditions. We next asked if (1) population activity from a 
given session can be used to decode task variables (difficulty and location) and (2) decoding accuracy improves 
with population size. To do this, we used support vector machine (SVM) analysis to assess the decoding accuracy 
of task variables (Fig. 8). In order to address the first question, for each session, we trained the SVM on SU FR 
data to predict trial conditions (test data). Decoder accuracy was subsequently averaged across sessions (Fig. 8A, 
n =  30 sessions, average 20 units per session). We compared test data SVM decoding performance to that of a 
shuffle control (trial identifiers shuffled), and found that population activity poorly encoded difficulty (Fig. 8A top, 
from [− 1 1] centered on target touch, mean =  51%, 95% confidence interval of the mean =  50.6–52.3%, n =  30 
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Figure 8.  Population Coding of Task Properties. (A) Support vector machine analysis was used to establish 
whether population activity encodes task properties. Top: Session- and animal- averaged decoding accuracies 
are aligned to target touch. The test data decoding performance is represented by the red line. Shuffle control 
performance, which was calculated by performing the SVM analysis using shuffled trial identifiers, is plotted 
in blue. Bottom: Mean decoding accuracy of the session-pooled SVM analysis (SUs pooled across sessions and 
animals). For each session, a random subset of trials (n =  20) from each condition was included in the model. 
We computed multiple iterations of the SVM (n =  15) for test data (red lines) and shuffle control data (blue 
lines). Gray blocks represent statistically significant epochs (paired t-test, p <  0.05, Bonferroni-corrected). Error 
bars, SEM across units. (B) Same representations and conventions as in panel (A) for location decoding.
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sessions), but reasonably encoded location (Fig. 8B top, from [− 1 1] centered on target touch, mean =  58%, 95% 
confidence interval of the mean =  57.2–59.1%, n =  30 sessions).

We next examined decoder performance with population activity pooled across sessions (total of 461 units 
included). Population decoding performance improved markedly for both difficulty encoding (Fig. 8A bottom, 
from [− 1 1] centered on target touch, mean =  64%, 95% confidence interval of the mean =  63.1–65.9%, n =  15 
iterations) and location (Fig. 8B bottom, from [− 1 1] centered on target touch, mean =  89%, 95% confidence 
interval of the mean =  88.1–90.7%, n =  15 iterations). These findings further highlight the distributed nature of 
the encoding used in dl-FC since most units exhibit preference only for a short window of time and thus a larger 
number of neurons are required to achieve improved classifier performance. Indeed, the more distributed nature 
of the encoding of preference for difficulty versus target location that we found with the linear model is reflected 
in the differential performance of the classifier for the two task variables.

Inactivation of dl-FC Pyramidal Neurons Affects Visual Discrimination Response.  To explore 
the causal role of dl-FC in visual discrimination, we expressed ArchT24 (n =  3) or GFP (control animals, n =  2) 
under the CaMKII promoter and implanted optical fibers in bilateral dl-FC of a different group of animals 
(Fig. 9A). Expression of ArchT and implant locations were verified in post-mortem tissue histology (Fig. 9B and 
Supplementary Fig. S7A). These animals performed a similar visual discrimination paradigm with the difference 
that each session was composed entirely of either easy or hard trials (stimulation/no-stimulation and stimulus 
location conditions were randomized across trials with each session). We found that when constant light stimula-
tion was delivered to dl-FC during stimulus presentation (from initiation to target touch), reaction time to touch 
was reduced for ArchT (Fig. 9C, two-way ANOVA, Animal A: main effect of difficulty with F(1, 509) =  56.2, 
p <  0.0001, main effect of stimulation with F(1, 509) =  13.8, p <  0.001, and significant interaction between stimula-
tion and difficulty with F(1, 509) =  6.58, p <  0.01; Supplementary Fig. S7, Animal B: main effect of stimulation with  
F(1, 461) =  3.87, p <  0.05) but not GFP control animals (Supplementary Fig. S7B, two-way ANOVA, Animal C: 
F(1, 546) =  0, p =  0.94; Animal D: F(1, 647) =  1.51, p =  0.22). A third ArchT animal did not show an effect of 
stimulation on reaction time, but post-mortem histology confirmed that there was only minimal viral expression. 
One explanation for the reduction in reaction time could be that suppressing dl-FC pyramidal neurons make the 
animals more impulsive, and as a result impairs decision making. To explore this possibility, we examined perfor-
mance accuracy across conditions. Surprisingly, stimulation did not alter accuracy (Fig. 9C, two-way ANOVA, 

Figure 9.  Optogenetics experiment and behavioral performance. (A) ArchT experimental design. dl-FC of 
animals were injected bilaterally with either rAAV5.CaMKII.ArchT.GFP or rAAV5.CaMKII.GFP constructs. 
Virus was allowed to express for 4 weeks before behavioral experiments. Animals performed the same visual 
discrimination task as the electrophysiology experiment with the exception that sessions were composed of 
counterbalanced trials with left/right and stimulation/no-stimulation. Difficulty conditions were designated at 
the level of session for these optogenetics experiments. During stimulation trials, 532 nm light (15–25 mW)  
was delivered bilaterally through ceramic-ferrule patch cables during the stimulus presentation epoch (from 
trial initiation to stimulus touch) or during reward retrieval (from stimulus touch to reward acquisition).  
(B) Coronal section from dl-FC of ArchT animal A for histological verification of virus expression. DAPI stain 
shown in blue and ArchT.GFP expression shown in green. Inset: 20×  close-up of the expression outlined by the 
white box. Images were acquired with a confocal microscope. (C) Accuracy (left) and reaction time to target 
touch (right) of the ArchT animal in (B). Means pooled across trials and sessions for each condition (split by 
easy/hard and no-stim/stim) shown as bars. Error bars, SEM across trials. *p <  0.05.
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ArchT Animal A: F(1, 21) =  0.36, p =  0.55; Supplementary Fig. S7C, ArchT Animal B: F(1, 20) =  0.14, p =  0.71; 
GFP Animal C: F(1, 20) =  0.06, p =  0.81; GFP Animal D: F(1, 20) =  0, p =  0.96) suggesting that the animals may 
be over-trained for the assay to show a change in error rates. There was a main effect of difficulty and session when 
accuracy was plotted as a function of session (Supplementary Fig. 7D, two-way repeated measures ANOVA; for 
ArchT animals, session: F(1, 5) =  5.2, p <  0.001 and difficulty: F(1, 1) =  27.6, p <  0.0001; for GFP animals, session:  
F(1, 5) =  5.4, p <  0.001 and difficulty: F(1, 1) =  34.1, p <  0.0001); however, there was no significant effect of 
stimulation or interaction (Supplementary Fig. 7D, two-way repeated measures ANOVA, p >  0.05 for effects 
and animal groups). We also found a main effect of stimulation in reaction time when plotted as a function 
of time for ArchT (Supplementary Fig. 7E, two-way repeated measures ANOVA, F(1, 1) =  4.5, p <  0.05), but 
not GFP (two-way repeated measures ANOVA, F(1, 1) =  0.67, p =  0.42) animals. Further, we reasoned that the 
effects on reaction time could either be due to a reduced wait-signal14,15 or a direct increase in locomotion. To 
test the hypothesis that stimulation affects pure motor activity, we stimulated ArchT animals during the reward 
acquisition epoch in “hard” sessions. We found that stimulation during this epoch did not affect reaction time 
to touch the target (mean reaction time pooled across trials ±  SEM; ArchT Animal A, no-stim: 4.94 ±  0.22, 
stim: 4.64 ±  0.21, unpaired t-test, p =  0.38; ArchT Animal B, no-stim: 3.78 ±  0.19, stim: 3.79 ±  0.20, unpaired 
t-test, p =  0.58) or reaction time to drink (mean reaction time pooled across trials ±  SEM; ArchT Animal A, 
no-stim: 1.28 ±  0.003, stim: 1.32 ±  0.003, unpaired t-test, p =  0.27; ArchT Animal B, no-stim: 0.96 ±  0.003, stim: 
0.94 ±  0.002, unpaired t-test, p =  0.94). Thus, if dl-FC pyramidal neuron suppression were to affect locomotion, 
we would have expected a change in reaction time to drink. These results from the optogenetics experiments 
suggest a causal role of dl-FC in visual discrimination that is not directly related to locomotion, but rather to the 
control of task-related responses.

Discussion
We studied the role of ferret dl-FC in sensory processing and action execution during a visual discrimination 
task that required freely-moving behavior. In agreement with the well-described role of (P)FC in cognition 
and behavior, we found pronounced modulation of neuronal activity in dl-FC during the task. We studied how 
neuronal activity encoded the task variables “difficulty” and “target location” and found that about two-thirds 
of the units we recorded exhibited preference for one of the two values of at least one of these task variables. 
Importantly, many more neurons exhibited preference for the hard condition (than for the easy condition) dur-
ing the pre-touch epoch. With respect to location, we found an equal number of neurons that preferred the left 
or right target location. However, the temporal patterning of the preference as a function of time was different; 
a large subdivision of neurons exhibited preference for the ipsilateral condition during the touch epoch whereas 
preference for the contralateral location was more distributed in time across neurons. Our analysis demonstrated 
that preferential activation and therefore encoding of task features was dynamic such that most neurons exhibited 
a relatively short, well-defined time window during which they exhibited such differential firing activity. Across 
the population, the units exhibited preference at different time-points such that together at any time within the 
trial, a subset of neurons encoded specific task variables. Indeed SVM analysis further supported this finding of 
a distributed code. Finally we used optogenetics in freely-moving, behaving ferrets to establish a causal role of 
neuronal activity in ferret dl-FC during the visual discrimination task. Together, our electrophysiological and 
optogenetic studies show that hard trials recruit more neuronal activity in dl-FC and that this activity prolonged 
the reaction time of the animal to touch the target. This suggests that the differential recruitment of neuronal 
activity in dl-FC for the hard trials does not reflect sensory processing. Rather, the differentially increased activity 
appears to provide behavioral inhibition that controls other brain structures such that the animal slows down its 
stereotyped behavioral response, presumably to enable sensory processing of the low signal-to-noise ratio visual 
input. In further support of this interpretation of our data, we observed a large proportion of active ipsilateral 
(left) preferring units around target touch. Given the proposed inhibitory role of dl-FC in our study, inhibition of 
the ipsilateral hemisphere by dl-FC may favor activity in the right hemisphere for successful target touch on the 
left hand side of the behavioral apparatus.

Our electrophysiology results agree with what is known about PFC function in humans and animal studies, 
and add an important new dimension given the choice of model species and the fact that our task was designed 
for freely-moving animals. Our data concur with previous rodent and non-human primate studies that have 
illustrated the involvement of PFC in sensory decision making33,39–42, action selection33,42,43, and motor-related 
activity15,41. With regards to dl-FC location selectivity, we observe similar results to previous studies, albeit on a 
larger time-scale. In non-human primates, neurons that preferentially responded to contralateral targets were 
activated before those that preferred ipsilateral targets44. Similarly, contralateral-preferring neurons came online 
shortly after stimulus presentation, followed by an increase in number of active ipsilateral preferring neurons45. 
Both studies agree with our findings of target preference in the ferret.

The results revealed in the optogenetics experiments shed further light on the above theories. We found a 
decrease in reaction time to target touch when dl-FC pyramidal neurons expressing ArchT were stimulated with 
light. One potential explanation for this decrease in reaction time could be that stimulation increased the speed 
of locomotion. To address this, we performed ArchT stimulation in the same animals during reward retrieval. 
We did not find a change in reaction time to retrieve the water reward, suggesting that the stimulation did not 
simply enhance locomotion. Control animals did not show an effect of stimulation, which ruled out the pos-
sibility that the results were driven by the visible light from stimulation or by neuronal heating. An extensive 
history of studies, mostly in non-human primates, suggests that dlPFC inactivation results in decreased accu-
racy8,46–51 and increased reaction time51,52. There are several possible explanations for the discrepancy in our 
results. Mechanistically, a large body of literature suggests that dlPFC provides top-down inhibitory control over 
downstream decision making and motor brain regions53–57. When dlPFC is inactivated, these inhibitory blocks 
against goal-directed motor sampling may be lifted15, hence the decrease in time to touch the target. A recent 
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transcranial magnetic stimulation study supports this theory by showing that disruption of lateral PFC disin-
hibited the motor selection of both target and non-target stimuli, and produced a reduction in reaction time58. 
Finally, the optogenetic silencing did not affect behavioral accuracy in our study; this may be explained by how 
well-trained the animals were on the task.

While several studies have utilized similar touchscreen-based visual discrimination tasks to assay pharmaco-
logical manipulations on executive functions59–64, little is known about the resulting neural activity patterns. Of 
particular interest, one study showed that stress or ventro-medial PFC (vmPFC) lesions facilitated visual discrim-
ination during late reversal learning, suggesting that vmPFC provides top-down control of the striatum during 
performance of the visual discrimination task64. Our conclusion based on electrophysiological and optogenetic 
evidence, that PFC regulates habitual actions through task-relevant inhibition, provides insights into the neural 
mechanisms of behavioral inhibition.

The opposing locations of the touchscreen and lickspout effectively separated task response from reward 
retrieval. This represents an important difference to the more classical task design42,65 in which the animal is 
head-fixed or provides the response at a feeder where it also retrieves the reward. Our task design allowed us to 
uncover units that encoded aspects of the stimulus (difficulty, target location) several seconds after completion of 
the discrimination component and motor response of the task (i.e. after screen touch). The functional meaning of 
this sustained encoding of these task features remains open to interpretation. Possibly, these late preference peaks 
after the target response reflect integration of past events for future optimization of behavior to increase reward 
retrieval opportunities66,67. Although such sustained encoding is reminiscent of memory cells1,68,69 in PFC, they 
likely represent a different underlying mechanism. Our task design did not allow for the study of memory cells 
in the classical sense as there was no retention period with visual stimulation in the task since the two stimuli 
were presented together on the screen until screen touch. Eye and head position relative to the stimuli in our task 
may contribute to the underlying neural activity in PFC. However, given that our stimuli spanned a substantial 
fraction of the visual field since the animals were close to the screen due to the size of the behavioral apparatus, 
it is unlikely that activation of cells with specific, localized receptive fields play a major role in our findings. 
Nevertheless, our study is limited by the absence of video-tracking, and we cannot fully rule out the confounding 
factor of eye and head location. To address this concern with rigor, a new study in the head-fixed animal would 
be required. We deliberately decided to study the discrimination behavior in the freely-moving animal which 
actively engages with the stimulus through whole-body movement, an arguably more naturalistic paradigm than 
the head-fixed preparation. Yet, follow-up studies of similar tasks in head-fixed conditions will provide additional 
important insights into the neuronal mechanisms of prefrontal cortex activation in visual discrimination.

Anatomical localization of prefrontal cortex in non-primate species remains a question of continued debate. 
The classical definition uniquely applies to primates and requires the presence of dopaminergic projections, 
granulation of layer IV, and reciprocal connectivity with the medio-dorsal (MD) nucleus of the thalamus70–72. 
Modified definitions for other species have been proposed although no consensus has been reached73. The fron-
tal cortex of ferrets has been only the subject of few studies20,37,74–76. Anatomically, both orbital gyrus and the 
rostral part of the anterior sigmoid gyrus are connected to the MD nucleus20, consistent with connectivity in 
other species71,77,78. Following this notation, our recordings were localized in dl-PFC on the anterior sigmoid 
gyrus. However, in keeping with the only other study of ferret frontal cortex during behavior37, we designated the 
recording location as dl-FC due to the poorly understood overall cyto-architectonic organization of ferret frontal 
cortex and its connectivity.

The only previous study of ferret dl-FC during behavior demonstrated selective responses to visual and audi-
tory signals that were behaviorally relevant37. Intriguingly, dual recordings in dl-FC and auditory cortex revealed 
modulation of inter-area coherence as a function of behavioral context, suggesting that the behaviorally-gated 
responses in dl-FC contribute to the attention-related, task-optimized top-down modulation of sensory areas. 
Several key differences to the work presented are recognizable. First, the task used by Fritz and colleagues was a 
go/no go task in contrast to the alternate forced-choice task as employed in our study. Second, our task was per-
formed by animals that could move freely within the behavioral box (wireless recordings, no head fixation). As a 
result, our data may be biased towards movement and spatial encoding in contrast to head-fixed experiments. In 
particular, we found a representation of space that outlasted the actual movement to the target, which provides 
important insight into the overall functional organization of dl-FC. Despite these differences in task and ques-
tions addressed, together these studies motivate the further study of ferret frontal cortex.

Summary.  Our study combined neurophysiological recordings from dl-FC with a visual discrimination task. 
Despite the extensive use of ferrets as a model study for the developing and adult visual system79–83, we provide – 
to our knowledge - the first evidence that ferrets can be easily trained in two-alternative forced choice visual tasks. 
Of note, we employed abstract shapes as stimuli and therefore were not able to extract basic visual tuning curves 
such as contrast or orientation sensitivity. Rather, our aim was to understand higher-order cortical processing 
and how it relates to perceptual difficulty of visual discrimination. We found increased engagement of dl-FC 
for hard trials where the visual stimuli exhibited low contrast. The use of freely-moving animals combined with 
the layout of the behavioral chamber enabled us to study neuronal processes that were related to the movement 
of the animal, in particular the target location. Thus, we provided evidence for neural populations in dl-FC that 
dynamically process and perpetuate multi-dimensional information throughout the duration of the behavioral 
task. Finally, through targeted optogenetic silencing of pyramidal neurons during behavior, we demonstrate that 
activity in ferret dl-FC likely provides top-down inhibition that scales with perceptual difficulty. It remains to 
be seen if the dynamic encoding of task features generalizes to the more unconstrained real world that lacks 
the laboratory-controlled trial structure. Nevertheless, our work introduces a new model species for combined 
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electrophysiological/optogenetics and behavioral studies of higher-order cortical function during visual tasks in 
freely-moving animals.
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