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A B S T R A C T   

Automatic diagnosis of coronavirus (COVID-19) is studied in this research. Deep learning methods especially 
convolutional neural networks (CNNs) have shown great success in COVID-19 diagnosis in recent works. But they 
are efficient when the depth of network is high enough. However, the use of a deep network requires a suffi
ciently large training set, which is not available in practice. From the other hand, the use of a shallow CNN may 
not provide superior results because it is not able to rich feature extraction due to lacking enough convolutional 
layers. To deal with this difficulty, the contextual features reduced by convolutional filters (CFRCF) is proposed 
in this work. CFRCF extracts shape and textural features as contextual feature maps from the chest X-ray ra
diographs and abdominal computed tomography (CT) images. Morphological operators, Gabor filter banks and 
attribute filters are used for contextual feature extraction. Then, two convolutional filters are applied to the 
contextual feature cube to extract the nonlinear sub-features and hidden relationships among the contextual 
features. Finally, a fully connected layer is used to produce a reduced feature vector which is fed to a classifier. 
Support vector machine and random forest are used as classifier. The experimental results show the superior 
performance of the proposed method from the recognition accuracy and running time point of view using limited 
training samples. More than 76% and 94% overall classification accuracy is obtained by the proposed method in 
CT scan and X-ray images datasets, respectively.   

1. Introduction 

A novel coronavirus called COVID-19 has been emerged since 
December 2019 in Wuhan, China [1]. Rapidly, it has been declared as an 
epidemic disease with many other cases across the world [2]. By 30 
September 2020, a total of 33.7 million/1.01 million patients have been 
diagnosed/died with COVID-19 infection. Because of limited number of 
available COVID-19 test kits and also limited ability and capacity of 
hospital staff, intelligent and automatic diagnosis of coronavirus is a 
vital and challenging task. The best tools for COVID-19 infection diag
nosis are chest X-ray radiographs and abdominal computed tomography 
(CT) images [3]. 

So far, several studies have been worked on the available X-ray and 
CT images to automatically diagnose the coronavirus (COVID-19). Most 
of them have been concentrated on deep learning methods especially 
convolutional neural networks (CNNs). Due to success of deep neural 
networks for image classification in various applications, they have been 
attend in many research works [4–6]. Deep learning is also used in 
various medical applications. A method for white blood cells 

classification is proposed in [7] which uses the best selected features 
achieved by a fitness function and extreme learning machine (ELM). 
Brain tumor classification is done using ELM in [8]. The discrete cosine 
transform is used for feature extraction. Then, an ELM based approach is 
used to select the best features. After feature fusion, ELM is used for final 
classification. Deep learning is used for feature fusion in an automatic 
system for stomach infection recognition [9]. Attention to this point is 
necessary that deep neural networks such as CNNs need large scale 
labeled images for training. But, due to limited available medical im
ages, transfer learning is used in almost all deep learning methods in 
medicine field. In the transfer learning mechanism, the knowledge ob
tained from other tasks such as recognition of various objects is trans
ferred to a specific domain. Three deep networks such as ResNet50 
trained on the ImageNet dataset have been analyzed on chest X-ray 
images in [10] and considerable results have been reported. A developed 
version of CNN called decompose, transfer and compose (DeTraC) has 
been adopted for COVID-19 diagnosis through chest X-ray image clas
sification in [11]. 

Selection and extraction of appropriate features has high importance 
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in any pattern recognition problem. A deep learning architecture is 
proposed in [12] for multi-layer deep features fusion where it does 
feature extraction based on transfer learning. In [13], both hand-crafted 
and CNN deep features are used for classification of gastric infections. 
The extracted features are fused and the best features are selected using 
a genetic algorithm. The modified mask recurrent CNN based ulcer 
segmentation is proposed for diagnosis of gastrointestinal diseases such 
as ulcer. The grasshopper optimization along with minimum distance 
fitness function is used to optimize the achieved deep features [14]. A 
Newton-Raphson feature selection method is combined with a deep 
learning model for skin cancer recognition in [15]. Conventionally, 
relatively deep CNNs have shown great performance because they do 
feature extraction layer by layer. A brief review of recently published 
works about diagnosis of COVID-19 through applying deep learning 
networks on radiology images is represented in Table 1. More abstract 
sub-features and details are extracted from deep layers which simplify 
discrimination between different classes. But, deep networks have 
hyperparameters and as said before, they need a high number of training 
samples to properly be learned. From the other hand, training a deep 
network has high computational burden. 

In addition to deep neural networks, which do feature extraction and 
classification in an end-to-end and unified framework, there are other 

pattern recognition methods which do feature extraction and classifi
cation individually. For example, the work in [16] uses feature extrac
tion methods such as Gray level co-occurrence matrix (GLCM) [17] and 
local directional pattern (LDP) for feature extraction, and support vector 
machine (SVM) for classification. 

There are various transforms for feature extraction. The chest X-ray 
and CT scan images of COVID-19 patients have different shape, 
geometrical structures and texture with respect to normal persons or 
people with other types of diseases. So, extraction of shape and textural 
features can be useful for coronavirus image classification. The 
morphological filters, which have been shown great success in contex
tual feature extraction in various fields [18,19], have been used to 
provide morphological profile (MPs). The extended version of 
morphological filters, known as attribute filters with flexibility in se
lection of attributes to be analyzed, have been used to provide the 
extended multi-attribute profile (EMAP) [20]. Another powerful texture 
descriptor is Gabor filter with capability of texture analysis in different 
scales and directions [21,22]. 

In this work, MP, Gabor filters and EMAP are used for contextual 
feature extraction. But, the direct use of these feature cubes is not so 
appropriate because 1- the obtained feature cubes have high dimen
sionality and 2- there are correlation, nonlinear characteristics and 

Table 1 
Deep learning networks for COVID-19 diagnosis using radiology images.  

Ref 
(year) 

Image 
type 

Model Description 

[33] 
(2020) 

X-ray Hybrid deep learning Visual geometry group based neural network (VGG) is combined with spatial transformer network (STN) 
and CNN 

[34] 
(2020) 

CT Multi-scale CNN (MSCNN) MSCNN is used to learn scaled-invariant patterns based on multi-scale spatial pyramid decomposition. 

[35] 
(2020) 

X-ray Integrated stacked deep convolutional network The pre-trained models such as ReNet101 and MobileNet are used to compensate for limited training 
data 

[36] 
(2021) 

X-ray Deep features and SVM VGG19, AlexNet, ResNet and GoogleNet are used for deep feature extraction. Then, metaheuristic 
algorithms are used for feature selection. Finally, SVM is used for classification. 

[37] 
(2021) 

CT Dual-branch combination network (DCN) DCN simultaneously achieves individual-level lesion segmentation and classification. 

[38] 
(2020) 

X-ray Deep learning based CNN called as nCOVnet A CNN model with 24 layers is introduced where the VGG16 is used as the base model and five custom 
layers are used as the head model. 

[39] 
(2020) 

X-ray SqueezeNet Deep SqueezeNet is used with Bayes optimization and a detailed augmentation. 

[40] 
(2020) 

X-ray Deep transfer learning Transfer learning is used to train ResNet18, ResNet50, DenseNet-121 and SqueezeNet. 

[41] 
(2020) 

X-ray DarkCovidNet DarkCovidNet inspired by DarkNet contains 17 layers with different filtering on each layer. 

[42] 
(2020) 

X-ray CVDNet, a deep CNN CVDNet is based on residual neural network constructed by two parallel levels to capture local and 
global features. 

[43] 
(2020) 

X-ray A Siamese neural network Contrastive learning is integrated with a pre-trained ConvNet encoder to achieve unbiased feature 
representation. A Siamese network is learned for final classification. 

[44] 
(2021) 

X-ray ResNet based deep learning The framework is composed of two deep learning models. The first model is for discrimination of COVID- 
19 from other infections. The second model is for localization that assigns the recognized X-ray into left 
lung, right lung or bipulmonary. 

[45] 
(2020) 

X-ray Convolutional CapsNet Convolutional CapsNet uses the capsule networks for binary and multi-class classification. 

[46] 
(2020) 

X-ray CNN with gravitational search optimization 
(GSA) 

The DenseNet121 is used as the considered CNN architecture where hyperparameters are set by GSA. 

[47] 
(2020) 

CT CNN based transfer learning-Bidirectional ling 
short-term memory (BiLSTM) 

A hybrid structure containing AlexNet architecture and transfer learning is proposed. The BiLSTM is also 
used to take into account the temporal properties. 

[48] 
(2020) 

X-ray Combined CNN-LSTM CNN is used for feature extraction and LSTM is used for detection. 

[49] 
(2020) 

X-ray Concatenation of Xception and ResNet50V2 Multiple features are extracted by two robust networks: Xception and ResNet50V2 

[50] 
(2020) 

X-ray COVIDX-Net COVIDX-Net assesses seven different deep networks including VGG19 and the second version of Google 
MobileNet. 

[51] 
(2020) 

X-ray DWT + CNN The discrete wavelet transform (DWT) and CNN are used for feature extraction, minimum redundancy 
and maximum relevance (mRMR) is used for feature selection and random forest-based bagging 
approach is used for classification. 

[52] 
(2021) 

X-ray, 
CT 

CMT-CNN Contrastive multi-task CNN (CMT-CNN) encourages local aggregation with a contrastive loss. 

[53] 
(2021) 

X-ray CNN based models: a comprehensive study Eight pre-trained CNN models such as VGG16, AlexNet and GoogleNet are assessed. 

[54] 
(2021) 

CT CCSHNet CCSHNet uses a novel transfer learning and determines the best two pre-trained models. It uses a 
discriminant correlation analysis based fusion method.  
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hidden relationships among the contextual feature maps which should 
be extracted. To this end, two convolutional filters are applied to the 
obtained contextual feature cube to extract more abstract sub-feature 
maps containing delicate shape and textural details for discrimination 
between COVID and NanCOVID images. Then, the feature maps are 
flattened and a fully connected layer is used to extract the final reduced 
feature vector. The extracted feature vector is given to a classifier to find 
the class label. SVM [23,24] and random forest (RF) [25] are used as 
classifiers. 

The proposed method called contextual features reduced by con
volutional filters (CFRCF) is assessed on two different datasets: chest X- 
ray radiographs and abdominal CT scan images. Various measures are 
computed to provide a comprehensive comparison. CFRCF is compared 
with different cases when MP, Gabor filter bank, EMAP and local binary 
pattern (LBP) [26,27] are used for feature extraction and SVM and RF 
are used as classifier. The experimental results show the superior per
formance of the proposed methods for discrimination between 
COVID-19 and normal (or other diseases). Some contributions of the 
CFRCF method are represented in the following:  

1. The use of shape and textural features extracted by MP, Gabor and 
EMAP transforms simplifies discrimination between COVID and 
NanCOVID images.  

2. Convolutional filters extract more abstract and detailed contextual 
features which improve diagnosis accuracy. In addition, convolu
tional operators extract the hidden relationship among the extracted 
contextual feature maps.  

3. FC layer is used for feature reduction and discarding redundant 
information. 

The proposed CFRCF method can achieve good classification results 
using limited training samples because of some reasons:  

1. For initial feature extraction, the unsupervised contextual feature 
extraction methods (EMP, Gabor and EMAP) are used without any 
requirement to the labeled samples. 

2. A simple structure containing just two convolutional layers is sug
gested for feature extraction using CNN. Therefore, the number of 
trainable parameters is not large, and so the overfitting problem is 
relatively avoided.  

3. In the classification phase, two classifiers with low sensitivity to the 
number of training samples (SVM and RF) are used, which are 
relatively efficient even with small training sets. 

This paper is organized as follows: the proposed method is described 
in section 2. Different contextual feature transformations containing 
morphological profiles, Gabor filters and attribute profiles are reviewed, 
and then, the use of convolutional filters for nonlinear extraction of 
hidden features are described. Datasets, evaluation measures, parameter 
settings and experimental results are reported in section 3. Finally sec
tion 4 concludes the paper. 

2. Contextual features reduced by convolutional filters 

Although several deep learning based methods such as CNN model 
have been proposed recently for COVID-19 diagnosis, but, they are often 
efficient when a high number of training samples is available; or when 
different methods such as transfer learning, data augmentation or semi- 
supervised approaches are used to deal with this difficulty. This work 
proposes a simple shallow network for COVID-19 diagnosis, which uti
lizes the advantages of shape and textural feature extractors to 
compensate for lack of the convolutional layers. From the other hand, 
most of the CNN based methods use a CNN model for both feature 
extraction and classification in a unified framework, which is not so 
applicable when limited number of training samples is available. So, in 
contrast to conventional CNN based methods, the proposed method uses 
two convolutional layers for nonlinear extraction of hidden sub-features 
and a fully connected layer for feature reduction. The extracted features 
are then given to a classifier with low sensitivity to the number of 
training samples (SVM or RF). The proposed framework not only pro
vides high accurate results using small training sets but also runs very 
fast in real applications. 

To discriminate between CT scan image (or X-ray image) of a COVID- 
19 patient and a NanCOVID-19 person (a normal person or a person 
stricken to other disease), noting to shape features, geometrical struc
tures and textural differences is important. The contextual information 
of an image can be extracted by applying the contextual image trans
formations. These filters are usually mappings that transform an image 
pixel as a function of gray levels of a set of neighboring pixels. To extract 
shape features, morphological filters are appropriate tools. In addition, 
attribute filters have more flexibility in shape feature extraction with 
defining any arbitrary attributes. To extract textural features in different 
scales and directions, Gabor filter bank is an appropriate choice. So, 
morphological profile (MP), Gabor filters and extended multi-attribute 
profile (EMAP) are used for contextual feature extraction in this study. 
The extracted features can be given to a classifier such as SVM for 
classification. But, the extracted feature cubes (MP, Gabor and EMAP) 
have high volume which require to feature reduction before giving to 
the classifier. Conventionally, the principal component analysis (PCA) 
transform [28] is used for feature reduction. The first principal 
component (PC1) containing the most energy of the feature cube is a two 
dimensional image. The PC1 is reshaped to a form a feature vector. But, 
the use of PCA for feature reduction has a main disadvantage. Some 
informative features which contains important details for discrimination 
between COVID and NanCOVID classes may be removed with discarding 
the PCs with small variances. 

To deal with this difficulty, contextual features reduced by con
volutional filters (CFRCF) is proposed in this work. According to the 
CFRCF method, a convolutional neural network (CNN) is used for 
feature reduction. To this end, at first a CNN containing two convolu
tional (Conv.) layers and two fully connected (FC) layers is trained to 
separate COVID and NanCOVID images. Then, the trained network is 
used for feature reduction where its input is the contextual feature cube 
extracted by MP, Gabor or EMAP. Two convolutional layers consecu

Fig. 1. General block diagram of the proposed CFRCF method.  
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tively extract sub contextual features. The convolutional operators can 
extract more abstract and detailed contextual features and also extract 
correlation and hidden relationships among the contextual features. The 
feature cube extracted by the second convolutional layer is flattened and 
given to a FC with m neurons. By applying an activation operator in the 
output of this layer, in the trained CNN, a m × 1 feature vector is 
extracted which can be given to classifier for diagnosis. With adding a FC 
with m neurons, the feature cube achieved in the second convolutional 
layer is reduced to a m × 1 feature vector. With this feature reduction, 
not only, we deal with the overfitting problem, but also, remove the non- 
informative and redundant features which may degrade the classifica
tion accuracy. SVM and RF are used here because they are powerful 
classifiers with relatively little sensitivity to the training set size. Fig. 1 
shows the general block diagram of CFRCF and Fig. 2 illustrates the 
suggested structure of CNN in CFRCF. In the following, the used 
contextual feature extraction methods and the proposed structure of 
CNN for feature reduction are described with more details. 

2.1. Morphological profile 

A morphological filter by reconstruction reduces the image 
complexity by attenuating unimportant details while preserves the 
geometrical structures of the regions. Result of the transform depends on 
interaction of structures present in the image with neighborhood region 
of the filter. The closing/opening operator by reconstruction suppresses 
darker/brighter regions with respect to gray level values of adjacent 
areas, which are smaller than the used structuring element (SE) as a 
moving window. The other structures remain unchanged. SE by speci
fying the neighborhood shape and size determines how amount 
contextual relations are involved in the image analysis. The opening and 
closing operators are applied on each image channel individually. The 
outputs are stacked together to form a morphological profile (MP). For a 
given image, the MP is constructed consisting of nM = 2n + 1 feature 
maps where n is the number of applied opening (and closing) filters. 

2.2. Gabor filter bank 

Gabor filters attract considerable attention for texture description. 
The Gabor filters result in joint localization in both original (space) and 
transform (spatial-frequency) domains. The Gabor functions are inspired 
from the human visual system, and so, they have high capability in 
texture interpretations. A filter bank containing Gabor filters with varied 
scales and directions is used to acquire localization characteristics in 
both spatial and frequency domains. The result of convolution of these 
filters with the given image is a Gabor feature cube. A Gabor filter is 
composed of a sinusoidal function which is modulated by an envelope 
with Gaussian shape. The impulse response of a Gabor filter is defined by 
[29]: 

h(x, y) = g(x, y)exp( − j2π(Ux + Vy) ) (1)  

where j is the imaginary unit, i.e., j =
̅̅̅̅̅̅̅
− 1

√
, h(x, y) is centered at fre

quency (U,V) and g(x, y) is the Gaussian envelope: 

g(x, y) =
1

2πσ2 exp
(

−
x2 + y2

2σ2

)

(2) 

A Gabor filter bank containing Ns scales and Nd directions are applied 
to the given image. The result is a Gabor feature cube with Ns × Nd 

feature maps. 

2.3. Attribute profiles 

Attribute filters as an extension of morphological filters are flexible 
in definition of attributes for contextual information modelling. An 
Attribute profile is obtained by applying a set of attribute filters to a gray 
level image. These filters, defined in the mathematical morphology 
framework, merge connected components at different levels. The attri
bute filter removes the connected components that do not satisfy a given 
criterion. The criterion evaluates the considered attribute extracted from 
the image regions. To this end, the attribute a computed for a given 
connected region R, a(R), is compared to a threshold λ. If a(R) > λ, the 
region remains unchanged; otherwise, it is set to the gray level of 
adjacent region with nearer value. Merging the region with the adjacent 
region with lower/greater gray level is known as thinning/thickening. 
An attribute profile (AP) generated from an image I with a given attri
bute a is acquired by applying a set of attribute thinning and thickening 
filters by a sequence of thresholds {λ1, λ2,…, λn} as follows: 

APa(I) = {φn(I),…,φ1(I), I, γn(I),…, γ1(I) } (3)  

where φi/γi denote the thickening/thinning transformations. AP of each 
image channel is obtained. The obtained APs are stacked to provide the 
extended multi-attribute profile (EMAP). EMAP is usually obtained with 
considering different attributes not a single one. 

2.4. Convolutional neural network 

Convolutional filters due to their ability in feature extraction from 
the neighborhood regions are among the best well known operators for 
nonlinear feature extraction. CNNs utilize the local connections to hi
erarchically extract contextual information layer by layer by applying 
convolutional filters. Moreover, by utilizing the shared weights, they 
significantly reduce the number of parameters. A CNN structure is 
proposed for feature extraction in this work. This CNN accepts the 
contextual feature cube extracted by MP, Gabor or EMAP as input. At 
first, the whole CNN is trained to learn weights. Then, the output of the 
first fully connected (FC) layer is activated and used as the extracted 
feature vector with reduced dimensionality. The following structure is 

Fig. 2. Suggested structure of CNN in CFRCF.  
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suggested in this work:  

1. Two dimensional convolutional (Conv.) layer containing 16 kernels 
with the size of 5× 5.  

2. BatchNormalization (BN) layer for normalizing the feature cube 
across a mini-batch. 

3. Rectified Linear Unit (ReLU) layer which applies a threshold opera
tion to each element of the extracted feature cube to set any value 
less than zero to zero.  

4. Conv. layer containing 32 kernels with the size of 3× 3  
5. BN layer  
6. ReLU layer  
7. FC layer with f neurons to produce a f × 1 feature vector.  

8. FC layer with 2 neurons corresponding to two classes of COVID and 
NanCOVID.  

9. Softmax layer which applies a Softmax function to the final FC 
neurons to compute the conditional probability of the image given 
class COVID or NanCOVID. 

Output of step 7 in the trained CNN is the reduced feature vector 
which given to a classifier (SVM or RF) for classification. According to 
experiments, an appropriate value for the parameter f is 100. So, a 100 ×
1 feature vector is achieved from each medical image. 

A two dimensional convolutional operator in the convolutional layer 
is defined as follows [30]: 

Fig. 3. Extracted contextual feature maps for CT dataset when MP is used as input of the convolutional filters.  

Fig. 4. Extracted contextual feature maps for CT dataset when Gabor feature cube is used as input of the convolutional filters.  
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uxy
ij = g

(
∑

m

∑Pi − 1

p=0

∑Qi − 1

q=0
wpq

ijm u(x+p)(y+q)
(i− 1)m + bij

)

(4)  

where g is the activation function; uxy
ij is the value of neuron at position 

(x, y) for feature map j and layer i; m is the index of feature map in (i − 1)
th layer connected to j th feature map; wpq

ijm is the weight of position (p,q), 
which is connected to the feature map m ; Pi/Qi is the height/width of 
the convolution kernel and bij denotes the bias of feature map j in layer i. 

The use of BN and ReLU layers help to avoid overfitting problem. 
ReLU as a nonlinear operation is used in hidden layers to improve the 
performance. It returns zero if the input of a neuron be negative. Adam 
optimizer is used to compile the model. The output of the second con
volutional layers, i.e., the extracted sub feature maps, when input of 

CNN is MP, Gabor and EMAP, are shown for CT dataset in Figs. 3–5 and 
for X-ray dataset in Figs. 6–8, respectively. 

3. Experiments 

3.1. Datasets and evaluation measures 

Two public datasets are used for doing experiments: abdominal CT 
scan images and chest X-ray images. The COVID-19 CT image dataset is 
publicly available on https://github.com/UCSD-AI4H/COVID-CT [31] 
accessed in 8 April 2020. It contains 349 CT samples of clinical findings 
of COVID-19 and 397 CT images of NanCOVID. The X-ray dataset is 
publically available on https://github.com/ieee8023/covid-chestxra 
y-dataset [32] accessed in 18 April 2020. It contains 187 and 73 chest 

Fig. 5. Extracted contextual feature maps for CT dataset when EMAP is used as input of the convolutional filters.  

Fig. 6. Extracted contextual feature maps for X-ray dataset when MP is used as input of the convolutional filters.  
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X-ray images of COVID-19 patients and NanCOVID ones, respectively. 
All images are resized to 150 × 150 pixels in both datasets. 

Due to limited number of samples in X-ray dataset, the enhanced 
contrast of X-ray images obtained by histogram equalization are ob
tained and added to the original X-ray images for data augmentation. In 

other words, the number of samples in X-ray dataset becomes twice. 
Table 2 represents the number of samples in each dataset and also the 
number of augmented samples in X-ray dataset. In CT scan dataset, 70% 
of data samples are used for training and 30% for testing and in X-ray 
dataset 90% of data is used for training and 10% for the testing. Also, in 
both datasets, 10% of training samples are considered as validation 
samples and the remainder of samples are used as training ones. 

The following evaluation measures are used to assess the perfor
mance of different feature extraction methods: the classification accu
racy of each class (COVID accuracy and Nan COVID accuracy), average 
accuracy of two classes, overall accuracy and F-measure. In addition, the 
running times are reported to compare the computational complexity of 
methods. 

Fig. 7. Extracted contextual feature maps for X-ray dataset when Gabor feature cube is used as input of the convolutional filters.  

Fig. 8. Extracted contextual feature maps for X-ray dataset when EMAP is used as input of the convolutional filters.  

Table 2 
The number of samples in each class of datasets.  

Dataset Class No. of samples No. of augmented samples 

CT COVID 349 — 
NanCOVID 397 — 

X-ray 
COVID 187 374 
NanCOVID 73 146  
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3.2. Parameter settings 

The experiments are done using a laptop Inter Core i7 CPU, with 
2.8 GHz processor and 16GB RAM in the MATLAB 2018b software. To 
construct the MP, n = 2 opening filters and n = 2 closing filters are 
applied to each CT scan (or X-ray image) to form a MP with size of r ×
c × nM from each gray level medical image where r and c are the height 
and width of image and nM = 2n+ 1 = 5. Because the available images 
are RGB, a MP is constructed for each channel R, G and B. Then, the MPs 
of all channels are stacked such that a MP with size of 3 × 5 = 15 is 
constructed for a RGB image. The morphological filters with structural 
element (SE) of ‘disk’ shape are used in the experiments. 

The Gabor filter banks for both datasets consist of 18 filters con
taining Ns = 6 scales and Nd = 3 directions with window length of 30. In 
other words, the output of the above filter bank on each gray level image 
is a Gabor feature cube with size r × c × (Ns × Nd) where Ns × Nd is the 
number of Gabor features. For a RGB image, the Gabor feature cube is 
constructed from each RGB channel and then, the feature cubes are 
stacked to form the final Gabor feature cube for the RGB image. 

To construct EMAP, two following attributes are used for applying 
attribute filters on each image: ‘a’ (the regions’ area) and ‘d’ (diagonal of 
box bounding the region). The following values are considered as 
thresholds of attribute a (λa) and thresholds of attribute d (λd) for CT 
scan dataset: 

λa = [100, 33400, 66700, 100000]

λd = [10, 3340, 6670, 10000]

and the following thresholds are used as for X-ray dataset: 

λa = [100, 25075, 50050, 75025, 100000]

λd = [10, 2507, 5005, 7502, 10000]

All threshold are empirically chosen. For each gray level image, 2 ×

na + 1 attribute filters with attribute a are applied where na is the 
number of the considered thresholds for attribute a. In addition, 2 ×

nd + 1 attribute filters with attribute d are applied where nd is the 
number of considered thresholds for attribute d. In other words, the 
extended multi-attribute profile (EMAP) for each gray level image is a 
r × c × ((2 × na + 1) + (2 × nd + 1) ) cube. Similar to MP and Gabor 
feature cubes for RGB image, the EMAP feature cube is obtained for each 
RGB channel. Then, the attribute profiles are stacked together to form 
the final EMAP feature cube for each RGB medical image. To implement 
LBP as a competitor, 16 neighbors inside a circle pattern with radius size 
of 5 are used. 

Due to limited number of available medical images, almost all deep 
neural networks such as CNN, used in medical applications, have uti
lized the transfer learning. But, in this work, CNN is implemented 
without transfer learning to show its performance without dependency 
to other types of datasets and pre-trained networks. The Adam optimizer 
with initial learning rate of 0.001, mini-batch size of 128 and 100 epochs 
is used to train the CNN model. Other parameters are considered as the 
default values defined in MATLAB 2018b. For example, the factor of 
weight decay (L2 regularization) is set as 0.0001.The training and vali
dation data are also shuffled once before training. 

Table 3 
Comparison results for CT image dataset.  

Table 4 
Comparison results for X-ray image dataset.  
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3.3. Classification results 

The experimental results for CT and X-ray datasets are reported in 
Tables 3 and 4, respectively. The first and second ranks for each eval
uation measure is bolded with red and blue colors, respectively. The 
proposed CFRCF method in different cases are assessed. MP, Gabor and 
EMAP are used for initial contextual feature extraction and SVM and RF 
are used for classification. These six different cases in CFRCF are 
compared with the conventional approaches where SVM and RF are 
used for classification of MP, Gabor, EMAP and LBP features. To have a 
fair comparison, the results of the CNN alone with the same settings are 
also reported. 

Generally, the use of a deep CNN can obtain superior classification 
results because CNN has high potential in extraction of deep features 
through applying the convolutional filters in consecutive layers. But, in 
cases that a low number of training samples is available, and so, the use 
of a shallow CNN is applicable, the shallow CNN model may not achieve 
high accurate classification results because it lacks rich feature extrac
tion due to removing the deep layers. So, the use of appropriate feature 
extraction methods before feeding data to the CNN model can be very 
useful. 

Generally, in both datasets, CFRCF methods have significantly better 
performance than the conventional MP, Gabor and EMAP methods. This 
conclusion is expected because CFRCF uses a trained CNN for sub feature 
extraction and dimensionality reduction of the contextual feature cubes. 
The constructed contextual feature cubes obtained by MP, Gabor filters 
and EMAP not only have high dimensionality, which directly feeding 
them to the classifier is not so appropriate, but also they contain high 
redundant information. In addition, there is hidden and nonlinear 
relationship among the contextual feature maps. By applying two 
consecutive convolutional filters continued by ReLU activation func
tions, the nonlinear sub features are extracted. Then, by applying a FC, a 
reduced feature vector is achieved. The achieved feature vector is finally 
given to a SVM or RF classifier which results in superior classification 
results. 

The following conclusions can be found from the achieved results for 
CT scan dataset (see Table 3):  

1. The highest average accuracy is achieved by Gabor-RF (CFRCF).  
2. CNN ranks first from the overall classification accuracy point of view. 

But it cannot diagnosis the COVID cases with a high accuracy. In 
addition, the F-measure obtained by the CNN is not so satisfactory.  

3. The highest COVID accuracy is obtained by MP-RF (conventional). 
MP-RF (CFRCF) ranks second.  

4. Although the highest NanCOVID accuracy is obtained by LBP-SVM. 
But, it is not a valid result. Because LBP-SVM obtains 0% COVID 
accuracy. In other words, all images are labeled as NanCOVID by 
LBP-SVM. MP-SVM (conventional) ranks second.  

5. MP-RF (conventional) and MP-RF (CFRCF) rank first and second, 
respectively in terms of F-measure.  

6. Although Gabor-RF (CFRCF) ranks first from the average accuracy, 
but its COVID accuracy is 68.81% which has relatively significant 
difference with respect to MP-RF (CFRCF) that is 75.23%. Although 
MP-RF (CFRCF) ranks second in terms of several measures, but it has 
a bit difference compared to the first rank in each measure.  

7. In comparison between MP-RF (CFRCF) and MP-RF (conventional) 
from the running time (in the testing phase) point of view, CFRCF is 
run in 0.43 s while the conventional method is run in 3.04 s. In 
conventional methods, volume of the input data fed into the classifier 
is relatively high. So, they are run slower than the CFRCF methods 
which do feature reduction through a trained CNN. 

The following results are concluded from the experiments on X-ray 
dataset (see Table 4):  

1. The preferred choice in X-ray dataset is Gabor-SVM (CFRCF) because 
it ranks first from the overall accuracy and F-measure, ranks second 
in terms of average accuracy, NanCOVID accuracy, and ranks third in 
terms of COVID accuracy with a bit difference with respect to the 
second rank. 

2. About COVID accuracy, although LBP-SVM shows 100% COVID ac
curacy, but, it results in 0% NanCOVID accuracy, and so, it fails to 
work. In addition, although LBP-RF and MP-SVM (conventional) 
achieve 100% COVID accuracy, but they obtain a little NanCOVID 
accuracy that implies they falsely labels most of images as COVID.  

3. CNN ranks second from the COVID classification accuracy but if 
cannot provide a comparable average accuracy or overall accuracy 
with respect to the first ranks methods.  

4. After Gabor-SVM (CFRCF), Gabor-SVM (conventional) can be an 
appropriate choice. From the running time in testing phase, Gabor- 
SVM (CFRCF) is much faster than the Gabor-SVM (conventional), i. 
e., 0.02 s versus 0.33 s. 

Generally, MP-RF (CFRCF) in CT scan dataset and Gabor-SVM 
(CFRCF) in X-ray dataset are the best candidates. It implies that 
morphological, shape and structural characteristics (extracted by 
morphological filters) in CT scan dataset and textural features (extracted 
by Gabor filters) in X-ray dataset are the most important features in 
discrimination between COVID and NanCOVID cases. Also, the proposed 
CFRCF methods are run faster than their associated competitors because 
they reduce the data dimensionality through crossing data from two 
convolutional layers and then a fully connected layer. 

The proposed CFRCF method is also superior with respect to some 
state-of-the-art methods. For example, Concatenation of Xception and 
ResNet50V2 [49], which diagnoses COVID-19 using X-ray images, 
achieves 80.53% COVID accuracy and 91.4% overall accuracy while the 
proposed CFRCF method (Gabor-SVM) results in 97.50% COVID accu
racy and 94.23 overall accuracy using X-ray images. The proposed 
CFRCF method is compared with some state-of-the-art COVID-19 
detection methods in Table 5. Generally, more efficient neural networks, 
usually deeper and more complicated ones, lead to extraction of more 
abstract features with more details, and so, improve the classification 
accuracy. According to the represented results in Table 5, networks such 
as ResNet-50 and VGG19 outperform networks such as Inception and 
Xception. A simple CNN with two layers is used for feature extraction in 
the proposed CFRCF method. Despite the simplicity, CFRCF is efficient 
and relatively accurate. 

It is expected that the use of more efficient and deeper network can 

Table 5 
Comparison between the proposed model with some recent works for binary 
classification of COVID-19 (COVID-19 vs. Nan− COVID-19) using X-ray images.  

Reference Method Number of X-ray 
images (C: COVID, 
N:Nan-COVID) 

Accuracy 

[38] 
(2020) 

nCOVnet C: 42 and N: 42 88.10 

[50] 
(2020) 

COVIDX- 
Net 

C: 25 and N: 25 

InceptionV3: 50 MobileNetV2: 
60 ResNetV2: 70 
InceptionResNetV2: 80 
Xception: 80 DenseNet201: 90 
VGG19: 90 

[51] 
(2020) DWT + CNN C: 237 and N: 1206 

Xception: 0.9046 Inception: 
0.9084 DenseNet201: 0.9241 
MobileNet v2: 0.9413 
VGG19: 0.9627 ResNet50: 
0.9945 

[52] 
(2021) CMT-CNN 

C: 231 and N: 
4007 + 1583 

VGG-19: 93.42 ResNet-50: 
95.66 EfficientNet: 97.23 

Proposed CFRCF 
C: 187 and N: 73 
(Augmented: C: 374 
and N: 146) 

94.23  
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increase the classification accuracy of the proposed model. However, 
attention to this point is notable that applying deeper and more 
complicated network containing more learnable parameters requires 
more number of training samples to learn. The use of semi-supervised 
approaches and transfer learning strategy beside the data augmenta
tion can be used to handle the small sample size problem. But, all these 
strategies increase the total computational burden. 

The CFRCF method has two main advantages: 1- it reduces the fea
tures dimensionality and 2- it produces features with high energy and 
low correlation. These advantages lead to improvement of the 

classification accuracy. The original features extracted by MP, Gabor 
and EMAP are compared with the features extracted by the MP (CFRCF), 
Gabor (CFRCF) and EMAP (CFRCF). The results are shown in Table 6. 
The features are compared in terms of dimensionality, mean of variance 
and mean of correlation. As found from this table, the high number of 
original features extracted by MP, Gabor and EMAP are reduced to 100 
using CFRCF. The CFRCF features have much more variance than the 
original features which means that the produced features significantly 
contain higher energy. In addition, the mean of correlation among the 
extracted features is significantly less than the mean of correlation 
among the original features. It means that CFRCF removes redundant 
features and produces features with much less overlapping in the feature 
space. Figs. 9 and 10 show the correlation among the features in CT and 
X-ray datasets, respectively. In each figure, the first three subplots are 
related to the original MP features (100 features, 1000 features and 
10,000 features) and the fourth subplot is related to the 100 CFRCF 
features. 

4. Conclusion 

The contextual features reduced by convolutional filters (CFRCF) is 
proposed for automatic diagnosis of COVID-19 infection using the chest 
CT scan or X-ray images. The proposed CFRCF method is based on 
contextual feature extraction from the medical images. Shape and 
geometrical characteristics are extracted by morphological filters 
through MP construction and also by flexible attribute filters through 
EMAP construction. The textural characteristics containing various 
scales and directions are extracted by applying the Gabor filter banks. 
Due to high dimensionality of the constructed feature cubes and also 
existence of redundant information in them, a trained CNN is used for 
nonlinear sub feature extraction and dimensionality reduction. To this 
end, after applying two consecutive convolutional filter, a fully con
nected layer is used to result a reduced feature vector. The achieved 
feature vector is given to the SVM or RF classifier to find the class label of 
image (COVID or NanCOVID). According to the experimental results, the 
shape and structural characteristics (extracted by morphological filters) 
and textural features (extracted by Gabor filters) processed by 

Table 6 
Comparison among original features and CFRCF features.  

Dataset features Number of features Mean of 
variance 

Mean of 
correlation 

CT 

MP 
150× 150×

15 = 337,500  0.10 0.51 

MP 
(CFRCF) 100.00 29.75 0.01 

Gabor 
150× 150×

54 = 1,215,000  3.03 0.58 

Gabor 
(CFRCF) 

100.00 51.58 0.04 

EMAP 
150× 150×

66 = 1,485,000  0.14 0.79 

EMAP 
(CFRCF) 

100.00 27.06 0.01 

X-ray 

MP 
150× 150×

15 = 337,500  0.04 0.46 

MP 
(CFRCF) 100.00 49.59 0.00 

Gabor 
150× 150×

54 = 1,215,000  0.31 0.39 

Gabor 
(CFRCF) 

100.00 48.02 0.01 

EMAP 
150× 150×

66 = 1,485,000  0.08 0.15 

EMAP 
(CFRCF) 

100.00 28.90 0.00  

Fig. 9. Correlation among the original MP features (100, 1000 and 10,000 features) and the correlation among 100 MP features extracted by CFRCF (the right 
bottom subplot) in CT dataset. 
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convolutional operators provide superior recognition accuracy. In 
addition, although the running time of them in the training phase is 
relatively high, but they are implemented very fast in the testing phase 
especially when SVM is used as classifier in the final stage. As an idea for 
doing future works, the performance of the proposed CFRCF method can 
be improved by increasing the depth of CNN. However, due to 
increasing the number of hyper parameters in deep networks and to deal 
with overfitting problem, the use of transfer learning and improved data 
augmentation approaches is unavoidable. 
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