
© 2022 Indian Journal of Ophthalmology | Published by Wolters Kluwer - Medknow

Development and validation of an offline deep learning algorithm to detect 
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Purpose: We describe our offline deep learning algorithm  (DLA) and validation of its diagnostic ability 
to identify vitreoretinal abnormalities  (VRA) on ocular ultrasound  (OUS). Methods: Enrolled participants 
underwent OUS. All images were classified as normal or abnormal by two masked vitreoretinal specialists (AS, 
AM). A data set of 4902 OUS images was collected, and 4740 images of satisfactory quality were used. Of 
this, 4319 were processed for further training and development of DLA, and 421 images were graded by 
vitreoretinal specialists (AS and AM) to obtain ground truth. The main outcome measures were sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV) and area under receiver operating 
characteristic (AUROC). Results: Our algorithm demonstrated high sensitivity and specificity in identifying 
VRA on OUS ([90.8%; 95% confidence interval (CI): 86.1–94.3%] and [97.1% (95% CI: 93.7–98.9%], respectively). 
PPV and NPV of the algorithm were also high ([97.0%; 95% CI: 93.7–98.9%] and [90.8%; 95% CI: 86.2–94.3%], 
respectively). The AUROC was high at 0.939, and the intergrader agreement was nearly perfect with Cohen’s 
kappa of 0.938. The model demonstrated high sensitivity in predicting vitreous hemorrhage (100%), retinal 
detachment (97.4%), and choroidal detachment (100%). Conclusion: Our offline DLA software demonstrated 
reliable performance  (high sensitivity, specificity, AUROC, PPV, NPV, and intergrader agreement) for 
predicting VRA on OUS. This might serve as an important tool for the ophthalmic technicians who are 
involved in community eye screening at rural settings where trained ophthalmologists are not available.
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The demand for ophthalmic care continues to grow globally 
as the aging population expands,[1,2] inviting a revolution with 
the advent of artificial intelligence (AI). Chronic ophthalmic 
diseases require mass screening at the community level to allow 
for early detection and potentially better quality of life, posing 
an immense burden on the healthcare and human resources. 
The utility of imaging in ophthalmology makes it the ideal 
field to potentially benefit from AI applications.[3] This was 
evidenced by the first Food and Drug Administration‑approved 
AI project, IDx‑DR, which is an algorithm developed to screen 
diabetic retinopathy  (DR). Further AI studies have focused 
on posterior segment images of DR, age‑related macular 
degeneration, and glaucoma, the three leading causes of 
irreversible blindness worldwide.

In settings where the dense cataract or other media 
opacity prevents a view of the posterior segment, ocular 
ultrasound (OUS) is an important investigative tool. In India, 
the prevalence of mature cataracts is high at 7–10%, making OUS 
a commonly used modality.[4] The ophthalmic technicians who 
are routinely involved in community screening at rural settings 
are unable to assess the posterior segment. Furthermore, the 
lack of consistent internet connectivity in rural parts of India 
further limits teleophthalmic consult for image interpretation. 

These obstacles to posterior segment evaluation pose a risk, 
especially in the setting of a comprehensive examination prior 
to cataract surgery. Visual prognosis cannot be adequately 
assessed prior to surgery, and the lack of complete information 
prior to surgery can potentially lead to medicolegal issues. 
While fundus photography is the subject of numerous AI 
studies,[5‑8] OUS has not been evaluated by AI.

Our study aimed to develop an offline deep learning 
algorithm (DLA) for the ophthalmic technicians to identify 
multiple vitreoretinal abnormalities (VRA) on OUS as normal 
or abnormal. This might be a value addition for community 
eye screening done by ophthalmic technicians. Here, we report 
the development of our DLA strategy using two independent 
data sets, and its validation using 421 test images.

Methods
Our study was designed and carried out at two major tertiary 
eye care facilities in South India between January 2018 and 
December 2019. The study adhered to the tenets of Declaration 
of Helsinki and approved by the Institutional Review Board of 
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Aravind Eye Hospital. Patients were enrolled with informed 
written consent.

Data set
Patients who underwent OUS for documentation of posterior 
segment examination prior to anterior segment surgery 
(including cataract surgery) and those with known VRA were 
recruited to participate in this study. The OUS imaging for all 
the study patients was done by two fellowship‑trained retina 
specialists  (AM, AS) using standardized screening protocol. 
Though ultrasound imaging is a dynamic process, we have 
considered one representative OUS picture per eye as the 
study image for further processing. The horizontal axial scan 
position was preferred; if this scan was not representative 
of the overall clinical picture, the scan position which 
demonstrated the exact VRA was the designated study image. 
OUS images were retrieved directly from the ultrasound 
machine (Appasamy Associates, Gantec Corporation, India/
same machine was used at both centers) and processed further 
as described below.

A data set consisting of 4902 images was collected from 
2486 patients and 4740 OUS images of satisfactory quality were 
used. The data set was further separated into a training set (4319 
OUS images) and validation set  (421 OUS images), which is 
shown in Fig. 1. The sample size for validation set was calculated 
based on previous literature work on AI related to DR. Images 
were placed in the validation set to ensure an equal number 
of normal and abnormal images. The training set images were 
graded by two fellowship‑trained retina specialists (AM, AS) and 
reported as either normal or abnormal. Fig. 2a–c demonstrates 
the initial clinical grading required for DLA training. The final 
number of images, features assessed, and the data set used for 
training and validation are described in Table 1.

Data preprocessing
Automated preprocessing steps were applied to the original 
images to make these images suitable for training the DLA. 
These steps are described as follows. Images were downsized 
to 299 × 299 pixels and divided by 255 to scale the image pixels 

to a range of 0–1. Image augmentation including change in 
orientation  (horizontal or vertical flip), rotation up to 45°, 
shifting width, height, sheer, and zoom in the range of  ‑20 
to + 20% were randomly applied during training. These steps 
increased the diversity of the data set, reducing the possibility 
of overfitting and making the DLA more robust.

Machine learning architecture
We used an Inception‑ResNet‑V2 architecture for 
classification.[9] Given our limited sample size, we used 
transfer learning to avoid overfitting. Transfer learning is the 
reuse of deep learning models that are pretrained in large 
data sets like the ImageNet[10] data set to reduce training time 
and maximize accuracy despite a small data set. We used 
Inception‑ResNet‑V2 that was pretrained on ImageNet and a 
classifier of fully connected layers was added to separate OUS 
images into normal and abnormal.

Python programming language (http://www.python.org/) 
and Keras library with Tensorflow backend (https://keras.io/) 
were used to train the deep learning model. All training was 
done using NVIDIA RTX 2080 graphics processing unit with 
NVIDIA cuda (version 10.0) and cudnn (version 7.6.5).

Input to the network consisted of 4319 training images. The 
model was trained with multiple epochs, each epoch with a 
batch size of 12, with a learning rate of 0.001 with an ADAM 
optimizer, which minimizes the loss function (error function). 
For classification, categorical cross‑entropy was used. Training 
was stopped when the loss of the model and accuracy in the 
validation images decreased. Greatest accuracy of 94.6% was 
achieved in the 49th epoch.

The heatmaps highlighting the regions in which 
abnormalities were detected using the DLA were generated 
using the Grad‑CAM method for all true‑positive images. 
This method calculates the gradients of the output of the DLA 
network with respect each pixel to identify pixels that have the 
greatest impact on the prediction. A senior retina specialist (PB) 
confirmed that heatmaps were effective in highlighting 
abnormal regions in OUS images.

Ground truth
The validation data set of 421 deidentified images were assessed 
separately by both vitreoretinal specialists (AM, AS) for ocular 
abnormalities shown in Table  1. Based on these structures, 
graders reported the OUS image as normal or abnormal. 
Discrepancy in reporting between the two graders was 
mutually agreed upon and adjudicated result was considered 
as the ground truth. Area under the receiver operating 
characteristic  (AUROC), sensitivity, specificity, positive 
predictive values (PPV) and negative predictive values (NPV) 
of the DLA were primary outcome measures.

Statistical plan
Data collection was performed in Microsoft Excel 
(Microsoft Corporation, Washington, US). The power of 
the study was set to 80%. P < 0.05 was considered to reflect 
statistical significance. The normality of the study was assessed 
using Kolmogorov–Smirnov test. The AUROC curve was 
obtained by plotting true‑positive rate against false‑positive 
rate. Intergrader agreement was calculated by Cohen’s kappa. 
Data analysis was performed using Stata version 14, Statacorp, 
College Station, Texas.

Results
As shown in the flowchart [Fig. 1], we collected 4850 OUS 
images prospectively and excluded 110 ungradable images. 

Tertiary Eye Hospital 1
2350 images

Tertiary Eye Hospital 2
2500 images

Excluded
110 images

Quality sufficient for
inclusion

2500 images

Quality sufficient for
inclusion

2240 images

Combined
4740 images

Train
4319 images

Test
421 images

Figure 1: Sample selection at Aravind Eye Hospital Pondicherry and 
Chennai
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The 4740 images were split into training set (4319 images) 
and validation set  (421 images), which are detailed in 
Table 1.

Of the 421 images tested for accuracy, the DLA software 
reported 203 abnormal and 218 normal OUS images. Findings 
are displayed in Table 2. The sensitivity and specificity of the 

Table 1: Assessed ocular abnormalities for training and validation data sets

Total no. of OUS images 4850
Total no. of gradable images 4740 (97.73%)

Parameters Features looked at for labeling normal vs abnormal Training data 
set (4319 eyes)

Validation data 
set (421 eyes)

Lens status Normal – no lens echo noted 2049 (47.4%) 206 (48.9%)

Normal – lens echo noted 1661 (38.4%) 148 (35.1%)

Normal – IOL reverberations noted 583 (13. %) 61 (14.4%)

Abnormal – Subluxated/dislocated lens/IOL 26 (0.6%) 6 (1.4%)

Vitreous dot echoes Normal – no dot echoes 706 (16.3%) 61 (14%)

Normal – mild dot echoes 2381 (55.1%) 219 (52%)

Abnormal – moderate echoes 633 (14.6%) 81 (19.2%)

Abnormal – plenty of dot echoes 588 (13.6%) 60 (14.2%)

Vitreous clump echoes Normal – no clump echoes 3830 (88.6%) 354 (84%)

Abnormal – clump echoes present 489 (11.3%) 67 (15.9%)

Vitreous membranous 
echoes

Normal – no membranous echoes 3589 (83.1%) 326 (77.4%)

Abnormal – single membranous echo present 479 (11.0%) 59 (14%)

Abnormal – two membranous echo present 220 (5.0%) 35 (8.3%)

Abnormal – multiple membranous echoes present 31 (0.7%) 1 (0.2%)

Attachment of 
membranous echo to disc

Normal – not attached 3870 (89.6%) 361 (85.7%)

Normal – point attachment (IPVD) 223 (5.1%) 21 (4.9%)

Abnormal – broad attachment (RD) 224 (5.1%) 39 (9.2%)

Retina Normal – attached 3952 (91.5%) 383 (90.1%)

Abnormal – detached 242 (5.6%) 38 (9.9%)

Choroid Normal – no choroidal detachment 4257 (98.5%) 416 (98.8%)

Abnormal ‑ choroidal detachment present 61 (1.4%) 5 (1.1%)

Retina choroid sclera Normal 4131 (95.6%) 401 (95.2%)

Abnormal – thickened 77 (1.7%) 9 (2.1%)

ST fluid Normal – absent 4290 (99.3%) 416 (98.8%)

Abnormal – present 28 (0.6%) 5 (1.1%)

T sign Normal – absent 4293 (99.4%) 416 (98.8%)

Abnormal – present 25 (0.5%) 5 (1.1%)
Final diagnosis Normal 2535 (58.6%) 204 (48.4%)

Abnormal (if any one of the above parameters was found to 
be abnormal, then the final diagnosis was termed abnormal)

1784 (41.3%) 217 (51.5%)

IPVD – incomplete posterior vitreous detachment, RD – retinal detachment, and ST – subtenon

Figure 2: Ocular ultrasound scan image showing (a) normal structures, (b) multiple vitreous dot echoes, and attached retina (c) detached retina

cba



1148	 Indian Journal of Ophthalmology	 Volume 70 Issue 4

algorithm to identify a posterior segment abnormality were 
90.8% (95% CI: 86.1–94.3%) and 97.1% (95% CI: 93.7–98.9%), 
respectively. The PPV and NPV of the algorithm were high at 
97.0% (95% CI: 93.7–98.9%) and 90.8% (95% CI: 86.2–94.3%), 
respectively. The AUROC was high at 0.939  [Fig.  3]. The 
agreement between the two masked clinical graders was 
96.9% (Cohen’s kappa 0.9382, P < 0.001). Analyses performed 
on false‑negative and true‑positive images are shown in Table 3, 
which demonstrate the range of abnormalities found on OUS 
images and the performance of the model in detecting these 
abnormalities.

To visualize how the DLA makes abnormal predictions from 
OUS images, heatmaps were generated to indicate the region of 
abnormality. Fig. 4 presents examples of VRA activation maps, 
which are accompanied by the corresponding original image. 
Heatmaps effectively highlighted regions of the abnormality.

Discussion
Our DLA with Inception‑Resnet‑V2 network detected VRA 
using OUS images with high sensitivity and specificity and 

achieved an AUROC of 0.939. Our approach avoided numerous 
example images for model convergence by fine‑tuning 
the weights of the Inception Resnet V2 model, which was 
pretrained on ImageNet data set. To our knowledge, our study 
is the first to describe the use of AI for OUS interpretation. Our 
results suggest the competence of our algorithm in providing 
cost‑effective and objective diagnostics for VRA, reducing the 
need to depend on vitreoretinal specialists. Additionally, the 
ability of OUS to detect VRA in the setting of media opacities 
make it especially useful as compared to most of the modalities 
currently studied by AI  (including ultrawide field fundus 
images and optical coherence tomography images). Moreover, 
as this algorithm can perform offline, it may be especially 
suitable for use in developing countries, where internet 
connectivity may not be consistently available.

Although prior AI applications of OUS are not available 
in the literature, our algorithm delivered results that were 
similar to other modalities of posterior segment evaluation. 
Li et  al.[8] introduced a deep learning system for predicting 
retinal detachment from ultrawidefield fundus camera fundus 
images and found a sensitivity of 96.1%, specificity of 99.6%, 
and an AUROC of 0.989 (95% CI: 0.978–0.996). Additionally, 
Ohsugi et al.[11] developed DLA software with 98% sensitivity 
and 97% specificity for detecting retinal detachment based 
on ultrawidefield fundus photographs. These studies used 
fundus photographs and were limited to the analysis of retinal 
detachment, while our model utilized OUS and studied multiple 
VRA types. In spite of this, our model had a comparable 
sensitivity to the  Li et al. model (97.4% vs. 99.6%, respectively) 
and  Ohsugi et al. model  (97.4% vs. 97.6%, respectively) in 
detecting abnormalities in the setting of retinal detachment.

While analyzing the true‑positive and false‑negative images, 
the model performed effectively and predicted abnormalities in 
images with vitreous hemorrhage, retinal detachment, silicone 
oil in the posterior segment, and choroidal detachment, with 
sensitivities of 100, 97.4, 94.4, and 100%, respectively [Table 3]. 
On the other hand, the model performed poorly in detecting 
choroidal thickening; however, this is probably due to the 
limited number of images of this diagnosis in the training set.

This study has several limitations. First, the data set was 
limited by the novelty of this study and the lack of open source 
OUS data sets. Our own collection of OUS images included 
a greater proportion of normal cases than abnormal cases in 
the training set, leading to underexposure to some of the less 
common VRA. Second, although we used data sets from two 
distinct hospitals, all images were from individuals of South 
Asian descent, potentially limiting its applicability elsewhere. 
External validation of this data set across various ethnicities and 
geographic locations would test its broader applicability. Third, 
the aim of our model is not to identify the exact abnormality 
on OUS. The current version can only separate the abnormal 
OUS images from the normal OUS images. Future directions 
include developing separate algorithms for detecting most 
common OUS abnormalities in the future, potentially allowing 
for efficient triaging of cases that require specialty care.

Significant strengths of our study include its novel 
evaluation of OUS, a common, cost‑effective, and useful 
diagnostic test, and our DLA’s high accuracy in OUS image 
analysis. While additional work on this algorithm may improve 
its accuracy, we believe the present report provides a valuable 
start to AI analysis of OUS images. As a screening tool, this 
DLA may help in primary health care centers in rural regions 
in India and globally to enable telemedicine. Moreover, one of 
the major practical difficulties that occur with any AI module 
is the need for consistent internet connectivity.[12] We have 

Table 2: Contingency table comparing the results between 
our DLA and ground truth

Our DLA (diagnostic 
test) results

Clinical grading (ground 
truth) results 

Total

Abnormal Normal

Abnormal 197 6 203

Normal 20 198 218
Total 217 204 421

Figure 3: Area under the receiver operating curve for the deep learning 
algorithm

Table 3: Analysis of false‑negative and true‑positive 
results

Clinical condition Number of 
images tested 

Identified 
(%)

Missed 
(%)

Vitreous hemorrhage 137 137 (100) 0

Retinal detachment 38 37 (97.4) 1 (2.6)

Silicone oil filled globe 18 17 (94.5) 1 (5.5)

Choroidal detachment 5 5 (100) 0
Choroidal thickening 2 0 2 (100)
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designed our algorithm in such a way that it can work without 
internet connectivity  (offline), allowing its applicability in 
remote regions.

Conclusion
The DLA achieved high sensitivity (90.8% [95% CI: 86.1–94.3%]) 
and specificity  (97.1%  [95% CI: 93.7–98.9%]) to identify 
VRA on OUS. We believe that our algorithm may be useful 
for ophthalmic technicians and may improve the eye care 
standards in rural areas, where there is a lack of trained 
ophthalmologists and internet access.
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Figure 4: Heat maps highlighting regions with abnormalities detected using the DLA. (a) OUS of rhegmatogenous retinal detachment. (b) Heat 
map of DLA identifying the site of vitreoretinal abnormalities. (c) OUS of tractional retinal detachment. (d) Heatmap of DLA identifying the abnormal 
tenting of retina. (e) OUS of choroidal detachment. (f) Heatmap of DLA identifying the site of vitreoretinal abnormalities. (g) OUS of vitreous 
hemorrhage. (h) Heatmap of DLA identifying the site of vitreoretinal abnormalities
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