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Purpose:	We	 describe	 our	 offline	 deep	 learning	 algorithm	 (DLA)	 and	 validation	 of	 its	 diagnostic	 ability	
to	 identify	 vitreoretinal	 abnormalities	 (VRA)	 on	 ocular	 ultrasound	 (OUS).	Methods:	 Enrolled	participants	
underwent	OUS.	All	images	were	classified	as	normal	or	abnormal	by	two	masked	vitreoretinal	specialists	(AS,	
AM).	A	data	set	of	4902	OUS	images	was	collected,	and	4740	 images	of	satisfactory	quality	were	used.	Of	
this,	 4319	were	processed	 for	 further	 training	 and	development	 of	DLA,	 and	 421	 images	were	graded	by	
vitreoretinal	specialists	(AS	and	AM)	to	obtain	ground	truth.	The	main	outcome	measures	were	sensitivity,	
specificity,	positive	predictive	value	(PPV),	negative	predictive	value	(NPV)	and	area	under	receiver	operating	
characteristic	(AUROC).	Results:	Our	algorithm	demonstrated	high	sensitivity	and	specificity	in	identifying	
VRA	on	OUS	([90.8%;	95%	confidence	interval	(CI):	86.1–94.3%]	and	[97.1%	(95%	CI:	93.7–98.9%],	respectively).	
PPV	and	NPV	of	the	algorithm	were	also	high	([97.0%;	95%	CI:	93.7–98.9%]	and	[90.8%;	95%	CI:	86.2–94.3%],	
respectively).	The	AUROC	was	high	at	0.939,	and	the	intergrader	agreement	was	nearly	perfect	with	Cohen’s	
kappa	of	0.938.	The	model	demonstrated	high	sensitivity	in	predicting	vitreous	hemorrhage	(100%),	retinal	
detachment	(97.4%),	and	choroidal	detachment	(100%).	Conclusion:	Our	offline	DLA	software	demonstrated	
reliable	 performance	 (high	 sensitivity,	 specificity,	AUROC,	 PPV,	 NPV,	 and	 intergrader	 agreement)	 for	
predicting	 VRA	 on	 OUS.	 This	might	 serve	 as	 an	 important	 tool	 for	 the	 ophthalmic	 technicians	who	 are	
involved	in	community	eye	screening	at	rural	settings	where	trained	ophthalmologists	are	not	available.
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The	demand	for	ophthalmic	care	continues	to	grow	globally	
as the aging population expands,[1,2] inviting a revolution with 
the	advent	of	artificial	intelligence	(AI).	Chronic	ophthalmic	
diseases	require	mass	screening	at	the	community	level	to	allow	
for	early	detection	and	potentially	better	quality	of	life,	posing	
an	immense	burden	on	the	healthcare	and	human	resources.	
The utility of imaging in ophthalmology makes it the ideal 
field	 to	potentially	benefit	 from	AI	applications.[3] This was 
evidenced	by	the	first	Food	and	Drug	Administration‑approved	
AI	project,	IDx‑DR,	which	is	an	algorithm	developed	to	screen	
diabetic	 retinopathy	 (DR).	Further	AI	 studies	have	 focused	
on	posterior	 segment	 images	 of	DR,	 age‑related	macular	
degeneration,	 and	 glaucoma,	 the	 three	 leading	 causes	 of	
irreversible	blindness	worldwide.

In	 settings	where	 the	 dense	 cataract	 or	 other	media	
opacity	 prevents	 a	 view	 of	 the	 posterior	 segment,	 ocular	
ultrasound	(OUS)	is	an	important	investigative	tool.	In	India,	
the	prevalence	of	mature	cataracts	is	high	at	7–10%,	making	OUS	
a	commonly	used	modality.[4]	The	ophthalmic	technicians	who	
are	routinely	involved	in	community	screening	at	rural	settings	
are	unable	to	assess	the	posterior	segment.	Furthermore,	the	
lack	of	consistent	internet	connectivity	in	rural	parts	of	India	
further	limits	teleophthalmic	consult	for	image	interpretation.	

These	obstacles	to	posterior	segment	evaluation	pose	a	risk,	
especially	in	the	setting	of	a	comprehensive	examination	prior	
to	 cataract	 surgery.	Visual	prognosis	 cannot	be	 adequately	
assessed	prior	to	surgery,	and	the	lack	of	complete	information	
prior	 to	surgery	can	potentially	 lead	 to	medicolegal	 issues.	
While	 fundus	photography	 is	 the	 subject	 of	 numerous	AI	
studies,[5‑8]	OUS	has	not	been	evaluated	by	AI.

Our	 study	 aimed	 to	 develop	 an	 offline	 deep	 learning	
algorithm	(DLA)	for	the	ophthalmic	technicians	to	identify	
multiple	vitreoretinal	abnormalities	(VRA)	on	OUS	as	normal	
or	abnormal.	This	might	be	a	value	addition	for	community	
eye	screening	done	by	ophthalmic	technicians.	Here,	we	report	
the development of our DLA strategy using two independent 
data sets, and its validation using 421 test images.

Methods
Our	study	was	designed	and	carried	out	at	two	major	tertiary	
eye	 care	 facilities	 in	South	 India	between	 January	2018	and	
December	2019.	The	study	adhered	to	the	tenets	of	Declaration	
of	Helsinki	and	approved	by	the	Institutional	Review	Board	of	
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Aravind Eye Hospital. Patients were enrolled with informed 
written	consent.

Data set
Patients	who	underwent	OUS	for	documentation	of	posterior	
segment examination prior to anterior segment surgery 
(including	cataract	surgery)	and	those	with	known	VRA	were	
recruited	to	participate	in	this	study.	The	OUS	imaging	for	all	
the	study	patients	was	done	by	two	fellowship‑trained	retina	
specialists	 (AM,	AS)	using	standardized	screening	protocol.	
Though	ultrasound	 imaging	 is	a	dynamic	process,	we	have	
considered	one	 representative	OUS	picture	per	 eye	 as	 the	
study	image	for	further	processing.	The	horizontal	axial	scan	
position	was	preferred;	 if	 this	 scan	was	not	 representative	
of	 the	 overall	 clinical	 picture,	 the	 scan	 position	which	
demonstrated	the	exact	VRA	was	the	designated	study	image.	
OUS	 images	were	 retrieved	directly	 from	 the	 ultrasound	
machine	 (Appasamy	Associates,	Gantec	Corporation,	 India/
same	machine	was	used	at	both	centers)	and	processed	further	
as	described	below.

A	data	 set	 consisting	of	 4902	 images	was	 collected	 from	
2486	patients	and	4740	OUS	images	of	satisfactory	quality	were	
used. The data set was further separated into a training set (4319 
OUS	 images)	and	validation	set	 (421	OUS	 images),	which	 is	
shown in Fig. 1.	The	sample	size	for	validation	set	was	calculated	
based	on	previous	literature	work	on	AI	related	to	DR.	Images	
were	placed	 in	 the	validation	set	 to	ensure	an	equal	number	
of	normal	and	abnormal	images.	The	training	set	images	were	
graded	by	two	fellowship‑trained	retina	specialists	(AM,	AS)	and	
reported	as	either	normal	or	abnormal.	Fig. 2a–c	demonstrates	
the	initial	clinical	grading	required	for	DLA	training.	The	final	
number	of	images,	features	assessed,	and	the	data	set	used	for	
training	and	validation	are	described	in	Table	1.

Data preprocessing
Automated	preprocessing	steps	were	applied	to	the	original	
images	to	make	these	images	suitable	for	training	the	DLA.	
These	steps	are	described	as	follows.	Images	were	downsized	
to	299	×	299	pixels	and	divided	by	255	to	scale	the	image	pixels	

to	a	 range	of	0–1.	 Image	augmentation	 including	change	 in	
orientation	 (horizontal	 or	 vertical	flip),	 rotation	up	 to	 45°,	
shifting	width,	height,	 sheer,	 and	zoom	 in	 the	 range	of	 ‑20	
to	+	20%	were	randomly	applied	during	training.	These	steps	
increased	the	diversity	of	the	data	set,	reducing	the	possibility	
of	overfitting	and	making	the	DLA	more	robust.

Machine learning architecture
We	 used	 an	 Inception‑ResNet‑V2	 architecture	 for	
classification.[9]	 Given	 our	 limited	 sample	 size,	we	 used	
transfer	learning	to	avoid	overfitting.	Transfer	learning	is	the	
reuse of deep learning models that are pretrained in large 
data	sets	like	the	ImageNet[10]	data	set	to	reduce	training	time	
and	maximize	 accuracy	despite	 a	 small	 data	 set.	We	used	
Inception‑ResNet‑V2	that	was	pretrained	on	ImageNet	and	a	
classifier	of	fully	connected	layers	was	added	to	separate	OUS	
images	into	normal	and	abnormal.

Python	programming	language	(http://www.python.org/)	
and	Keras	library	with	Tensorflow	backend	(https://keras.io/)	
were used to train the deep learning model. All training was 
done	using	NVIDIA	RTX	2080	graphics	processing	unit	with	
NVIDIA	cuda	(version	10.0)	and	cudnn	(version	7.6.5).

Input	to	the	network	consisted	of	4319	training	images.	The	
model	was	trained	with	multiple	epochs,	each	epoch	with	a	
batch	size	of	12,	with	a	learning	rate	of	0.001	with	an	ADAM	
optimizer,	which	minimizes	the	loss	function	(error	function).	
For	classification,	categorical	cross‑entropy	was	used.	Training	
was	stopped	when	the	loss	of	the	model	and	accuracy	in	the	
validation	images	decreased.	Greatest	accuracy	of	94.6%	was	
achieved	in	the	49th	epoch.

The	 heatmaps	 highlighting	 the	 regions	 in	 which	
abnormalities	were	detected	using	the	DLA	were	generated	
using	 the	Grad‑CAM	method	 for	 all	 true‑positive	 images.	
This	method	calculates	the	gradients	of	the	output	of	the	DLA	
network	with	respect	each	pixel	to	identify	pixels	that	have	the	
greatest	impact	on	the	prediction.	A	senior	retina	specialist	(PB)	
confirmed	 that	 heatmaps	were	 effective	 in	 highlighting	
abnormal	regions	in	OUS	images.

Ground truth
The	validation	data	set	of	421	deidentified	images	were	assessed	
separately	by	both	vitreoretinal	specialists	(AM,	AS)	for	ocular	
abnormalities	 shown	 in	Table	 1.	Based	on	 these	 structures,	
graders	 reported	 the	OUS	 image	 as	 normal	 or	 abnormal.	
Discrepancy	 in	 reporting	 between	 the	 two	 graders	was	
mutually	agreed	upon	and	adjudicated	result	was	considered	
as	 the	 ground	 truth.	Area	 under	 the	 receiver	 operating	
characteristic	 (AUROC),	 sensitivity,	 specificity,	 positive	
predictive	values	(PPV)	and	negative	predictive	values	(NPV)	
of	the	DLA	were	primary	outcome	measures.

Statistical plan
Data	 collection	 was	 performed	 in	 Microsoft	 Excel	
(Microsoft	 Corporation,	Washington,	US).	 The	 power	 of	
the study was set to 80%. P <	0.05	was	considered	to	reflect	
statistical	significance.	The	normality	of	the	study	was	assessed	
using	Kolmogorov–Smirnov	 test.	 The	AUROC	 curve	was	
obtained	by	plotting	true‑positive	rate	against	 false‑positive	
rate.	Intergrader	agreement	was	calculated	by	Cohen’s	kappa.	
Data	analysis	was	performed	using	Stata	version	14,	Statacorp,	
College	Station,	Texas.

Results
As	shown	in	the	flowchart	[Fig.	1],	we	collected	4850	OUS	
images	prospectively	and	excluded	110	ungradable	images.	

Tertiary Eye Hospital 1
2350 images

Tertiary Eye Hospital 2
2500 images

Excluded
110 images

Quality sufficient for
inclusion

2500 images

Quality sufficient for
inclusion

2240 images

Combined
4740 images

Train
4319 images

Test
421 images

Figure 1: Sample selection at Aravind Eye Hospital Pondicherry and 
Chennai
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The	4740	images	were	split	into	training	set	(4319	images)	
and	 validation	 set	 (421	 images),	 which	 are	 detailed	 in	
Table	1.

Of	the	421	images	tested	for	accuracy,	 the	DLA	software	
reported	203	abnormal	and	218	normal	OUS	images.	Findings	
are displayed in Table	2.	The	sensitivity	and	specificity	of	the	

Table 1: Assessed ocular abnormalities for training and validation data sets

Total no. of OUS images 4850
Total no. of gradable images 4740 (97.73%)

Parameters Features looked at for labeling normal vs abnormal Training data 
set (4319 eyes)

Validation data 
set (421 eyes)

Lens status Normal – no lens echo noted 2049 (47.4%) 206 (48.9%)

Normal – lens echo noted 1661 (38.4%) 148 (35.1%)

Normal – IOL reverberations noted 583 (13. %) 61 (14.4%)

Abnormal – Subluxated/dislocated lens/IOL 26 (0.6%) 6 (1.4%)

Vitreous dot echoes Normal – no dot echoes 706 (16.3%) 61 (14%)

Normal – mild dot echoes 2381 (55.1%) 219 (52%)

Abnormal – moderate echoes 633 (14.6%) 81 (19.2%)

Abnormal – plenty of dot echoes 588 (13.6%) 60 (14.2%)

Vitreous clump echoes Normal – no clump echoes 3830 (88.6%) 354 (84%)

Abnormal – clump echoes present 489 (11.3%) 67 (15.9%)

Vitreous membranous 
echoes

Normal – no membranous echoes 3589 (83.1%) 326 (77.4%)

Abnormal – single membranous echo present 479 (11.0%) 59 (14%)

Abnormal – two membranous echo present 220 (5.0%) 35 (8.3%)

Abnormal – multiple membranous echoes present 31 (0.7%) 1 (0.2%)

Attachment of 
membranous echo to disc

Normal – not attached 3870 (89.6%) 361 (85.7%)

Normal – point attachment (IPVD) 223 (5.1%) 21 (4.9%)

Abnormal – broad attachment (RD) 224 (5.1%) 39 (9.2%)

Retina Normal – attached 3952 (91.5%) 383 (90.1%)

Abnormal – detached 242 (5.6%) 38 (9.9%)

Choroid Normal – no choroidal detachment 4257 (98.5%) 416 (98.8%)

Abnormal ‑ choroidal detachment present 61 (1.4%) 5 (1.1%)

Retina choroid sclera Normal 4131 (95.6%) 401 (95.2%)

Abnormal – thickened 77 (1.7%) 9 (2.1%)

ST fluid Normal – absent 4290 (99.3%) 416 (98.8%)

Abnormal – present 28 (0.6%) 5 (1.1%)

T sign Normal – absent 4293 (99.4%) 416 (98.8%)

Abnormal – present 25 (0.5%) 5 (1.1%)
Final diagnosis Normal 2535 (58.6%) 204 (48.4%)

Abnormal (if any one of the above parameters was found to 
be abnormal, then the final diagnosis was termed abnormal)

1784 (41.3%) 217 (51.5%)

IPVD – incomplete posterior vitreous detachment, RD – retinal detachment, and ST – subtenon

Figure 2: Ocular ultrasound scan image showing (a) normal structures, (b) multiple vitreous dot echoes, and attached retina (c) detached retina

cba
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algorithm	to	 identify	a	posterior	segment	abnormality	were	
90.8%	(95%	CI:	86.1–94.3%)	and	97.1%	(95%	CI:	93.7–98.9%),	
respectively.	The	PPV	and	NPV	of	the	algorithm	were	high	at	
97.0%	(95%	CI:	93.7–98.9%)	and	90.8%	(95%	CI:	86.2–94.3%),	
respectively.	 The	AUROC	was	 high	 at	 0.939	 [Fig. 3]. The 
agreement	 between	 the	 two	masked	 clinical	 graders	was	
96.9%	(Cohen’s	kappa	0.9382, P <	0.001).	Analyses	performed	
on false‑negative and true‑positive images are shown in Table	3, 
which	demonstrate	the	range	of	abnormalities	found	on	OUS	
images	and	the	performance	of	the	model	in	detecting	these	
abnormalities.

To	visualize	how	the	DLA	makes	abnormal	predictions	from	
OUS	images,	heatmaps	were	generated	to	indicate	the	region	of	
abnormality.	Fig. 4	presents	examples	of	VRA	activation	maps,	
which	are	accompanied	by	the	corresponding	original	image.	
Heatmaps	effectively	highlighted	regions	of	the	abnormality.

Discussion
Our	DLA	with	 Inception‑Resnet‑V2	network	detected	VRA	
using	OUS	 images	with	high	sensitivity	and	specificity	and	

achieved	an	AUROC	of	0.939.	Our	approach	avoided	numerous	
example	 images	 for	model	 convergence	 by	 fine‑tuning	
the	weights	 of	 the	 Inception	Resnet	V2	model,	which	was	
pretrained	on	ImageNet	data	set.	To	our	knowledge,	our	study	
is	the	first	to	describe	the	use	of	AI	for	OUS	interpretation.	Our	
results	suggest	the	competence	of	our	algorithm	in	providing	
cost‑effective	and	objective	diagnostics	for	VRA,	reducing	the	
need	to	depend	on	vitreoretinal	specialists.	Additionally,	the	
ability	of	OUS	to	detect	VRA	in	the	setting	of	media	opacities	
make	it	especially	useful	as	compared	to	most	of	the	modalities	
currently	 studied	by	AI	 (including	ultrawide	field	 fundus	
images	and	optical	coherence	tomography	images).	Moreover,	
as	 this	 algorithm	can	perform	offline,	 it	may	be	 especially	
suitable	 for	 use	 in	 developing	 countries,	where	 internet	
connectivity	may	not	be	consistently	available.

Although	prior	AI	applications	of	OUS	are	not	available	
in the literature, our algorithm delivered results that were 
similar to other modalities of posterior segment evaluation. 
Li et al.[8]	 introduced	a	deep	 learning	 system	 for	predicting	
retinal	detachment	from	ultrawidefield	fundus	camera	fundus	
images	and	found	a	sensitivity	of	96.1%,	specificity	of	99.6%,	
and	an	AUROC	of	0.989	(95%	CI:	0.978–0.996).	Additionally,	
Ohsugi et al.[11] developed DLA software with 98% sensitivity 
and	97%	specificity	 for	detecting	 retinal	detachment	based	
on	ultrawidefield	 fundus	photographs.	These	 studies	used	
fundus photographs and were limited to the analysis of retinal 
detachment,	while	our	model	utilized	OUS	and	studied	multiple	
VRA	 types.	 In	 spite	 of	 this,	 our	model	 had	 a	 comparable	
sensitivity	to	the 	Li	et al.	model	(97.4%	vs.	99.6%,	respectively)	
and 	Ohsugi	 et al.	model	 (97.4%	vs.	 97.6%,	 respectively)	 in	
detecting	abnormalities	in	the	setting	of	retinal	detachment.

While	analyzing	the	true‑positive	and	false‑negative	images,	
the	model	performed	effectively	and	predicted	abnormalities	in	
images	with	vitreous	hemorrhage,	retinal	detachment,	silicone	
oil	in	the	posterior	segment,	and	choroidal	detachment,	with	
sensitivities	of	100,	97.4,	94.4,	and	100%,	respectively	[Table	3].	
On	the	other	hand,	the	model	performed	poorly	in	detecting	
choroidal	 thickening;	however,	 this	 is	probably	due	 to	 the	
limited	number	of	images	of	this	diagnosis	in	the	training	set.

This study has several limitations. First, the data set was 
limited	by	the	novelty	of	this	study	and	the	lack	of	open	source	
OUS	data	sets.	Our	own	collection	of	OUS	images	included	
a	greater	proportion	of	normal	cases	than	abnormal	cases	in	
the training set, leading to underexposure to some of the less 
common	VRA.	Second,	although	we	used	data	sets	from	two	
distinct	hospitals,	all	images	were	from	individuals	of	South	
Asian	descent,	potentially	limiting	its	applicability	elsewhere.	
External	validation	of	this	data	set	across	various	ethnicities	and	
geographic	locations	would	test	its	broader	applicability.	Third,	
the	aim	of	our	model	is	not	to	identify	the	exact	abnormality	
on	OUS.	The	current	version	can	only	separate	the	abnormal	
OUS	images	from	the	normal	OUS	images.	Future	directions	
include	developing	 separate	 algorithms	 for	detecting	most	
common	OUS	abnormalities	in	the	future,	potentially	allowing	
for	efficient	triaging	of	cases	that	require	specialty	care.

Significant	 strengths	 of	 our	 study	 include	 its	 novel	
evaluation	 of	OUS,	 a	 common,	 cost‑effective,	 and	 useful	
diagnostic	test,	and	our	DLA’s	high	accuracy	in	OUS	image	
analysis. While additional work on this algorithm may improve 
its	accuracy,	we	believe	the	present	report	provides	a	valuable	
start	to	AI	analysis	of	OUS	images.	As	a	screening	tool,	this	
DLA	may	help	in	primary	health	care	centers	in	rural	regions	
in	India	and	globally	to	enable	telemedicine.	Moreover,	one	of	
the	major	practical	difficulties	that	occur	with	any	AI	module	
is	 the	need	 for	 consistent	 internet	 connectivity.[12] We have 

Table 2: Contingency table comparing the results between 
our DLA and ground truth

Our DLA (diagnostic 
test) results

Clinical grading (ground 
truth) results 

Total

Abnormal Normal

Abnormal 197 6 203

Normal 20 198 218
Total 217 204 421

Figure 3: Area under the receiver operating curve for the deep learning 
algorithm

Table 3: Analysis of false-negative and true-positive 
results

Clinical condition Number of 
images tested 

Identified 
(%)

Missed 
(%)

Vitreous hemorrhage 137 137 (100) 0

Retinal detachment 38 37 (97.4) 1 (2.6)

Silicone oil filled globe 18 17 (94.5) 1 (5.5)

Choroidal detachment 5 5 (100) 0
Choroidal thickening 2 0 2 (100)
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designed	our	algorithm	in	such	a	way	that	it	can	work	without	
internet	 connectivity	 (offline),	 allowing	 its	 applicability	 in	
remote regions.

Conclusion
The	DLA	achieved	high	sensitivity	(90.8%	[95%	CI:	86.1–94.3%])	
and	 specificity	 (97.1%	 [95%	CI:	 93.7–98.9%])	 to	 identify	
VRA	on	OUS.	We	believe	that	our	algorithm	may	be	useful	
for	 ophthalmic	 technicians	 and	may	 improve	 the	 eye	 care	
standards	 in	 rural	 areas,	where	 there	 is	 a	 lack	 of	 trained	
ophthalmologists	and	internet	access.
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Figure 4: Heat maps highlighting regions with abnormalities detected using the DLA. (a) OUS of rhegmatogenous retinal detachment. (b) Heat 
map of DLA identifying the site of vitreoretinal abnormalities. (c) OUS of tractional retinal detachment. (d) Heatmap of DLA identifying the abnormal 
tenting of retina. (e) OUS of choroidal detachment. (f) Heatmap of DLA identifying the site of vitreoretinal abnormalities. (g) OUS of vitreous 
hemorrhage. (h) Heatmap of DLA identifying the site of vitreoretinal abnormalities
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