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Introduction
Cardiovascular diseases represent the leading cause of death 
worldwide, accounting for nearly 18 million deaths annually (1). 
The origins of cardiovascular disease are diverse, predominant-
ly because of the heart’s complexity and the necessity to deliver 
blood continuously over the course of a lifetime. Cardiac pathol-
ogy can arise from atherosclerotic vascular disease, obstructive 
coronary artery disease culminating in myocardial infarction 
(MI), rhythm abnormalities, valvular dysfunction, cardiac inflam-
mation, primary diseases of the cardiac muscle, and genetic dis-
orders (2). While these etiologies of cardiovascular dysfunction 
are heterogeneous, a unifying theme in the progression of near-
ly all forms appears to be the development of cardiac fibrosis. 
Pathological fibrotic remodeling involves changes in myocardial 
tissue caused by proliferation and activation of resident cardiac 
fibroblasts (CFs) and alteration of the extracellular matrix (ECM) 
composition. While structural collagen is essential for maintain-
ing physiological cardiac function, fibrosis represents pathological 
changes that correspond with worsened clinical outcomes (3).

The progression of fibrosis from physiological to pathological 
is perhaps best exemplified by myocardial ischemia and infarction, 
the most common cause of cardiovascular disease resulting from 
reduced perfusion of myocardial tissue. Cardiomyocytes, which 
generate the contractile force mediating cardiac output, require 
constant energy to maintain function and viability. However, when 

proper tissue perfusion is lost, cardiomyocytes are deprived of crit-
ical sources of energy production, resulting in cell death through 
either apoptosis or necrosis (4). Myocardial death leads initially 
to an inflammatory response where granulocytes, macrophages, 
and fibroblasts are recruited to the region of injury, an area that is 
ultimately replaced by secreted ECM proteins such as collagen to 
form scar tissue (5, 6). Reparative scar formation is beneficial in 
replacing dead cardiomyocytes, preventing myocardial rupture, 
and maintaining myocardial continuity. However, the replacement 
of cardiomyocytes with a fibrotic scar following infarction or other 
forms of cardiac injury reduces contractility and leads to regional 
or global systolic dysfunction (7). Fibrotic remodeling is also asso-
ciated with increased passive myocardial stiffness and the develop-
ment of diastolic dysfunction (DD), an essential contributor to the 
development of heart failure (HF) with preserved ejection fraction 
(HFpEF) (8), and can disrupt cardiac electrical conduction by slow-
ing action potential propagation, increasing the risk of arrhythmias 
and other conduction abnormalities (9).

Despite the substantial contributions of fibrotic remodeling to 
cardiac dysfunction in both HFpEF and HF with reduced ejection 
fraction (HFrEF), novel therapies to treat cardiac fibrosis have not 
emerged in the clinical realm. One principal limitation in the explo-
ration and implementation of antifibrotic therapies stems from the 
challenge of accurately quantifying fibrotic burden. While defini-
tive diagnosis of cardiac fibrosis by histology is possible, the obtain-
ing of cardiac tissue is limited to invasive endomyocardial biopsy 
or biopsy during cardiac surgery. Historically, cardiac imaging 
modalities have not been capable of quantifying cardiac fibrosis. 
For example, echocardiography, which represents the most com-
mon cardiac imaging technique, has not been able to accurately 
detect fibrosis. In addition, while previous efforts have attempted 
to correlate diastolic tissue Doppler with collagen deposition by 
histology, these techniques have not yet been widely adopted (10). 
Recent advances in magnetic resonance imaging (MRI) technolo-
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signaling pathways following cardiac injury, including the trans-
forming growth factor-β (TGF-β) pathway, as well as the adrener-
gic and angiotensin receptor systems (Figure 1). Below we review 
these traditional pathways and therapeutic targets.

TGF-β signaling pathway. The TGF-β family of peptides rep-
resents perhaps the most thoroughly investigated mediator of 
pathological fibroblast activation and fibrotic remodeling in the 
heart (15). TGF-β expression is markedly upregulated both in car-
diac injury models and in human HF patients (16, 17). Canonical 
TGF-β signaling involves activin receptor–like kinase 5 (ALK5) 
and the type II TGF-β receptor (TGFβR2) to mediate activation 
and nuclear translocation of the profibrotic transcription factors 
SMAD2 and SMAD3 (18). Recent seminal findings have revealed 
the critical role for the profibrotic cytokine TGF-β in mediating 
tissue fibrosis, implicating both TGF-β receptors and SMAD2/3 
as principal mediators of resident CF activation and pathological 
fibrotic remodeling (19). Furthermore, conditional deletion of 
TGFβR2 in activated myofibroblasts was shown to decrease car-
diac fibrosis in mouse models of genetic cardiomyopathy (20, 21), 
establishing a cell-autonomous role for TGF-β signaling in the con-
trol of fibrotic remodeling of the heart. Interestingly, while induc-
tion of expression of the secreted matricellular protein connective 

gy have allowed for quantification of myocardial ECM volume (11), 
a technique that has been validated by histological studies of left 
ventricular (LV) biopsies by Picrosirius red staining (12).

Understanding, mitigating, and reversing cardiac fibrosis 
represents a high-yield therapeutic approach for the treatment 
and prevention of cardiovascular diseases. Here, we provide an 
overview of classical regulators of cardiac fibrosis (Figure 1), and 
follow up with an examination of emerging, “next-generation” 
targets, with an emphasis on epigenetic regulators that we view 
as having high therapeutic potential (Figure 2). Other exciting 
advances in this field, such as those related to immune cell– and 
metabolism-based regulation of cardiac fibrosis, have recently 
been extensively reviewed elsewhere (13, 14).

Classical therapeutic targets for cardiac fibrosis
Cardiac fibrosis represents a common terminal pathway seen in 
diverse cardiac pathologies. The cardiac fibroblast is an essential 
myocardial cell type responsible for ECM homeostasis; howev-
er, stress and pathological stimulation invoke differentiation to a 
myofibroblast state characterized by increased deposition of ECM 
proteins, ultimately leading to cardiac fibrosis and dysfunction 
(3). The cardiac myofibroblast can be activated via numerous cell 

Figure 1. Classical signaling pathways regulating CF activation and approaches for targeting fibrosis of the heart. Numerous signaling pathways have 
been implicated in the regulation of CF activation and fibrotic remodeling. Therapeutic targeting of these pathways is of intense scientific and clinical 
interest. TGF-β stimulation of the TGF-β receptor (TGFβR) drives fibroblast activation canonically through SMAD2/3 activation and nuclear translocation, 
or non-canonically by inducing TGF-β–activated kinase 1–mediated (TAK1-mediated) phosphorylation of p38. While activation of the β2-adrenergic recep-
tor (β2-AR) is thought to be antifibrotic through induction of cAMP production and activation of exchange protein directly activated by cAMP (EPAC), this 
signaling can be uncoupled through GPCR kinase 2–mediated (GRK2-mediated) or GRK5-mediated receptor phosphorylation. β3-AR agonists, such as mira-
begron, may ameliorate fibroblast activation through yet unknown mechanisms. Angiotensin II (Ang II) mediates fibroblast activation through stimulation 
of the Ang II type 1 receptor (AT1R), by both promoting TGF-β production and inducing systemic release of the mineralocorticoid aldosterone from the 
adrenal cortex. Induction of cGMP-dependent protein kinase (PKG), through either B-type natriuretic peptide–mediated (BNP-mediated) activation of type 
A and B natriuretic peptide receptors (NPR-A/B) or stimulation of soluble guanylate cyclase (sGC) by nitric oxide (NO), has also demonstrated antifibrotic 
properties. Established and investigatory therapeutic strategies targeting these pathways are listed below. ACE, angiotensin-converting enzyme; ARB, 
angiotensin receptor blocker.
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this regard, non-canonical TGF-β signaling, 
predominantly mediated by TGFβR2, induc-
es activation of TGF-β–activated kinase 1 
(TAK1) (26), which represents an attrac-
tive therapeutic target as its inhibition has 
revealed potential antifibrotic effects on 
TGF-β–induced fibroblast ECM production 
(27). Further downstream, p38α functions 
as a nodal regulator of CF differentiation, 
in part through its ability to drive profibrot-
ic epigenetic regulatory factors to distinct 
genomic loci (see below). Together, the data 
suggest that targeted inhibition of p38 may 
represent a viable therapeutic approach to 
attenuate myofibroblast activation and fibro-
sis in response to ischemic injury (28–30).

Pirfenidone is an FDA-approved med-
ication for the treatment of idiopathic pul-
monary fibrosis (IPF), which is thought 
to mediate its effects through a reduction 
in oxidative stress and TGF-β expression. 
While the clinical effects of pirfenidone in 
treating IPF are controversial, a pooled data 
analysis of randomized clinical trials does 
reveal clinical benefit (31). In animal models 
of cardiac fibrosis, pirfenidone was shown 
to reduce atrial fibrosis, limit fibrotic expan-
sion after infarction, and attenuate hyper-
tension-induced cardiac fibrosis (32–34). In 
the PIROUETTE clinical trial, in which 47 
HFpEF patients were randomized to receive 
either pirfenidone or placebo, pirfenidone 
treatment led to a 1.2% decrease in cardiac 
fibrosis, as determined by MRI assessment 
of myocardial extracellular volume, but did 
not improve diastolic function (35); these 
modest cardioprotective effects are poten-
tially due to redundancy of TGF-β signaling 
with other pathways that induce pathological 
fibrotic remodeling and dysfunction, includ-

ing the adrenergic and angiotensin systems. These data establish 
a roadmap for using MRI to assess efficacy of antifibrotic therapies 
for the heart, but also highlight the need to develop more robust 
interventions to reverse fibrosis and improve clinical outcomes.

Adrenergic receptor system. Changes in cardiac physiology in 
response to stress and reduced cardiac output lead to systemic and 
local activation of neurohormonal pathways, which are activated 
to maintain circulatory homeostasis in the setting of cardiac dys-
function and decreased perfusion (36). One important pathway 
involves activation of the sympathetic nervous system and endog-
enous release of norepinephrine, a potent, nonselective adrener-
gic receptor (AR) agonist that stimulates α-ARs in the peripheral 
vasculature to increase blood pressure, and binds β1-ARs in car-
diomyocytes to increase inotropy and chronotropy. These effects 
are beneficial acutely in increasing cardiac output and maintain-
ing adequate blood pressure. However, chronic sympathetic acti-
vation becomes maladaptive, and pharmacological blockade of  

tissue growth factor (CTGF) has historically been recognized in 
response to TGF-β stimulation, it now appears as though CTGF is 
not a major TGF-β effector in the regulation of tissue fibrosis, and 
unlikely represents a viable therapeutic target (22).

As major players in driving myofibroblast differentiation and 
pathological ECM deposition, TGF-β and its receptors remain 
attractive therapeutic targets to combat cardiac fibrosis (23). 
For example, pharmacological inhibition of ALK5 was recently 
demonstrated to dedifferentiate cultured cardiac myofibroblasts 
isolated from failing explanted hearts of transplant recipients, 
indicating the potential translational feasibility of this approach 
for ameliorating cardiac fibrosis in human HF patients (24). How-
ever, cardiovascular toxicities were recently observed upon gen-
eral inhibition of the pathway with a TGF-β neutralizing antibody 
in healthy monkeys (25), suggesting that a more refined approach 
will be needed to safely inhibit TGF-β signaling to treat human 
cardiac fibrosis, such as by targeting downstream effectors. In 

Figure 2. Epigenetic regulation of CF activation and next-generation therapeutic strategies. (A) 
The most notable histone acetyltransferase (HAT) in the control of cardiac fibrosis is p300, which 
mediates acetylation of histone tail lysine residues in enhancers and super-enhancers that control 
expression of profibrotic genes. p300 has a bromodomain, which mediates binding of the enzyme 
to acetyl-histones in chromatin. Bromodomain-containing protein 4 (BRD4) also binds acetyl-his-
tones and initiates a profibrotic gene program by activating RNA polymerase II (RNA Pol II). (B) 
The small-molecule acetyl-lysine mimic JQ1 binds the bromodomains of BRD4 to displace it from 
chromatin, thereby attenuating profibrotic gene expression. Similarly, CBP30 inhibits the p300 
bromodomain, while A-485 inhibits p300 catalytic activity. Pharmacological inhibition of histone 
deacetylases (HDACs) using compounds such as ITF2357/givinostat creates spurious acetyl-his-
tone marks, resulting in mislocalization of p300 and BRD4 in the cardiac fibroblast genome, with 
resulting disruption of the profibrotic gene program. (C) In activated CFs, BRD4 associates with an 
enhancer element approximately 65 kb downstream of the gene encoding a homeobox transcrip-
tion factor, Meox1. Enhancer-bound BRD4 loops to associate with the Meox1 promoter, resulting in 
stimulation of its expression and initiation of a profibrotic gene expression cascade. 
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characteristics, including elevated cellular proliferation, migra-
tion, and ECM synthesis. These effects are secondary to Ang II–
mediated stimulation of the Ang II type 1 receptor (AT1R) (61–63), 
and Ang II’s promotion of TGF-β production in CFs (64).

The benefits of RAAS inhibition in the treatment of HF and 
prevention of adverse remodeling have been convincingly doc-
umented in animal studies as well as human clinical trials. Pre-
vention of Ang II production in patients with HFrEF using ACE 
inhibitors (ACEIs) reduced hospitalization and all-cause mortal-
ity (65). While ACEIs exhibit several salutary effects, including a 
reduction in blood pressure, there is evidence supporting a direct 
role in reducing fibrotic tissue burden (66). Similarly, attenua-
tion of Ang II signaling can be achieved using angiotensin recep-
tor blockers (ARBs), which reduce CF activation and block car-
diac fibrosis following ischemic insult (67). Interestingly, while 
global ablation of the Ang II type 1A receptor is cardioprotective 
following acute MI (68), direct activation of AT1R in cardiomy-
ocytes has only a minimal impact on cardiac hypertrophy (69), 
suggesting a more important role for this receptor in cardiac non-
myocytes; these data are corroborated by studies demonstrating 
a reduction in aortic fibrosis in mice lacking AT1R in fibroblasts 
(70). Clinical trials have also demonstrated improved cardiovas-
cular-related mortality and hospital admissions in patients with 
HFrEF treated with ARBs (71).

More recently, ARB treatment in combination with a nepri-
lysin inhibitor (NI), which slows degradation of natriuretic pep-
tides, has been shown to function synergistically to reduce fibrosis 
after experimental ischemic injury (72). Clinically, ARB and NI 
treatment reduces circulating biomarkers of cardiac fibrosis (73), 
and was shown to improve outcomes in human patients compared 
with treatment with ACEIs (74), leading to the FDA approval of 
sacubitril/valsartan. Multiple lines of evidence have demonstrat-
ed that B-type natriuretic peptide (BNP), the levels of which are 
increased by NI treatment, possesses antifibrotic properties via 
stimulation of its receptors, NPR-A and NPR-B, with consequent 
activation of cGMP-dependent protein kinase (PKG) (75). In line 
with this protective mechanism, vericiguat (76), which elevates 
cGMP by functioning as a soluble guanylate cyclase (sGC) stimu-
lator, was recently approved for the treatment of HFrEF.

Ang II also promotes cardiac fibrosis indirectly via AT1R acti-
vation within the adrenal cortex, inducing systemic release of 
the mineralocorticoid aldosterone (36). Aldosterone levels are 
significantly elevated in patients with cardiac dysfunction, lead-
ing to increased reabsorption of sodium in the distal convoluted 
tubule. Aldosterone also possesses direct profibrotic effects in the 
myocardium, where it induces fibrotic remodeling via activation 
of mineralocorticoid receptors in CFs (77, 78). Interestingly, the 
profibrotic effects of aldosterone persist even when the angioten-
sin system is deactivated, suggesting independent aldosterone- 
mediated fibrosis (79). Inhibition of aldosterone signaling using 
the mineralocorticoid receptor antagonists spironolactone and 
eplerenone has revealed potential antifibrotic effects clinically. 
The RALES trial, a placebo-controlled study in HFrEF patients, 
demonstrated a reduction in mortality and hospitalizations fol-
lowing spironolactone administration (80). Furthermore, spirono-
lactone treatment corresponded with reduced serum markers of 
fibrosis and collagen synthesis (81).

β1-ARs remains the most proven therapy for the treatment of HF 
and prevention of adverse remodeling (37–39).

In contrast to the β1-AR, signaling via the β2-AR, which appears 
to be the dominant isoform in CFs, promotes antifibrotic effects, 
at least in part by activation of exchange protein directly activated 
by cAMP (EPAC) (40, 41). However, while acute β2-AR activation 
is a potent inhibitor of collagen synthesis in healthy CFs, myofi-
broblasts isolated from patients with HF appear to be resistant to  
β2-AR agonists, most likely because of receptor uncoupling as a 
result of elevated GPCR kinase 2 (GRK2) activity (42–44). Tar-
geting GRK2 activity became an attractive antifibrotic strategy 
following the discovery that its inhibition, pharmacologically 
with paroxetine (45), or via viral delivery of a peptide inhibitor 
(βARKct) (46), conferred significant protection against cardiac 
dysfunction and myocardial fibrosis in numerous animal models 
of HF. Subsequent studies using genetic ablation of GRK2 specifi-
cally in the CF population revealed potent antifibrotic effects in a 
murine ischemia/reperfusion model of cardiac injury (47, 48), as 
well as attenuation of myofibroblast differentiation by pharma-
cological inhibition with gallein (48). The role of GRK5 in cardiac 
fibrosis has also recently been explored, providing evidence that 
genetic ablation as well as inhibition using an amino-terminal 
domain peptide inhibitor (GRK5nt) possesses potential antifibrot-
ic properties (49). Manipulation of GRKs, as they relate to adren-
ergic signaling in CFs, represents a promising therapeutic strategy 
to combat myocardial fibrosis.

Unlike β1- and β2-ARs, the β3-AR is thought to be resistant to 
desensitization because it lacks phosphorylation sites for GRKs 
(50). β3-AR expression is low in nonfailing hearts but is upregulat-
ed in response to pathological stress (37, 51–53). Initial evidence of 
the cardioprotective properties of β3-AR signaling was provided by 
the demonstration that mice lacking this receptor developed exac-
erbated cardiac remodeling in response to transverse aortic con-
striction (TAC) due, in part, to augmented nitric oxide synthase–
dependent oxidative stress (54). Conversely, β3-AR agonists block 
adverse remodeling in association with reduced cardiac fibrosis in 
models of pressure overload, MI, and DD (55–57). Based on the 
beneficial effects of stimulating β3-ARs in the heart, mirabegron, a 
β3-AR–selective agonist that is FDA approved for the treatment of 
overactive bladder, is being assessed for efficacy on LV mass and 
diastolic function in patients with structural heart disease (58). 
Future studies to address the mechanisms by which β3-AR ago-
nists ameliorate cardiac fibrosis are warranted, including examin-
ing whether the antifibrotic effects of β3-AR stimulation are due 
to direct effects on CFs versus indirect effects on cardiomyocytes, 
endothelial cells, or immune effectors.

Renin-angiotensin-aldosterone system. In chronic cardiac dys-
function, there is significant activation of the renin-angioten-
sin-aldosterone system (RAAS), which has a direct association 
with the development of cardiac fibrosis (59). As cardiac dysfunc-
tion progresses, decreased cardiac output causes a reduction in 
renal perfusion, stimulating release of renin from the juxtaglo-
merular apparatus (60). This release leads indirectly to the forma-
tion and systemic release of angiotensin II (Ang II) via angioten-
sin-converting enzyme (ACE). As the integral effector molecule of 
the RAAS, levels of Ang II are rapidly induced following cardiac 
injury, and it has been shown to promote numerous myofibroblast 
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ural product HAT inhibitor, which was shown to ameliorate peri-
vascular fibrosis in response to chronic hypertension or following 
MI (89, 90), as well as reduce ECM production in a high glucose–
induced myocardial fibrosis model (91). However, given the pleio-
tropic actions of curcumin, these data should be approached cau-
tiously. Synthetic p300 inhibitors, such as L002 and C646, have 
also been shown to block cardiac fibrosis (92–94), but these com-
pounds suffer from a lack of selectivity and potency, respectively.

More recently, through virtual screening and a subsequent 
medicinal chemistry optimization campaign, A-485, a potent and 
orally bioavailable small-molecule inhibitor that is highly selec-
tive for p300 and CBP, was developed (Figure 2B). A-485 has 
drug-like properties, providing an excellent opportunity to assess 
the efficacy of HAT inhibition in preclinical models of pathologi-
cal cardiac fibrosis, and thereby further address the translational 
potential of p300/CBP catalytic activity inhibition for the treat-
ment of HF in humans.

p300 and CBP have a single acetyl-lysine binding bromo-
domain that is required for chromatin targeting of the HATs (95, 
96). CBP112 and CBP30 have been developed as small molecules 
that target the p300/CBP bromodomain and function as acetyl- 
lysine competitive inhibitors (Figure 2B) (97, 98). Proteomics and 
transcriptomics were used to quantify acetylation as well as mRNA 
and protein abundance in mouse embryonic fibroblasts after cel-
lular p300 inhibition with A-485 versus CBP112 (99). Remark-
ably, gene expression changes triggered by CBP112 were modest 
compared with those observed upon catalytic inhibition of p300 
with A-485, suggesting that the HAT bromodomain is required for 
the regulation of only a subset of target genes. To our knowledge, 
p300/CBP bromodomain inhibitors have yet to be tested in mod-
els of cardiac fibrosis. However, the recent demonstration that 
CBP30 potently blocks activation of fibroblasts from patients with 
Dupuytren’s disease, a localized fibrotic disorder of the palm, sug-
gests antifibrotic potential of this approach (100).

Histone deacetylases. Seemingly paradoxically, inhibiting deacet-
ylation of histones by targeting histone deacetylases (HDACs) also 
blocks cardiac fibrosis. Mammalian HDACs are divided into four 
classes: class I (HDAC1, HDAC2, HDAC3, and HDAC8), class II 
(HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10), class 
III (SIRT1–7), and class IV (HDAC11). Class II is further subdivided 
into IIa (HDAC4, HDAC5, HDAC7, and HDAC9) and IIb (HDAC6 
and HDAC10). Class I, II, and IV HDACs are zinc-dependent, while 
class III HDACs (also known as sirtuins) use NAD+ as a cofactor 
for catalytic activity. We focus on the potential of inhibiting zinc- 
dependent HDACs for the treatment of cardiac fibrosis. Nonethe-
less, it should be noted that sirtuins clearly regulate fibrosis of the 
heart, but that their activity is generally cardioprotective (101, 102), 
and thus therapeutic strategies should likely focus on stimulating 
sirtuin activity. Consistent with this, enhancing sirtuin catalytic 
activity by providing animals with NAD precursors or by stimulat-
ing NAD biosynthesis was shown to improve diastolic function in 
murine models of HFpEF (103, 104).

The ability of “pan” inhibitors of zinc-dependent HDACs, such 
as the FDA-approved compound suberoylanilide hydroxamic acid 
(SAHA; vorinostat), to block cardiac fibrosis in MI, TAC, and genet-
ic models of systolic HF has been well documented and reviewed 
extensively (105, 106). More recently, it was shown that pan-HDAC 

Progressing beyond the classical regulators of cardiac fibrosis. 
Inhibitors of the adrenergic and angiotensin systems are, and 
will continue to be, a mainstay in the care of the ever-expand-
ing HF patient population. It is important to note, however, that 
while therapies targeting RAAS appear effective in reducing col-
lagen deposition, recent clinical trials have unfortunately failed to 
demonstrate benefit in the HFpEF patient population, suggesting 
an inability to broadly diminish profibrotic pathways (82, 83). In 
addition, despite evidence supporting the cardioprotective role of 
pirfenidone, there is an elevated risk of hepatotoxicity associated 
with prolonged treatment (84), efficacy of the compound in HFpEF 
patients is modest (35), and the molecular mechanism(s) of action 
of the compound remain obscure. These disappointing trials may 
suggest that clinical therapies should be tailored to address the 
specific etiology underlying cardiac disease, rather than seeking a 
“universal treatment” for cardiac fibrosis. One possibility for why 
promising treatments of HFpEF, such as antag onism of angio-
tensin and aldosterone, have been marginally successful is that 
beneficial effects may only be observed in a subset a patients in 
whom fibrosis is driven by the RAAS pathway. In patients who are 
resistant to such therapy, differential mechanisms regulating CF 
activation could be operative.

Targeting epigenetics as an antifibrotic 
therapeutic approach
Cardiovascular epigenetic mechanisms are rapidly gaining inter-
est for their contributions to the development of myocardial fibro-
sis and potential to serve as innovative therapeutic targets (85). At 
its core, epigenetics refers to modifications at the level of chroma-
tin, the basic unit of which is the nucleosome or histone octamer 
wrapped in DNA, which culminate in alterations in gene expres-
sion independent of changes to nucleotide sequence. While the 
modification varieties are numerous, classical epigenetic events 
such as acetylation and methylation have been extensively docu-
mented for their roles in the pathogenesis of cardiac fibrosis and 
myofibroblast activation (86). Epigenetic regulators are attractive 
therapeutic targets since they serve as key nodal points through 
which redundant upstream pathways, such as those emanating 
from the cell surface receptors described above, must transmit sig-
nals to elicit the gene program for CF activation. Indeed, pharma-
cological manipulation of several epigenetic modifying enzymes, 
along with cognate proteins that recognize these modifications 
and arbitrate differential gene expression, has been shown to mit-
igate pathological fibrotic remodeling of the heart.

Histone acetyltransferases. Acetylation of histone tail lysine 
residues is a posttranslational modification catalyzed by histone 
acetyltransferases (HATs). HATs have a profound impact on gene 
expression, in part by creating docking sites for transcriptional 
regulators and chromatin-modifying factors that contain acetyl- 
lysine binding modules, such as bromodomains (87). Among the 
28 human HATs (88), the isoform most highly implicated in the 
control of cardiac fibrosis is p300 (Figure 2A), along with the high-
ly related protein CREB-binding protein (CBP). Nevertheless, 
efforts to advance HAT inhibitors as a therapeutic strategy for car-
diac fibrosis have been hindered by the lack of potent and selec-
tive pharmacological inhibitors of p300. The earliest exploration 
of p300 inhibition in cardiac fibrosis employed curcumin, a nat-
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inhibition with the clinical-stage compound ITF2357/givinostat 
improved cardiac relaxation in murine models of hypertension- or 
aging-induced DD with preserved ejection fraction, and that SAHA 
was efficacious in a feline model of HFpEF due to slow, progressive 
ascending aortic banding (107–109). Surprisingly, in the murine 
models of DD, cardiac fibrosis was not observed by standard his-
tological readouts, such as Picrosirius red staining (107, 108), and 
improved diastolic function upon HDAC inhibition was attributed 
exclusively to augmented myofibril relaxation (107). However, fur-
ther evaluation of hearts of mice with DD revealed “hidden fibro-
sis,” a process in which increased ECM deposition and remodel-
ing were not detected by standard histological methods, but were 
uncovered by quantitative mass spectrometry and atomic force 
microscopy (AFM). This covert type of cardiac fibrosis was pro-
foundly inhibited by ITF2357/givinostat in a manner that correlated 
with improved diastolic function (108), implicating HDAC inhibi-
tion as a potential therapeutic strategy to combat HFpEF induced by 
pathological ECM remodeling and resulting ventricular stiffening.

Employing histological methods to assess the role of fibrosis 
in the pathogenesis of human HFpEF has yielded equivocal find-
ings. In one autopsy study, individuals with HFpEF were shown to 
have more pronounced cardiac fibrosis than control subjects (110), 
while in an independent study using endomyocardial biopsies from 
HFpEF patients with severe DD, approximately 30% of the samples 
examined did not have significant fibrosis (111). Reevaluation of 
these human and murine hearts, as well as additional samples from 
HFpEF patients and preclinical models, using ECM mass spectrom-
etry and AFM should more clearly define whether ECM expansion 
serves a generalizable role in the control of DD and HFpEF.

There are two pressing questions related to HDAC inhibitor–
mediated inhibition of cardiac fibrosis: (a) Which HDAC isoforms 
are profibrotic? (b) What are the molecular mechanisms by which 
these enzymes promote fibrosis? Regarding the first question, 
hydroxamic acid pan-HDAC inhibitors such as SAHA and givinos-
tat are far more effective at blocking the catalytic activity of class 
I and IIb HDACs than class IIa HDACs (112), which have catalytic 
domains but no known physiological substrates (113), or class IV 
HDAC11, which is a lysine defatty acylase as opposed to a deacety-
lase (114–116). While nothing is known about the cardiac function 
of HDAC10 (117), which is a spermidine deacetylase, knockout 
of HDAC6 had no effect on cardiac fibrosis (118), suggesting that 
class IIb HDACs are not generally profibrotic. Thus, class I HDACs 
are likely the targets of SAHA and givinostat that promote cardi-
ac fibrosis. Consistent with this, selective class I HDAC (HDAC1, 
-2, -3) inhibition with mocetinostat blocked cardiac fibrosis in 
response to chronic Ang II infusion in mice (119), and blunted pro-
gression of fibrosis in a chronic rat MI model, resulting in a reduc-
tion in LV end-diastolic pressure (120). Furthermore, in a 7-day 
model of mouse MI, induced by left anterior descending coro-
nary artery ligation, administration of the class I HDAC inhibitor 
PD-106 after MI resulted in reduced LV remodeling and improved 
cardiac function at study endpoint, with concomitant suppression 
of matrix metalloproteinase-2 and -9 expression (121).

It remains possible that other HDAC isoforms serve profibrot-
ic roles in the heart that have gone unnoticed owing to reagent lim-
itations. In this regard, new, highly selective inhibitors of class IIa 
HDACs or HDAC11 catalytic domains have been developed, and 

should be employed to assess the roles of these obscure HDACs in 
the control of cardiac fibrosis (122, 123).

Surprisingly little is known about the molecular mechanisms 
by which HDAC inhibitors block cardiac fibrosis. Class I HDAC 
inhibition has been shown to suppress CF proliferation by pre-
venting retinoblastoma protein (Rb) phosphorylation, thereby 
preventing expansion of ECM-producing myofibroblasts (119). 
Class I HDAC inhibition was also shown to stimulate expression 
of antifibrotic microRNA-133 (miR-133), leading to suppression 
of TAC-mediated cardiac fibrosis in mice (124). More recently, 
suppression of CF activation by HDAC inhibition was linked to 
mislocalization of the chromatin “reader” protein bromodomain- 
containing protein 4 (BRD4) (see below) (108).

Bromodomain and extraterminal proteins. The bromodomain 
and extraterminal (BET) family of proteins, BRD2, BRD3, BRD4, 
and BRDT, associate with acetylated lysine residues of histones 
to regulate gene transcription. BRD4 and BRDT (testis-specific)  
possess carboxy-terminal domains capable of activating RNA 
polymerase II (Pol II) through the positive transcription elonga-
tion factor (P-TEFb) complex to initiate gene transcription (125, 
126). While several small-molecule inhibitors of BET proteins 
have been developed, the best characterized is JQ1, an acetyl- 
lysine mimetic that competitively displaces BET bromodomains 
from chromatin, resulting in suppression of Pol II–mediated tran-
scription (Figure 2B) (127). JQ1 prevented several hallmarks of HF, 
including cardiomyocyte hypertrophy, cardiac fibrosis, and sys-
tolic dysfunction, in a mouse model of TAC (128, 129), and in a 
model of genetic dilated cardiomyopathy caused by a mutant form 
of phospholamban (PLNR9C) (130). Furthermore, administration 
of JQ1 in a therapeutic mode after the heart had remodeled also 
attenuated cardiac dysfunction both in the murine TAC model and 
in post-MI cardiac remodeling in mice (131).

Integrated transcriptomic analyses across rodent HF models 
and human induced pluripotent stem cell systems have clearly 
revealed that BET inhibition suppresses transactivation of a broad 
profibrotic and proinflammatory gene program in the heart (131). 
Mechanistically, BRD4 is known to contribute to the formation 
of dynamic, cell state–specific enhancers, referred to as super- 
enhancers (SEs). BRD4 disproportionately associates with acetyl- 
H3K27–containing SEs, which are thought to signal proximal pro-
moters to stabilize BRD4-containing coactivator complexes near 
transcription start sites, and thereby facilitate P-TEFb–mediated 
Pol II phosphorylation and transcription elongation (132–134). 
In CFs, TGF-β signaling targets BRD4 binding to discrete SEs in 
a p38 kinase–dependent manner, providing a circuit for coupling 
extracellular cues to the cardiac epigenome to drive profibrotic 
gene expression (135). Subsequent studies, using single-cell tech-
nologies, identified distal regulatory elements in CFs that had 
increased chromatin accessibility after TAC that were closed upon 
JQ1 treatment (136). One of the most highly regulated elements 
was a large enhancer downstream of the gene encoding Meox1, 
a homeodomain-containing transcription factor whose expres-
sion was highly upregulated in myofibroblasts after TAC and sup-
pressed by JQ1. Regulation of Meox1 expression in CFs involved 
TAC-inducible association of the Meox1 promoter with BRD4 
bound to this enhancer region, which is located approximately 65 
kb downstream (Figure 2C). Follow-on studies with cultured CFs 
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established a new role for Meox1 as a profibrotic transcription fac-
tor in the heart. Thus, these studies uncovered a stress-inducible, 
BRD4-dependent, long-range chromatin interaction as an import-
ant, druggable regulator of cardiac fibrosis.

A recent study determined chromatin quantitative trait loci in 
human hearts by assessing H3K27 acetylation by ChIP-Seq and 
follow-up chromatin conformation assays (137). The work iden-
tified 62 putative enhancers with increased H3K27 acetylation 
enrichment, corresponding gene expression differences, and over-
lap with published subthreshold GWAS hits, suggesting potential 
disease and phenotype association. Given the propensity of BRD4 
to associate with acetyl-H3K27, it is intriguing to speculate that 
BET inhibitors could target these loci to block HF pathogenesis.

BRD4 may also regulate cardiac fibrosis by mediating cross-
talk between myocytes and fibroblasts or other nonmyocyte pop-
ulations in the heart. ChIP-Seq studies revealed that, in addition 
to controlling pro-growth genes, many of the BRD4-enriched SEs 
identified in cardiomyocytes were associated with profibrotic 
genes, including those encoding the secreted factors CTGF, plas-
minogen activator inhibitor-1 (PAI-1/Serpine1), and TGF-β2 (138). 
These findings suggest the possibility that BRD4 signaling in car-
diomyocytes regulates expression of paracrine factors that acti-
vate fibroblasts and other stress-activated cell types in the heart to 
elicit fibrotic remodeling.

BET proteins contain tandem bromodomains, BD1 and BD2, 
which are simultaneously targeted by inhibitors such as JQ1. 
Emerging evidence exploring other inhibitors, such as the BD2- 
selective inhibitor apabetalone, suggests that inhibiting one BRD4 
bromodomain over the other may improve the overall safety pro-
file for HF patients requiring chronic therapy. Indeed, apabetalone 
is the only BET inhibitor to be tested in a phase III trial for any 
indication, being assessed for its ability to reduce major cardiovas-
cular events in more than 2400 individuals with combined acute 
coronary syndrome (ACS), type 2 diabetes (T2D), and low LDL 
levels. While apabetalone failed to diminish ischemic cardiovas-
cular events in this patient population, the BD2-selective inhibitor 
was found to be well tolerated, and secondary subgroup analyses 
revealed a reduction in hospitalizations for HF in patients with 
T2D and recent ACS (139), and fewer HF-related hospitalizations 
in patients with chronic kidney disease and T2D (140). Thus, the 

feasibility of safely targeting BRD4 as a therapeutic strategy for 
cardiovascular disease is established.

How is it that inhibition of HATs, HDACs, or BET proteins 
results in inhibition of CF activation? Clearly there is crosstalk 
between these epigenetic regulatory factors (Figure 2B). HAT activ-
ity is required to create acetyl-marks at profibrotic enhancers that 
are subsequently bound by BRD4. Furthermore, there is evidence 
demonstrating that HDAC inhibition, which creates spurious ace-
tyl-histone marks, results in mislocalization of BRD4 in the CF 
genome (108) and prevents HATs from properly acetylating certain 
gene regulatory elements in the heart (141), which may also involve 
altering genomic targeting of bromodomain-containing HATs.

Only the tip of the epigenetics iceberg. We have focused much 
of this Review on a single epigenetic modification, acetylation, 
and a small number of regulators of the posttranslational modi-
fication. However, it is important to note that other mediators of 
the epigenome have been shown to regulate fibrosis of the heart. 
For example, genetic ablation or pharmacological inhibition of the 
K3K9me2-specific demethylase KDM3a was shown to diminish 
collagen deposition in the mouse TAC model (142), and myofi-
broblast-specific ablation of lysine-specific demethylase 1 (LSD1/
KDM1) was found to alleviate systolic dysfunction and fibrosis in 
the TAC model by broadly interdicting pathological TGF-β1 sig-
naling (143). Furthermore, the vast majority of epigenetic regula-
tory factors have yet to be studied in the context of cardiac fibrosis 
and HF, underscoring a deep reservoir for basic and translational 
research discoveries that have the potential to profoundly impact 
patients suffering from various cardiovascular diseases.

It is our view that the most expeditious path forward is to blend 
genetic and pharmacological, “chemical biology” approaches. 
In this regard, exhaustive and sophisticated medicinal chemistry 
programs in industry and academia have led to the development of 
highly selective and potent inhibitors of a wide array of epigenetic 
targets, and many of these compounds are available to the scien-
tific community through programs such as the Structural Genom-
ics Consortium (144). Coupling the use of these compounds with 
well-validated ex vivo phenotypic assays and in vivo models of 
cardiac fibrosis has the potential to rapidly uncover novel roles for 
epigenetic regulators in the control of HF, providing crucial mech-
anistic insights, and to advance lead compounds into in vivo effi-

Figure 3. Discovering the next generation of antifibrotic epigenetic inhibitors for the heart. Proposed model for expeditiously uncovering novel 
epigenetics-based therapeutics targeting fibroblast activation and cardiac fibrosis. The recent development of highly selective and potent inhibitors of 
myriad epigenetic targets has laid a strong foundation for therapeutic investigation using ex vivo, imaging-based phenotypic screening and subsequent 
exploration in in vivo models of cardiac fibrosis and HF. Given the existence of “hidden fibrosis,” histological assessment of fibrotic remodeling of the heart 
should be complemented with techniques such as ECM mass spectrometry, atomic force microscopy (AFM), and single-cell RNA sequencing. We envision 
that these approaches will allow desperately needed therapeutic strategies targeting myofibroblast activation and fibrotic remodeling to finally bridge the 
gap to the clinical realm.
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there remains a critical need to pursue novel therapeutic strate-
gies targeting fibroblasts and fibrotic remodeling. A considerable 
amount of research effort is now dedicated to exploring myriad 
exciting and promising lines of investigation to combat cardiac 
fibrosis, including expansion of classical regulators of fibrosis as 
well as more novel strategies in the area of epigenetics. Further-
more, incredible technological advancements in our ability to 
probe complex cellular systems and screen compound libraries for 
antifibrotic agents will undoubtedly prove instrumental in driving 
this field forward. Innovative therapeutic interventions targeting 
cardiac myofibroblasts and the pathological fibrotic remodeling 
they promote have high potential to lead to advancements in the 
treatment of human cardiovascular diseases.
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cacy go/no-go experiments in the march toward the clinic (Figure 
3). However, we acknowledge that this stance could be viewed as 
“old school,” since we have not touched on other exciting thera-
peutic modalities, such as gene editing, RNA, or antibody thera-
pies, or the promising discovery that chimeric antigen receptor T 
cells engineered to specifically target activated fibroblasts are able 
to reduce cardiac fibrosis in a mouse model (145).

Finally, identification of the optimal therapeutic window for 
targeting cardiac fibrosis will be paramount for effective treat-
ment. First, premature disruption of reparative scar formation 
holds significant risk for cardiac rupture, as is observed when 
physiological fibroblast function is disturbed too abruptly follow-
ing infarction (146–148). Similarly, a key therapeutic concern for 
antifibrotic therapies relates to ECM maturity, specifically the 
point in a disease process at which the matrix has become so heav-
ily cross-linked that it is potentially no longer degradable. At least 
in regard to cell therapy, there exists a “point of no return” follow-
ing ischemic injury when the infarct scar has reached a mature 
state and the cardioprotective effects may no longer be possible 
(149). In this regard, in addition to targeting fibroblast activation 
and ECM deposition, approaches aimed at enhancing turnover of 
the fibrotic matrix in the heart should also be pursued.

Conclusions
While standard-of-care medications have proven invaluable in the 
fight against cardiovascular diseases over the last several decades, 
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