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Abstract

Content-based medical image retrieval continues to gain attention for its potential to assist radiological image
interpretation and decision making. Many approaches have been proposed to improve the performance of medical image
retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these
features are concatenated into a long vector to represent medical images, and thus traditional dimension reduction
techniques such as locally linear embedding (LLE), principal component analysis (PCA), or laplacian eigenmaps (LE) can be
employed to reduce the ‘‘curse of dimensionality’’. Though these approaches show promising performance for medical
image retrieval, the feature-concatenating method ignores the fact that different features have distinct physical meanings.
In this paper, we propose a new method called multiview locally linear embedding (MLLE) for medical image retrieval.
Following the patch alignment framework, MLLE preserves the geometric structure of the local patch in each feature space
according to the LLE criterion. To explore complementary properties among a range of features, MLLE assigns different
weights to local patches from different feature spaces. Finally, MLLE employs global coordinate alignment and alternating
optimization techniques to learn a smooth low-dimensional embedding from different features. To justify the effectiveness
of MLLE for medical image retrieval, we compare it with conventional spectral embedding methods. We conduct
experiments on a subset of the IRMA medical image data set. Evaluation results show that MLLE outperforms state-of-the-
art dimension reduction methods.
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Introduction

Medical image interpretation is a procedure which requires high

accuracy. Currently, radiologists rely on both knowledge and

heuristics to accomplish this procedure [1]. As a result of

perceptual, training and fatigue differences among radiologists,

there are variations in the interpretations made by different

personnel to the same image [2–4]. Moreover, with the wide

deployment of modern medical imaging devices in hospitals, large

numbers of medical images are produced every day, placing an

additional burden on radiologists. On one hand, they have to

render accurate diagnoses for each image; on the other, they have

to interpret large amounts of medical images within a limited time

frame [4].

To tackle these challenges, content-based image retrieval

(CBIR) has been introduced into the radiology interpretation

routine in recent years [4–11]. CBIR employs visual descriptors to

represent medical images, and machine learning techniques to

retrieve and compare those images. For a given query image, the

technique of contend based medical image retrieval (CBMIR) aims

to find its visually similar and semantically relevant counterparts

by retrieving samples from a given medical image archive. In the

context of CBMIR, medical image is usually represented as vector

with attributed features. Then similarity between two medical

images is measured by distance between the corresponding feature

vectors. This helps radiologists to efficiently extract similar cases

from a variety of archives, thus providing assistance with medical

image interpretation and decision making.

Similar to CBIR, CBMIR faces two basic issues: using

discriminative visual features to represent medical images and

assessing similarity among images represented in the feature space.

This paper focuses on the former issue.

By contrast with images in other domains, most medical images

have gray values, and fine details are emphasized in the image

content [4]. A single feature therefore cannot cover all the details

of a medical image. Following this observation, many visual

features have been simultaneously employed to reveal different

aspects of medical images. Dimitrovski et al. [12] extracted pixel

value, local binary pattern (LBP) [13], edge histogram descriptor

[14] and SIFT features [15] to represent medical images. Lehman

et al. [16] proposed an automatic medical image categorization

framework that combines four types of texture feature and one

intensity feature to represent medical images. Chen et al. [17]

extracted six textual features to represent ultrasound images. In

[18], Wu et al. recently extracted texture features and morpho-

logical features to classify ultrasound breast tumor images.

Moreover, Dy et al. [19] proposed a lung image retrieval method

based on 110 features. For a detailed review of features used in the
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medical domain, please refer to [4]. In this paper, we call these

visual features ‘‘multiview features’’.

With the increasing use of multiview features, medical CBIR

also suffers from the ‘‘curse of dimensionality’’. To reduce the

dimension of feature vectors, one conventional solution is to

concatenate these feature vectors into a long vector, and then use

traditional dimension reduction techniques, e.g., locally linear

embedding (LLE) [20], principal component analysis (PCA) [21]

or laplacian eigenmaps (LE) [22], to project the concatenated

vector to a low-dimensional subspace. Huang et al. [23] built a

computer-aided breast cancer diagnosis system using PCA to

project original high-dimensional textual features into a low-

dimensional feature space. Zhang et al. [24] proposed a brain

midsagittal plane image recognition system that employed PCA to

perform dimensionality reduction. Chen et al. [17] used PCA to

reduce the dimension of textural feature vectors extracted from

breast ultrasound images. In [25], Cho et al. employed linear

discriminant analysis (LDA) to perform feature selection. Although

these solutions have achieved promising results, there is room for

performance enhancement, because these methods coarsely

perform dimension reduction on all features and ignore the fact

that different features have wide-ranging physical meanings.

Recently, Bagci et al. [26] proposed a hybrid scheme for chest

radiological image feature selection. They first selected features

which could coarsely identify abnormal imaging patterns. Then

they refined the selected features to enhance prediction accuracy.

To solve these problems, and considering the complementary

properties of various features, we formulate a new method called

multiview locally linear embedding (MLLE) to represent medical

images in a low-dimensional feature space that is simultaneously

learned from multiview features. MLLE is proposed in the context

that multiview learning has received intensive attentions in the

machine learning community [27–35]. The key idea of MLLE

comes from patch alignment framework [36] and LLE. The patch

alignment framework unifies discrete spectral analysis-based

dimensionality algorithms in two stages: local patch construction

and whole alignment [36]. LLE constructs a local patch in the low-

dimensional space by preserving the patch’s linear reconstruction

relation in original space, whereas MLLE constructs local patches

from each feature space by preserving the geometric structure of

patches according to the LLE criterion. To explore the

complementary properties among multiview features, MLLE

assigns various weights to patches from different feature spaces.

Finally, MLLE uses global coordinate alignment [36,37] and

alternating optimization [38] techniques to learn a smooth low-

dimensional embedding from the multiview features. We present a

detailed evaluation of MLLE for CBMIR to demonstrate its

effectiveness. Compared to conventional dimension reduction

methods, e.g., PCA, LLE, LE, MLLE differs in the following ways:

1) MLLE uses LLE to obtain the optimal low-dimensional

subspace on each view, and 2) MLLE learns a smooth low-

dimensional global subspace by exploring complementary prop-

erties of each view.

To evaluate performance of the proposed MLLE, we conduct

experiments on an IRMA [39] coded medical image data set [40].

IRMA medical image coding system [39] is a mono-hierarchical

multi-axial classification standard for medical images. The system

classifies medical images from four orthogonal axes: imaging

modality, body orientation, examined body region and examined

biological system. IRMA coding system is applicable to medical

images obtained by different medical imaging techniques, which

include computed tomography (CT), digital radiography (DR),

magnetic resonance imaging (MRI), and positron emission

tomography (PET), etc.

Multiview Locally Linear Embedding

In this section, we detail the presented dimension reduction

algorithm, i.e., MLLE. To better present MLLE, we first explain

meanings of math notations used in this paper.

In the rest of this paper, X~fx1, � � � ,xNg denotes medical

image data set, which contains N medical images. Y denotes the

corresponding low-dimensional embedding of X : For each

medical image xi, i~1, � � � ,N, we extract V different low level

features to represent its visual content. Then we say that xi has V

different views:~xx1
i , � � �~xxv

i , � � � ,~xxV
i , where~xxv

i is the feature vector of

xi on the vth view. Accordingly, X has V different views:

X 1, � � � ,X v, � � � ,X V : Where X v~f~xxv
1, � � � ,~xxv

Ng is the feature

matrix of X on the vth view. X v
i ~f~xxv

i ,~xxv
i1, � � � ,~xxv

iKg represents

the local patch of xi built on the vth view, which contains Kz1
images. Where~xxv

i1, � � � ,~xxv
iK are K nearest neighbors of~xxi: Detailed

description of these math notations is listed in Table 1.

Table 1. Important notations used in this paper.

Notation Description Notation Description

X medical image dataset M local Gram matrix

Y dimension-reduced medical image dataset Mkt (k, t)th entry of matrix M

N size of medical image dataset X M21 inverse of matrix M

Xv feature matrix of X on vth view Lv
i local patch optimization of X v

i

X v
i ith patch on vth view Lv whole patch optimization of Xv

Y v
i X v

i low-dimensional embedding of V number of multiview features

x medical image contained in X ~cc contribution vector

~xxv
i feature vector of ith image on vth view Si selection matrix

mv dimension of vth feature space I identity matrix

~wwi reconstruction coefficient vector in LLE ~ddi
X v

i LLE reconstruction error in

K number of nearest neighbors ~ii Y v
i LLE reconstruction error in

d dimension of Y Rm m-dimensional Euclidean space

r scaling factor ~ff vector in Euclidean space

doi:10.1371/journal.pone.0082409.t001
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Local Patch Construction
Local patch construction on single view. Given a point

~xxi
v[X v, its local patch is defined as X v

i ~f~xxv
i ,~xxv

i1,

~xxv
i2, . . . ,~xxv

iKg[Rmv|fKz1g, where ~xxv
i1,~xxv

i2, . . . ,~xxv
iK are K nearest

neighbors of~xxv
i in X v: LLE preserves the local geometry of X v

i by

assuming that ~xxv
i is reconstructed from ~xxv

i1,~xxv
i2, . . . ,~xxv

iK by linear

coefficients [20]

~xxv
i ~wi1~xxi1zwi2~xxi2z . . . zwiK~xxiKz~ddi, ð1Þ

where ~wwi~(wi1,wi2, . . . ,wiK )T is determined by minimizing

reconstruction error ~ddi

arg min
~wwi

~ddi

��� ���2

~ arg min
~wwi

~xxi{
PK

k~1

wik~xxik

����
����

2

s:t:
PK

k~1

wik~1:

ð2Þ

By solving (2), we get

wik~

PK
t~1 M{1

ktPK
p~1

PK
q~1 M{1

pq

,

where M is a local Gram matrix,

Mkt~(~xxi{~xxik)T (~xxi{~xxit),1ƒk,tƒK [20].

When Kwm or when data points~xxi1, � � � ,~xxiK are not in general

position, matrix M is singular or near singular [41]. To avoid this,

a regularization term is added to each entry of M according to the

following criterion [41]:

Mpq/Mpqzgpq

c2

K

� �
tr(M), ð3Þ

where constant c satisfies c2%1, tr(:) is the trace operator. And gpq

is defined as

gpq ~
1, if p ~ q

0, otherwise

�
: ð4Þ

LLE assumes Y v
i ~f~yyv

i ,~yyv
i1,~yyv

i2, . . . ,~yyv
iKg, the corresponding local

patch of X v
i in the learned low-dimensional embedding, is also

reconstructed by ~wwi

~yyv
i ~wi1~yy

v
i1zwi2~yy

v
i2z . . . zwiK~yy

v
iKzE: ð5Þ

Similar to equation (2), Y v
i is determined by minimizing the

reconstruction error~EEi

arg min
Yv

i

~EEik k2

~ arg min
Yv

i

~yyv
i {

PK
k~1

wik~yy
v
ik

����
����

2

~ arg min
Yv

i

tr(Y v
i

{1

~wwi

� �
{1 ~wwi

T
� 	

(Y v
i )T )

~ arg min
Yv

i

tr(Y v
i Lv

i (Y v
i )T ),

ð6Þ

where Lv
i ~

1 {~wwT
i

{~wwi ~wwi~ww
T
i

� �
encodes the local geometric informa-

tion of X v
i :

Local patch construction on multiple views. Each sample

xi[X has different local patches on different views, i.e.,

X 1
i ,X 2

i , . . . ,X V
i : These multiview local patches correspond to

various low-dimensional local patches. We denote these low

dimensional local patches as Y 1
i ,Y 2

i , . . . ,Y V
i : The differing

features make different contributions to the representation of the

medical image in the final low-dimensional embedding Y , so these

low-dimensional local patches have different degrees of impor-

tance in determining Y : Considering this, we have the following

objective function of multiview local patch optimization for the ith
patch

arg min
~cc,Yv

i
DV
v~1

XV

v~1

cvtr(Y v
i Lv

i (Y v
i )T ), ð7Þ

where~cc~fc1,c2, . . . ,cVgT
, the vth entry cv implies the contribu-

tion of vth view to learn the final embedding Y :

Global Coordinate Alignment
For each local patch X v

i , there is a low-dimensional embedding

Y v
i ~f~yyv

i ,~yyv
i1,~yyv

i2, . . . ,~yyv
iKg: By assuming that all Y v

i s are chosen

from the final embedding Y~f~yy1,~yy2, . . . ,~yyNg, i.e., Y v
i ~YSv

i , we

can obtain the final low-dimensional embedding Y : Selection

matrix Sv
i [RN|(Kz1) is defined as

(Sv
i )nk~

1, if the kth nearest neighbor of ~xxv
i is ~xxv

n;

0, otherwise:

(

(1ƒnƒN,1ƒkƒKz1)

ð8Þ

Considering the whole medical image data set

X~fx1,x2, . . . ,xNg, we can unify all local patches into the final

embedding Y to obtain the global coordinate alignment (detailed

derivation is given in Appendix S1)

arg min
Y ,~cc

PN
i~1

PV
v~1

cvtr(YSv
i Lv

i (YSv
i )T )

~ arg min
Y ,~cc

PV
v~1

cvtr(YLvY T ),

ð9Þ

where Lv [RN|N ,

Lv~
XN

i~1

Sv
i Lv

i (Sv
i )T : ð10Þ

Objective Function
To uniquely determine the low-dimensional embedding Y from

(9), we add the constraint YY T~I : Thus Y is obtained by solving

the optimization problem

Multiview Locally Linear Embedding
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arg min
Y ,~cc

XV

v~1

cvtr(YLvY T )

s:t:YY T~I ;
XV

v~1

cv~1, cv §0:

ð11Þ

The solution to~cc is cv~1 corresponding to the vth view which

minimizes tr(YLvY T ), and cv~0 otherwise. This means that only

one view is selected to learn the low-dimensional embedding Y ,
while other views are discarded. To avoid this, we set cv/cr

v with

rw1: Then the optimization problem in (11) reduces to

arg min
Y ,~cc

XV

v~1

cr
vtr(YLvY T )

s:t:YY T~I ;
XV

v~1

cv~1, cv §0:

ð12Þ

Alternating Optimization
There are two unknown parameters, i.e.,~ccandY , in (12). Here

we employ the alternating optimization technique [38] to solve the

optimization problem. The alternating optimization procedure

includes the following two steps.

Step 1: Fix~cc to update Y

When~cc is fixed, the optimization problem in (12) equals

arg min
Y

tr(Y (
PV
v~1

Lv)Y T )

s:t:YY T~I :

ð13Þ

Because Lv is symmetric and positive semidefinite (the proof is

given in Appendix S2), then,
PV

v~1 Lv is symmetric and positive

semi-definite. Hence, the optimization problem in (13) can be

solved by using eigenvalue decomposition on
PV

v~1 Lv: The

globally optimal solution is the eigenvectors having the smallest d

eigenvalues of
PV

v~1 Lv:

Figure 1. Example images from IRMA medical image data set. Each image belongs to a different category.
doi:10.1371/journal.pone.0082409.g001

Figure 2. A medical image and its LBP histogram. (A) Image is equally divided into 464 regions. Text presented on each region is the
coordinate interval of region LBP histogram in the concatenated histogram shown in (B). (B) Concatenated LBP histogram.
doi:10.1371/journal.pone.0082409.g002
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Step 2: Fix Y to update~cc
When Y is fixed, the optimization problem in (12) can be solved

by using Lagrange optimization. The Lagrange function is

L(~cc,l)~
XV

v~1

cr
vtr(YLvY T ){l(

XV

v~1

cv{1): ð14Þ

By taking the derivate of L with respect to unknown parameter

~cc, and given that
PV

v~1 cv~1,

LL(~cc,l)

L~cc
~

rcr{1
1 tr(YLvY T )

rcr{1
2 tr(YLvY T )

..

.

rcr{1
V tr(YLvY T )

2
6666664

3
7777775
{l

1

1

..

.

1

2
666664

3
777775

~

rcr{1
1 tr(YLvY T ){l

rcr{1
2 tr(YLvY T ){l

..

.

rcr{1
V tr(YLvY T ){l

2
6666664

3
7777775
~

0

0

..

.

0

2
666664

3
777775,

ð15Þ

we get

cv~
(1=tr(YLvY T ))

1
r{1PV

j~1 (1=tr(YLjY T ))
1

r{1

: ð16Þ

Experiment Setup

In this section, we describe experiment setup for performance

evaluation of MLLE for CBMIR. We organize this section as

follows. In Section 3.1, we introduce our test bed, i.e., IRMA

medical image data set. In Section 3.2, medical image feature

extraction is detailed.

IRMA Medical Image Data Set
The IRMA medical image data set is a popular benchmark

database used to evaluate CBMIR [6,12,42,43]. The new version

of the IRMA medical image data set [40] contains 193 categories

with a total of 12,677 fully annotated gray value radiographs in a

training set. These images are 8 bits per pixel. The images are

categorized according to a mono-hierarchical multi-axial classifi-

cation standard called IRMA coding system [39]. The coding

system classifies a medical image from four orthogonal axes:

imaging modality, body orientation, body region examined and

biological system examined. We select the first 57 categories

containing a total of 10,902 images from the training set for our

experiment. Figure 1 shows examples of the images used in our

evaluation.

Feature Extraction
All images in the IRMA dataset are gray value images, which

encode ample texture information. We use three image descrip-

tors, i.e., local binary patterns (LBP) [13], SIFT [15], and pixel

intensity, to extract the visual features from each medical image.

To enhance the discriminability of the image descriptors, we

divide the medical image into equal regions for each descriptor. In

each region, an image descriptor is employed to extract the visual

features. Finally, we concatenate all the feature vectors obtained

from the regions in a single long vector to represent the image. For

each image descriptor, we employ four different image division

schemes. There are three image descriptors, and each image

descriptor generates four different features. Thus, we obtain twelve

different features from each image. The feature extraction

procedures of each image descriptor are detailed below.

LBP. LBP is a powerful descriptor for analyzing two-

dimensional textures. LBP has the advantages that it is robust to

gray-scale variations and low computational complexity. This

makes LBP appropriate for gray-scale medical image analysis.

Figure 3. A medical image and its SIFT histogram. (A) Image is equally divided into 262 regions. Text presented on each region is the current
region SIFT histogram coordinate interval in the concatenated histogram shown in (B). (B) Concatenated SIFT histogram.
doi:10.1371/journal.pone.0082409.g003
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Formally, for center pixel c at (x,y) with gray value gc, there are

P equally spaced pixels contained in the circularly symmetric

neighbor set of c with radius R. LBP assigns a unique value to the

center pixel c [13]:

LBPP,R(x,y)~
XP{1

p~0

b(gp{gc)2p, ð17Þ

where gp is the gray value of the pth neighbor of center pixel c,

b(gp{gc)~
1, if(gp{gc)§0;

0, otherwise:

�
ð18Þ

Observing LBP value in binary circular representation, we find

that a vast majority of LBP binary codes, sometimes more than

90%, have ‘‘uniform’’ appearance [13]. Here, uniform appearance

indicates that there are limited numbers of 0=1or1=0 transitions in

LBP code. These uniform binary patterns capture discriminant

local features, e.g., edges, corners, and spots, of the image content.

After computing LBP values over an examined image or image

region pixel by pixel, these LBP values are accumulated into a

discrete occurrence histogram. Uniform patterns in the histogram

with different LBP values are accumulated to various bins, while

the remaining ‘‘non-uniform’’ patterns are accumulated in another

bin.

In our implementation, we use the LBPu2
(8,1) operator to

compute the LBP values over a medical image, pixel by pixel.

The subscript (8, 1) means that eight neighbors, equally contained

in the circle with radius one, are utilized to determine the LBP

value of the center pixel. Clearly, the resulting LBP value can be

encoded into an eight bits binary string. The superscript u2

represents a uniform pattern which has at most two 0=1or1=0
transitions. For an eight bits LBP binary string, there are 58 u2

patterns. Hence the resulting discrete occurrence histogram has 59

bins.

To enhance the discriminability of the LBP descriptor, we

divide the medical image into equal regions. A normalized 59-bin

histogram is built for each region. Finally, these normalized

histograms are concatenated into a single histogram as a feature

vector of the image. We employ four image division schemes: 363,

464, 565 and 666, giving us four different LBP feature vectors for

each feature: ~hh3|3
LBP[R531|1,~hh4|4

LBP[R944|1,~hh5|5
LBP[R1475|1, and

~hh6|6
LBP[R2124|1: Figure 2 demonstrates a 464 image division

scenario and the concatenated LBP histogram extracted from the

image.

Figure 4. A medical image and its intensity histogram. (A) Original image. (B) Normalized intensity histogram.
doi:10.1371/journal.pone.0082409.g004

Figure 5. Comparison of the mean average precision of the
MLLE, LLE, MSE, PCA and LE methods.
doi:10.1371/journal.pone.0082409.g005

Multiview Locally Linear Embedding
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SIFT. Following the bag of features paradigm [44] and dense

sampling strategy, we build SIFT histograms to present medical

images. We begin by extracting 128-D SIFT vectors [15] from

patches densely sampled from the image. The sampling space and

patch size are set as 8 and 16616, respectively.

The next step is to build a visual word dictionary over all

the SIFT vectors extracted from the entire data set. Following

the settings in [12], we employ K-means clustering to learn the

dictionary. Euclidean distance is used as the measurement of

the distance between two SIFT vectors. To reduce computing

time, we set the number of iterations as 100. The visual word

dictionary size is set as 500. We finally acquire a SIFT visual

word dictionary Dsift[R128|500, where each column vector

~ddi[Dsift(i~1,2, . . . ,500) is the centroid SIFT vector generated

by K-means clustering. We call column vector ~ddi a ‘‘visual word’’.

Via dense sampling, each sampled image region x is represented

as a collection of SIFT vectors S~f~ssigP
i~1, where P is the total

number of patches sampled from x: For each SIFT vector~ssi, there

exists a unique visual word dj[Dsift, which is nearest to ~ssi: We

assign the visual word index, i.e., j, to ~ssi, so that each patch

sampled from x has a unique index in the visual word dictionary

Dsift: Consequently, x can be denoted as a collection of visual

word indexes. Accumulating these indexes into a 500-bin

histogram, we obtain a SIFT histogram~hhsift[R500|1 to present x:

To enhance the discriminability of the SIFT descriptor, we also

divide each image equally into 161, 262, 363 and 464 regions,

Figure 6. Query and top ten retrieved medical images. (A) Query image. (B) Retrieval results of MLLE. (C) Retrieval results of LLE. (D) Retrieval
results of PCA. (E) Retrieval results of LE. (F) Retrieval results of MSE.
doi:10.1371/journal.pone.0082409.g006

Multiview Locally Linear Embedding
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respectively. From each region, a 500-bin SIFT histogram is

generated. By concatenating and normalizing these SIFT histo-

grams, we obtain a long vector to represent the whole image. Thus

for each image, we obtain four different SIFT features:
~hh1|1

sift [R500|1,~hh2|2
sift [R2000|1,~hh3|3

sift [R4500|1,and~hh4|4
sift [R8000|1:

Figure 3 illustrates a 262 division scenario and the corresponding

normalized concatenated SIFT histogram.

Pixel intensity. The raw intensity value of each image pixel

is also utilized as a content descriptor to represent the image. We

follow the bag of features paradigm and dense sampling strategy to

generate intensity histograms from medical images. The param-

eter settings of dense sampling and visual word dictionary building

are the same as those detailed in Section 3.2.2. We utilize a

16|16 image patch p to densely sample each image region.

Therefore, we obtain an intensity vector ~vv[R256|1 by concate-

nating the intensity values of 256 pixels contained in p: We also

utilize K-means clustering to generate an intensity visual word

dictionary Dintensity [R256|500: Via histogram accumulation, we

finally obtain a 500-bin intensity histogram to represent the

sampled image or image region.

To enhance the discriminability of the intensity descriptor, we

also divide each image equally into 161, 262, 363 and 464

regions, respectively. An intensity histogram is built from

each region. Finally, a histogram of the whole image is obtained

by concatenating the region intensity histograms into a long

vector. Thus for each image, we finally obtain four intensity

feature vectors: ~hh1|1
intensity[R500|1,~hh2|2

intensity[R2000|1,~hh3|3
intensity[

R4500|1and~hh4|4
intensity[R8000|1: Figure 4 shows the 161 division

scenario and the corresponding normalized intensity histogram.

Results

This section evaluates performance of MLLE compared with

that of LLE, MSE [31], LE and PCA, in the context of CBMIR.

We organize this section as follows. In Section 4.1, we evaluate

performance of these dimensionality reduction methods using

mean average precision (MAP). In Section 4.2, we use receiver

operating characteristic (ROC) curve analysis to evaluate perfor-

mance of these methods. Section 4.3 reports evaluation results in

terms of sensitivity, specificity, and diagnostic odds ratio (DOR). In

Section 4.4, we explore effects of parameters d,k and r on

performance of MLLE. In Section 4.5, we discuss performance

discrepancy of MLLE when using different distance metrics to

compute the K-nearest neighbors contained in local patch, which

is detailed in Section 2.1. In Section 4.6, we conduct experiments

to demonstrate that there is no need to perform feature selection

before MLLE.

In the following experiments, the subspace dimension d in

MLLE, LLE, MSE, PCA and LE is set as 200. The number of

nearest neighbors K in MLLE, LLE, MSE and LE is fixed to 140.

The parameter r for MLLE, MSE is fixed to 2.5. The procedure

for finding optimal parameters d,k and r for MLLE is detailed in

Section 4.4.

Performance Evaluations Using MAP
In this section, we use MAP to compare the effectiveness of the

proposed MLLE for CBMIR with that of LLE, MSE, PCA and

LE.

The experiment is conducted as follows. First, the low-

dimensional subspaces of the medical image data set are learned

by MLLE, PCA, LLE, MSE and LE, respectively. MLLE

simultaneously learns a low-dimensional subspace from twelve

features. For the other three methods, low-dimensional subspaces

are learned by concatenating all twelve features. Second, based on

the learned subspaces, a ‘‘leave one out’’ image retrieval procedure

is conducted in the data set. In detail, we choose one image as the

query sample for each category; all other images from the data set

are ranked according to the Euclidean distance to the query image

measured in the low-dimensional subspace. For each query, the

top N images are returned. In this section, we use MAP to

evaluate the performance of a dimension reduction method. MAP

is the mean of all average precisions (AP) for different categories.

The AP is computed in the ranked top N images.

Figure 5 shows the MAP values when different dimension

reduction methods are used. The number of top N images starts

with one, and increases from five to fifty with step five. The result

shows that our MLLE method achieves the best performance. The

most effective feature of MLLE is that it benefits from the

alternating optimization and global coordinate alignment tech-

niques, which exploit the complementary properties of different

features and simultaneously learn a unified low-dimensional

subspace from these features.

To detail the effectiveness of MLLE for CBMIR, we illustrate

one of the retrieval results in Figure 6. As shown in the figure,

there are six rows of medical images. From top to bottom, the first

row is the query image, while the other five rows are the retrieval

results of MLLE, LLE, PCA, LE and MSE, respectively. Each row

of retrieval results consists of the top ten images retrieved from the

data set. From the figure, we can see MLLE has the best retrieval

performance. In (B), all of the images retrieved by MLLE come

from the same category as the query image. In (C), images 2, 4, 6,

10 retrieved by LLE are not similar to the query image. In (D),

images 2, 3, 4, 5, 7, 10 are erroneously retrieved by PCA. In (E),

images 2, 3, 4, 7 are incorrectly retrieved by LE. Moreover, images

1, 8, 10 in (F) are also erroneously retrieved by MSE.

Performance Evaluations Using ROC
In this section, we compare performance of MLLE with that of

LLE, MSE, LE and PCA using ROC curve analysis.

ROC curve analysis is a popular mechanism to measure the

ability of a computer program to determine a given medical image

as ‘‘positive’’ or ‘‘negative’’, which is the typical ‘‘two-class’’

classification problem. And currently, there is no practical

methods to assess the performance of ‘‘N-class’’ classification task

using ROC curve [45]. We treat CBMIR as a binary classification

problem: for a given query image, the task of CBMIR is to classify

samples contained in image data set into two classes, i.e., positive

class (query image relevant class) and negative class (query image

irrelevant class). The IRMA medical image data set used in our

experiments contains 57 categories. So we evaluate retrieval

performance of MLLE and other dimensionality reduction

Table 2. Number of samples contained in positive/negative
test set used for performance evaluation of different
dimensionality reduction methods on different IRMA
category.

IRMA
category 14 16 20 21 22 49

Positive
test set

151 141 133 125 123 63

Negative
test set

10,751 10,761 10,769 10,777 10,779 10,839

doi:10.1371/journal.pone.0082409.t002
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methods on each IRMA category and plot the corresponding

ROC curves, respectively. Because of space limitation, we present

here ROC curves obtained on six IRMA categories. ROC curves

on other categories can also be obtained with the method detailed

as follows.

We conduct two experiments, namely experiment #1 and

experiment #2, to perform ROC curve analysis.

Experiment #1 includes the following two steps. Step 1: We

project high dimensional medical image samples to 200-dimension

subspace using MLLE, LLE, MSE, LE and PCA, respectively. In

detail, for MLLE, we simultaneously learn the 200-dimension

subspace from 12 visual features. For LLE, MSE, LE and PCA, we

first combine 12 visual features into a 31,474-dimension vector.

Then we utilize these methods to project the high dimensional

dataset to 200 dimensional samples. Step 2: We employ binary

support vector machines (SVM) as classifier to determine the

probability that a given image is positive, based on the learned

dimensionality reduced data set. In detail, we use LIBSVM [46] to

solve the binary SVM classifier. For each IRMA category, five-fold

cross-validation scheme [47] is employed to train the binary SVM

classifier. Then we treat all images within current IRMA category

as positive test examples for ROC curve analysis. Meanwhile, we

utilize images within other categories as negative test examples.

Experiment #2 also has two steps. This experiment only

differs from experiment #1 that k-nearest neighbors (KNN) is

used as classifier in step 2. In detail, for a given test sample s, a

‘‘leave one out’’ retrieval is performed. All other images contained

in the data set are sorted according to their Euclidean distance to

s: The probability that s is positive is defined as p~pos=k, where

pos is the number of positive samples among k nearest neighbors

of s: In our experiment, we set k as 15.

We conduct ROC curve analysis on the IRMA category 14, 16,

20, 21, 22 and 49, respectively. For each IRMA category, number

of samples contained in positive and negative test set is detailed in

Table 2. Figure 7 shows ROC curves obtained via experiment
#1. In the experiment, we use SVM as classifier. Table 3 details

the corresponding area under ROC curve (AZ value). Figure 8
presents ROC curves obtained via experiment #2. In the

experiment, we use KNN (K = 15) as classifier. Table 4 reports

the corresponding AZ value. These results are obtained using

statistical software MedCalcH 12.7.0.

From Table 3 we can see that the AZ value for determining

between 151 positive images from IRMA category 14 and 10,751

negative images from other categories is 0:990+0:0035 when

using the proposed MLLE. When applying LLE, MSE, LE and

PCA to distinguish positive and negative images, the computed AZ

values are 0:934+0:0149, 0:892+0:0190, 0:809+0:0281, and

0:526+0:0231, respectively. Figure 7 (A) represents the com-

parison of ROC curves for these five sets of performance data.

Table 3 demonstrates that MLLE yields the highest AZ value in

discrimination of IRMA category 14 compared to LLE, MSE, LE

and PCA ( 0:990+0:0035 vs. 0:934+0:0149, 0:892+0:0190,
0:809+0:0281, and 0:526+0:0231, respectively).

The computed AZ values for detecting between positive and

negative images from IRMA category 16, 20, 21, 22 and 49 are

also detailed in Table 3. The corresponding comparison of ROC

curves is demonstrated in Figure 7 (B), (C), (D), (E), and (F),

respectively. The results indicate that MLLE achieves best

performance than traditional dimensionality reduction methods.

We can draw the same conclusion by analyzing Figure 8 and

Table 4.

Another phenomenon should be noted is the significant

performance difference of PCA between experiment #1 and

experiment #2. From Figure 7 and Table 3, we can see that

PCA achieves poor performance (AZ value of PCA on IRMA

category 14, 16, 20, 21, 22 and 49 is 0:526+0:0231,
0:560+0:0237, 0:556+0:0242, 0:506+0:0228, 0:554+0:0247
and 0:541+0:0355, respectively). Moreover, the performance of

PCA is worse than that of other methods. While Figure 8 and

Table 4 demonstrate that PCA gains significant performance

improvement (AZ value of PCA on IRMA category 14, 16, 20, 21,

22 and 49 is 0:959+0:0128, 0:975+0:0107, 0:977+0:0101,
0:963+0:0134, 0:960+0:0141 and 0:887+0:0320, respectively).

And the performance of PCA is better than that of MSE and LE.

Based on these two experiments, we conclude that PCA

performs poorly in experiment #1 is caused by the subsequent

classifier, SVM. We further discuss the reason as follows.

PCA maximizes the mutual information between original high

dimensional Gaussian distributed samples and projected low-

dimensional samples. It does not explore the geometric structure of

the data. Therefore, in the very low dimensional subspace

projected by PCA, when there exists great imbalance between

positive and negative set (as shown in Table 2), it is hard for SVM

to find the optimal hyperplane to separate positive set from

negative set.

Different to PCA, MLLE, LLE, MSE and LE are manifold

learning based dimensionality reduction methods. These methods

explore geometric structure among samples in high dimensional

Figure 7. Comparison of ROC curves for MLLE, LLE, MSE, LE and PCA on different IRMA category. The classifier is SVM. (A) ROC curves
obtained on IRMA category 14. (B) ROC curves obtained on IRMA category 16. (C) ROC curves obtained on IRMA category 20. (D) ROC curves obtained
on IRMA category 21. (E) ROC curves obtained on IRMA category 22. (F) ROC curves obtained on IRMA category 49.
doi:10.1371/journal.pone.0082409.g007

Table 3. AZ values of different dimensionality reduction methods on different IRMA category.

IRMA
category 14 16 20 21 22 49

MLLE 0:990+0:0035 0:997+0:0011 0:981+0:0073 0:967+0:0069 0:999+0:0003 0:842+0:0311

LLE 0:934+0:0149 0:940+0:0155 0:887+0:0197 0:890+0:0205 0:977+0:0116 0:792+0:0381

MSE 0:892+0:0190 0:971+0:0069 0:931+0:0148 0:868+0:0247 0:987+0:0069 0:762+0:0389

LE 0:809+0:0281 0:924+0:0171 0:845+0:0246 0:898+0:0202 0:958+0:0143 0:699+0:0447

PCA 0:526+0:0231 0:560+0:0237 0:556+0:0242 0:506+0:0228 0:554+0:0247 0:541+0:0355

The classifier is SVM.
doi:10.1371/journal.pone.0082409.t003
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Figure 8. Comparison of ROC curves for MLLE, LLE, MSE, LE and PCA on different IRMA category. The classifier is KNN. (A) ROC curves
obtained on IRMA category 14. (B) ROC curves obtained on IRMA category 16. (C) ROC curves obtained on IRMA category 20. (D) ROC curves obtained
on IRMA category 21. (E) ROC curves obtained on IRMA category 22. (F) ROC curves obtained on IRMA category 49.
doi:10.1371/journal.pone.0082409.g008
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data set, and preserve the structure in low dimensional sub-space.

Therefore, though great imbalance exists between positive and

negative set, it is possible for SVM to find the optimal hyperplane

to separate positive set from negative set. Because geometric

structure of positive and negative set is preserved in the low

dimensional data set, respectively. Then performance of MLLE,

LLE, MSE and LE does not greatly affected by classifiers. We can

draw the conclusion from Table 3 and Table 4.

Performance Evaluations Using Sensitivity, Specificity,
and DOR

In this section, we compare performance of MLLE with that of

LLE, MSE, LE and PCA using sensitivity, specificity, and DOR.

Sensitivity, specificity and DOR are indicators to compare

performance of competing diagnostic tests, which are used to

separate subjects with a target disorder from subjects without it

[48]. Diagnostic test is the typical ‘‘two-class’’ classification

problem: for a given subject, the aim of diagnostic test is to

determine whether the subject is ‘‘positive’’ (with a target disorder)

or ‘‘negative’’ (without a target disorder).

Following this, we design experiments to evaluate diagnostic

performance of MLLE, LLE, MSE, LE and PCA on each

category of IRMA data set, respectively. In detail, for each IRMA

category, we treat it as positive test set. Meanwhile, a negative test

set containing equal number of samples as that of positive test set is

constructed by randomly selecting images from other categories.

Based on the positive test set and negative test set, a diagnostic test

procedure is performed on low-dimensional embedding obtained

by MLLE, LLE, MSE, LE and PCA, respectively. Definitely, for

each test image, all other images contained in IRMA data set are

ranked according to their L2 distances to the test image. Then

diagnostic result of the test image is determined by the following

criterion: if more than half of the top k ranked images is positive,

then the test image is positive; otherwise, the test image is negative.

In our experiments, we set k as 15.

Table 4. AZ values of different dimensionality reduction methods on different IRMA category.

IRMA
category 14 16 20 21 22 49

MLLE 0:980+0:0089 0:996+0:0041 0:985+0:0087 0:983+0:0093 0:992+0:0066 0:956+0:0207

LLE 0:975+0:0098 0:978+0:0099 0:947+0:0158 0:961+0:0140 0:975+0:0114 0:882+0:0327

MSE 0:886+0:0208 0:946+0:0148 0:893+0:0214 0:908+0:0202 0:975+0:0110 0:881+0:0331

LE 0:902+0:0194 0:926+0:0179 0:931+0:0175 0:955+0:0145 0:960+0:0141 0:799+0:0411

PCA 0:959+0:0128 0:975+0:0107 0:977+0:0101 0:963+0:0134 0:960+0:0141 0:887+0:0320

The classifier is KNN.
doi:10.1371/journal.pone.0082409.t004

Table 5. Comparison of sensitivity, specificity and DOR for MLLE, LLE, MSE, LE and PCA on IRMA category 1.

Methods Sensitivity Specificity DOR TP FP FN TN

% (95% CI) % (95% CI) (95% CI)

MLLE 92 91293 99 98299 906.76 610.3321,347.15 2,129 29 185 2,285

LLE 92 91293 98 98299 773.44 537.7221,112.49 2,139 36 175 2,278

MSE 88 87290 99 98299 523.27 362.772754.79 2,044 33 270 2,281

LE 87 86289 98 97299 335.32 244.982458.96 2,023 47 291 2,267

PCA 89 87290 99 98299 675.00 452.0621,007.89 2,056 27 258 2,287

doi:10.1371/journal.pone.0082409.t005

Table 6. Comparison of sensitivity, specificity and DOR for MLLE, LLE, MSE, LE and PCA on IRMA category 4.

Methods Sensitivity Specificity DOR TP FP FN TN

% (95% CI) % (95% CI) (95% CI)

MLLE 97 95299 100 992100 14,909.09 1,915.962116,015.2 400 1 11 410

LLE 92 89294 100 982100 2,342.45 558.2629,828.84 378 2 33 409

MSE 67 62272 99 972100 166.01 67.122410.61 276 5 135 406

LE 84 80288 99 972100 432.23 172.1121,085.52 346 5 65 406

PCA 93 90295 99 97299 857.25 352.8722,082.55 381 6 30 405

doi:10.1371/journal.pone.0082409.t006
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Similar to ROC curve analysis, we present here experimental

results obtained on four IRMA categories. Experimental results on

other categories can also be obtained with the method detailed

above.

Table 5, Table 6, Table 7 and Table 8 compare diagnostic

performance of MLLE, LLE, MSE, LE and PCA in terms of

sensitivity, specificity and DOR, which are obtained on IRMA

category 1, 4, 7 and 25, respectively. We get these results using

Meta-Disc 1.4 [49]. As shown in Table 5, the estimated

sensitivity, specificity and DOR for the proposed MLLE in

determining images from category 1 is 0.92 (2129=(2129z185)),
0.99 (2285=(2285z29)) and 906.76 ((2129=185)=(29=2285)),
respectively. This means that for MLLE the odds for positivity

among medical images from IRMA category 1 are 906.76 times

higher than the odds for positivity among medical images from

other IRMA categories. In the same way, the DORs for LLE,

MSE, LE and PCA can be calculated. From Table 5 we can draw

the conclusion that MLLE has the highest DOR in discrimination

of IRMA category 1 compared to LLE, MSE, LE and PCA

(906.76 vs. 773.44, 523.27, 335.32 and 675.00, respectively). The

same conclusion can be drawn from Table 6, Table 7 and

Table 8.

Evaluation results in terms of sensitivity, specificity, and DOR

show that the proposed MLLE yields significantly higher

performance than traditional dimensionality reduction methods.

Effects of Parameters
In this section, we analyze effects of parameters on MLLE

performance. These parameters include d, dimension of the

Table 7. Comparison of sensitivity, specificity and DOR for MLLE, LLE, MSE, LE and PCA on IRMA category 7.

Methods Sensitivity Specificity DOR TP FP FN TN

% (95% CI) % (95% CI) (95% CI)

MLLE 96 93298 99 972100 2,158.60 587.1927,935.28 251 3 10 258

LLE 92 88295 99 972100 982.86 289.4723,337.20 240 3 21 258

MSE 56 50262 99 972100 166.99 40.662685.74 147 2 114 259

LE 79 74284 99 972100 496.42 119.6222,060.15 207 2 54 259

PCA 90 85293 99 972100 1,122.33 264.0224,771.06 234 2 27 259

doi:10.1371/journal.pone.0082409.t007

Table 8. Comparison of sensitivity, specificity and DOR for MLLE, LLE, MSE, LE and PCA on IRMA category 25.

Methods Sensitivity Specificity DOR TP FP FN TN

% (95% CI) % (95% CI) (95% CI)

MLLE 83 74289 99 952100 522.05 68.5623,975.17 91 1 19 109

LLE 66 57275 100 972100 433.16 26.1927,164.50 73 0 37 110

MSE 39 30249 99 952100 69.96 9.412519.93 43 1 67 109

LE 34 25243 100 972100 112.76 112.7621,864.98 37 0 73 110

PCA 57 47267 100 972100 295.44 295.4424,875.03 63 0 47 110

doi:10.1371/journal.pone.0082409.t008

Table 9. Mean average precision values of MLLE evaluated with different d.

TOP N N = 1 N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40 N = 45 N = 50

d = 50 0.8070 0.8381 0.8265 0.8101 0.7999 0.7874 0.7729 0.7626 0.7537 0.7433 0.7349

d = 100 0.8421 0.8541 0.8365 0.8210 0.8098 0.7996 0.7908 0.7818 0.7703 0.7631 0.7563

d = 150 0.8246 0.8507 0.8454 0.8303 0.8236 0.8166 0.8093 0.8026 0.7948 0.7867 0.7809

d = 200 0.8947 0.8980 0.8807 0.8650 0.8488 0.8391 0.8302 0.8163 0.8102 0.8026 0.7967

d = 250 0.8246 0.8575 0.8494 0.8344 0.8269 0.8211 0.8151 0.8097 0.8037 0.7946 0.7891

d = 300 0.8596 0.8581 0.8491 0.8326 0.8241 0.8150 0.8086 0.7993 0.7941 0.7877 0.7816

d = 350 0.8596 0.8660 0.8568 0.8389 0.8237 0.8151 0.8073 0.7976 0.7896 0.7840 0.7767

d = 400 0.8596 0.8636 0.8543 0.8348 0.8265 0.8194 0.8108 0.8022 0.7926 0.7852 0.7829

d = 450 0.8596 0.8625 0.8431 0.8268 0.8166 0.8098 0.8018 0.7914 0.7855 0.7804 0.7737

d = 500 0.8772 0.8680 0.8455 0.8309 0.8182 0.8099 0.8051 0.7955 0.7893 0.7846 0.7816

doi:10.1371/journal.pone.0082409.t009
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learned embedding, K , number of nearest neighbors contained in

local patch, and r, scaling factor for the weight of each feature.

Effects of parameter d. Figure 9 shows the MAP values

when the propose MLLE is evaluated using different dimension-

alities d: In these experiments, parameters k and r are same as

those in the former experiment. From these experiments, we can

see that the proposed MLLE outperforms existing dimension

reduction methods. Moreover, we detail the MAP values of MLLE

in Table 9. From the table we can see that MLLE achieves the best

performance with d set as 200.

Effects of parameter K. Figure 10 shows the MAP values

when the proposed MLLE is evaluated with different K : In the

Figure 9. Performance of proposed MLLE compared with existing methods. (A) The algorithms are evaluated with d~50: (B) The
algorithms are evaluated with d~100: (C) The algorithms are evaluated with d~150: (D) The algorithms are evaluated with d~250: (E) The
algorithms are evaluated with d~300: (F) The algorithms are evaluated with d~350: (G) The algorithms are evaluated with d~400: (H) The
algorithms are evaluated with d~450: (I) The algorithms are evaluated with d~500:
doi:10.1371/journal.pone.0082409.g009

Figure 10. Mean average precision values of the proposed MLLE evaluated with different K :
doi:10.1371/journal.pone.0082409.g010

Figure 11. Mean average precision of the proposed MLLE evaluated with different r: (A) r is updated from 2 to 10 with step 1. (B) r is
updated from 1.1 to 3 with step 0.1.
doi:10.1371/journal.pone.0082409.g011
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experiments, parameters d, r are fixed to 200 and 2, respectively.

The results show that MLLE achieves the best performance with

K set as 140.

Effects of parameter r. Figure 11 shows the MAP values

when MLLE is evaluated with different r: In the experiments,

parameters d, K are fixed to 200 and 140, respectively. In

Figure 12. Comparison of ROC curves for MLLE with L2, L1, and geodesic distance on different IRMA category. (A) ROC curves
obtained on IRMA category 2. (B) ROC curves obtained on IRMA category 3. (C) ROC curves obtained on IRMA category 19. (D) ROC curves obtained
on IRMA category 31. (E) ROC curves obtained on IRMA category 51. (F) ROC curves obtained on IRMA category 52.
doi:10.1371/journal.pone.0082409.g012
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Figure 11 (A), r is updated from 2 to 10 with step 1. From the

figure, we can see that MLLE achieves best performance when r is

approximate to 3. In Figure 11 (B), r is updated from 1.1 to 3

with step 0.1. It can be seen that MLLE achieves best performance

when r is set as 2.5.

Performance Comparison of MLLE with Different
Distance Metrics

Geodesic distance, L1 distance (which is also named city block

distance or Manhattan distance) and L2 distance are well-known

distance metrics used in the field of dimensionality reduction. In

Section 2.1, we use L2 distance to find K-nearest neighbors of

each medical image. In this section, we perform experiments to

evaluate performance of MLLE with different distance metrics,

i.e., geodesic, L1, and L2 distance.

Following the same experiment setup of experiment #1 detailed

in Section 4.2, we conduct experiments to evaluate effects of these

three different distance metrics on MLLE performance using

ROC curve analysis.

Figure 12 shows ROC curves of MLLE with different distance

metrics obtained on IRMA category 2, 3, 19, 31, 51 and 52,

respectively. The number of images contained in positive and

negative test set for each category is presented in Table 10.

Table 11 details the corresponding AZ values.

As shown in Table 11, for IRMA category 2, the AZ value for

detecting between 1,103 positive images and 9,799 negative

images is 0:979+0:0028 when using L2 distance. When applying

L1 distance and geodesic distance, the computed AZ values are

0:945+0:0035 and 0:592+0:0083, respectively. Figure 12 (A)

shows the comparison of ROC curves for these three sets of

performance data. Table 11 demonstrates that L2 distance

achieves the highest AZ value in detection of IRMA category 2

compared to L1 distance and geodesic distance ( 0:979+0:0028
vs. 0:945+0:0035 and 0:592+0:0083, respectively).

The computed AZ values for detecting between positive and

negative images from IRMA category 3, 19, 31, 51 and 52 are also

detailed in Table 11. The corresponding ROC curves are

demonstrated in Figure 12 (B), (C), (D), (E) and (F), respectively.

From these results we can conclude that L2 distance is the best

solution for MLLE to construct local patches. The same

conclusion can be drawn from experimental results obtained on

other IRMA categories.

Selecting Features before MLLE
In this section, we conduct experiments to demonstrate that

there is no need to perform feature selection before MLLE.

The proposed MLLE has the merit of simultaneously learning a

low-dimensional embedding from multiple features, by exploring

different significances of different features. In detail, MLLE

assumes that each feature has different contribution to the final

learned low-dimensional embedding, though the feature does not

have significant difference between different medical images. We

clarify this point based on two experiments described as follows.

Experiment #3 includes the following three steps. Step 1:

For each medical image xi[X , we divide its twelve features into

three groups: LBP group f~hh3|3
LBP,~hh4|4

LBP,~hh5|5
LBP,~hh6|6

LBPg, SIFT group

f~hh1|1
sift ,~hh2|2

sift ,~hh3|3
sift ,~hh4|4

sift g and intensity group f~hh1|1
intensity,~hh2|2

intensity,

~hh3|3
intensity,~hh4|4

intensityg: Step 2: For each group, we employ laplacian

score feature selection (LPFS) [50], the unsupervised feature selection

method, to determine the importance of each feature. In

detail, within each feature group, we concatenate the four

feature vectors into a long vector. So we get three long feature

vectors to represent xi : ~xxLBP
i [R5074|1, ~xxsift

i [R15000|1 and

~xxintensity
i [R15000|1: Then the medical image data set X has three

different views: X LBP~f~xxLBP
1 , � � � ,~xxLBP

N g[R5074|N , X sift~

f~xxsift
1 , � � � ,~xxsift

N g[R15000|N and X intensity~f~xxintensity
1 , � � � ,~xxintensity

N g
[R15000|N : On each view, we use LPFS to determine the

importance of each feature. And the most important m feature

entries are selected. Finally, X is represented by three dimension-

reduced views: X LBP~f~xxLBP
1 , � � � ,~xxLBP

N g[Rm|N , X sift~

f~xxsift
1 , � � � ,~xxsift

N g[Rm|N and X intensity~f~xxintensity
1 , � � � ,~xxintensity

N g[
Rm|N : Accordingly, for each image xi, we obtain three

dimension-reduced feature vectors: ~xxLBP
i [Rm|1, ~xxsift

i [Rm|1 and

~xxintensity
i [Rm|1: In our experiment, we set m as 500. Step 3: We

utilize MLLE to learn the low-dimensional embedding Y based on

three views obtained in step 2. The dimension of Y is set as 200.

We denote this method as lpfs-MLLE (laplacian score feature

selection-based MLLE).

Experiment #4 includes the following three steps. Step 1:

This step is same as step 1 of experiment #3. Step 2: For each

feature group, we employ multi-cluster feature selection (MCFS) [51],

the manifold learning-based feature selection method, to select

features which can best preserve the multi-cluster structure of

medical image data set X . In detail, each medical image ~xxi has

three different feature vectors: ~xxLBP
i [R5074|1, ~xxsift

i [R15000|1 and

Table 10. Number of samples contained in positive/negative
test set used for performance evaluation of MLLE with
different distance metrics on different IRMA category.

IRMA
category 2 3 19 31 51 52

Positive
test set

1,103 1,042 132 97 59 60

Negative
test set

9,799 9,860 10,770 10,805 10,843 10,842

doi:10.1371/journal.pone.0082409.t010

Table 11. AZ values of MLLE with different distance metrics on different IRMA category.

IRMA
category 2 3 19 31 51 52

L2 distance 0:979+0:0028 0:999+0:0007 0:976+0:0076 0:866+0:0173 1:000+0:000 0:955+0:0081

L1 distance 0:945+0:0035 0:999+0:0009 0:927+0:0111 0:813+0:0212 0:831+0:0247 0:766+0:0295

geodesic
distance

0:592+0:0083 0:927+0:0044 0:775+0:0220 0:689+0:0241 0:798+0:0271 0:738+0:0342

doi:10.1371/journal.pone.0082409.t011
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Figure 13. Comparison of ROC curves for MLLE, mcfs-MLLE and lpfs-MLLE on different IRMA category. (A) ROC curves on IRMA
category 14. (B) ROC curves on IRMA category 27. (C) ROC curves on IRMA category 30. (D) ROC curves on IRMA category 43. (E) ROC curves on IRMA
category 45. (F) ROC curves on IRMA category 57.
doi:10.1371/journal.pone.0082409.g013
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~xxintensity
i [R15000|1: Then the whole medical image data set X can

be represent by three different views: X LBP~

f~xxLBP
1 , � � � ,~xxLBP

N g[R5074|N , X sift~f~xxsift
1 , � � � ,~xxsift

N g[R15000|N

and X intensity~f~xxintensity
1 , � � � ,~xxintensity

N g[R15000|N : On each view,

we use MCFS to select m feature entries which can best preserve

the multi-class structure of this view. In our experiment, we set m
as 500. Then X can be represented by three dimension-reduced

views: X LBP~f~xxLBP
1 , � � � ,~xxLBP

N g[Rm|N , X sift~f~xxsift
1 , � � � ,~xxsift

N g
[Rm|N and X intensity~f~xxintensity

1 , � � � ,~xxintensity
N g [Rm|N : Step 3:

This step is same as step 3 of experiment #3. We denote this

method as mcfs-MLLE (Multi-cluster feature selection-based

MLLE).

We compare performance of MLLE, mcfs-MLLE and lpfs-

MLLE using ROC curve analysis. The experimental setup is same

as that of experiment #1 detailed in subsection 4.2. Figure 13
shows ROC curves of these methods obtained on IRMA category

14, 27, 30, 43, 45 and 57, respectively. For each category, the

number of samples contained in positive test set and negative test

set is detailed in Table 12. Table 13 shows the corresponding AZ

values.

Table 13 shows that the AZ value for discriminating between

151 positive images from IRMA category 14 and 10,751 negative

images from other categories is 0:990+0:0035 when using MLLE

without feature selection. When applying MCFS and LPFS before

MLLE to perform the same experiment, the computed AZ values

are 0:848+0:0185 and 0:869+0:0137, respectively. Figure 13
(A) demonstrates the comparison of ROC curves for these three

sets of performance data. From Table 13 we can see that directly

using MLLE to perform dimensionality reduction yields the

highest AZ value in the discrimination of IRMA category 14,

compared to using feature selection methods MCFS and LPFS

before conducting MLLE ( 0:990+0:0035 vs. 0:848+0:0185 and

0:869+0:0137, respectively).

The computed AZ values for detecting positive and negative

images from IRMA category 27, 30, 43, 45 and 57 are also

detailed in Table 13. The corresponding comparison of ROC

curves are shown in Figure 13 (B), (C), (D), (E) and (F),

respectively. Based on these results, we can come to the conclusion

that, though using dimensionality reduction methods before

MLLE can reduce features and save computing time, the learned

embedding is worse than that obtained directly by MLLE.

It should be noted that, in this manuscript, to demonstrate the

effectiveness of MLLE to explore complementary properties of

different features, we extract twelve different features from each

medical image. In practice, there is a trade-off between the

number of visual features and retrieval performance. Within an

acceptable range of retrieval performance, users can extract less

visual features to save computing time. In fact, three to six visual

features are capable of achieving the acceptable retrieval

performance.

Discussion and Conclusion

We organize this section as follows. In Section 5.1, we give

statistical analysis of experimental results presented above. Then

we discuss the reason that MLLE achieves effective performance

than existing dimensionality reduction methods in Section 5.2.

Finally, Section 5.3 concludes our work.

Statistical Analysis
In this paper, we use MAP, DOR and ROC as criteria to

evaluate the performance of different methods. These criteria

reflect the effectiveness of these methods from different aspects. In

particular, MAP demonstrates the retrieval performance of

different methods on the IRMA test set. DOR and ROC show

the ability of different methods to distinguish different types of

medical image. Evaluation results obtained from different criteria

demonstrate that MLLE achieves best results.

Statistically, we utilize F1-measure to determine the reliability of

different criterion. Table 14 shows F1-measure values for MLLE,

LLE, MSE, LE and PCA on the IRMA category 1, 4, 7 and 25,

respectively. From the table, we can see that MLLE achieves the

best performance compared with other methods. This evaluation

further confirms the results obtained by DOR. By using F1-

Table 12. Number of samples contained in positive/negative
test set used for performance evaluation of MLLE, mcfs-MLLE
and lpfs-MLLE on different IRMA category.

IRMA
category 14 27 30 43 45 57

Positive
test set

151 106 98 70 69 50

Negative
test set

10,751 10,796 10,804 10,832 10,833 10,852

doi:10.1371/journal.pone.0082409.t012

Table 13. AZ values of MLLE, mcfs-MLLE and lpfs-MLLE on different IRMA category.

IRMA
category 14 27 30 43 45 57

MLLE 0:990+0:0035 0:986+0:0044 0:992+0:0046 0:954+0:0129 0:995+0:0033 0:981+0:0116

mcfs-MLLE 0:848+0:0185 0:964+0:0119 0:967+0:0151 0:883+0:0225 0:953+0:0217 0:903+0:0259

lpfs-MLLE 0:869+0:0137 0:929+0:0148 0:936+0:0156 0:786+0:0282 0:869+0:0312 0:874+0:0362

doi:10.1371/journal.pone.0082409.t013

Table 14. Comparison of F1-measure values for MLLE, LLE,
MSE, LE and PCA on the IRMA category 1, 4, 7 and 25.

IRMA category
Methods 1 4 7 25

MLLE 0.9521 0.9852 0.9748 0.9010

LLE 0.9529 0.9558 0.9524 0.7978

MSE 0.9310 0.7977 0.7171 0.5584

LE 0.9229 0.9081 0.8809 0.5034

PCA 0.9352 0.9549 0.9416 0.7283

doi:10.1371/journal.pone.0082409.t014
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measure to other performance criteria, i.e., MAP and ROC, we

can obtain the same conclusion.

Discussion
There are two reasons that make MLLE more effective to learn

a low-dimensional embedding from multiview features, compared

with existing dimensionality reduction methods. The first is that

MLLE can simultaneously learn a low-dimensional embedding on

multiview features. Different from other methods, MLLE uses

LLE to obtain optimal low-dimensional subspace on each view

and global coordinate alignment technique to unify all learned

subspaces into a global one. The second is that MLLE can explore

complementary properties among different features. Different

from traditional dimensionality reduction methods that treat each

feature equally, MLLE assigns different weight to each feature and

utilizes alternating optimization technique to obtain these weights.

Experimental results demonstrate the effectiveness of MLLE, in

the context of CBMIR, compared with existing methods.

Conclusion
With the rapid proliferation of radiological images in the

medical domain, retrieving medical images from large archives to

aid radiological image interpretation is becoming one of the most

active research fields. CBMIR utilizes multiple visual features to

represent images, which brings the problem of the ‘‘curse of

dimensionality’’. Though conventional dimensional reduction

methods can be employed to tackle this problem, these solutions

ignore the fact that different visual features have a range of

physical meanings. There is therefore a challenge to discover the

complementary properties of multiple visual features to represent

medical images. In this paper, we propose a new multiview

learning method called MLLE to address the problem. Experi-

mental evaluations on a subset of the IRMA medical image dataset

have demonstrated that the new method effectively represents

medical images in a low-dimensional subspace, and thus improves

the performance of CBMIR significantly.

In the proposed method, it is found that local patch size K ,
subspace dimension d and scaling factor r affect the effectiveness

of MLLE. From Figure 10, Table 9 and Figure 11 we can see

that optimal parameter values for MLLE exist on the IRMA

medical image dataset. In the future, we will evaluate the

performance of MLLE on other medical image test bed to further

explore effects of parameters on MLLE.
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