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An orderly single-trial organization of population
dynamics in premotor cortex predicts behavioral
variability
Ziqiang Wei 1,2, Hidehiko Inagaki1, Nuo Li3, Karel Svoboda1 & Shaul Druckmann1,4

Animals are not simple input-output machines. Their responses to even very similar stimuli

are variable. A key, long-standing question in neuroscience is to understand the neural

correlates of such behavioral variability. To reveal these correlates, behavior and neural

population activity must be related to one another on single trials. Such analysis is chal-

lenging due to the dynamical nature of brain function (e.g., in decision making), heterogeneity

across neurons and limited sampling of the relevant neural population. By analyzing popu-

lation recordings from mouse frontal cortex in perceptual decision-making tasks, we show

that an analysis approach tailored to the coarse grain features of the dynamics is able to

reveal previously unrecognized structure in the organization of population activity. This

structure is similar on error and correct trials, suggesting dynamics that may be constrained

by the underlying circuitry, is able to predict multiple aspects of behavioral variability and

reveals long time-scale modulation of population activity.
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Decision making is a central behavioral paradigm in neu-
roscience. In such tasks, animals sample sensory inputs,
generate a behavioral choice, hold it in memory, prepare

and execute an action, and finally compare the outcome to the
expected delivery of reward. These elaborate behavioral compu-
tations manifest in complex neural dynamics, and occur across
multiple temporal scales and brain areas1–11. For example, recent
studies in mice identified anterior lateral motor (ALM) cortex as a
critical circuit node for perceptual decision tasks9–12. ALM neu-
rons exhibit complex, heterogeneous, epoch-dependent dynamics;
population dynamics in ALM and connected thalamic nuclei13

evolve over time scales of milliseconds to seconds. These neural
dynamics reflect the confluence of sensory information with
representation of upcoming movement and other internal states.
Yet the complexity of population dynamics and experimental
limitations combine to render the structure of ALM population
activity and how it encodes behavioral variables and internal
states.

Across trials, identical stimuli give rise to variable neural
responses and behavior. Hence, averaging trials obscures the link
between behavioral and neural variability. Neural activity may
explain variable behavioral outcomes, yet variability in single
neurons is challenging to analyze because spikes are noisy.
Moreover, simultaneous recordings have consistently revealed
diverse neural activity, both within and among brain areas,
complicating efforts to relate neural dynamics to underlying
computations and to behavior. Methods that analyze population
activity can leverage simultaneous recordings to pool information
across neurons, revealing information that is difficult to decode
directly from single neurons8,14–27. Typically, these approaches
infer intermediary variables (latent variables) from the activity of
simultaneously-recorded neurons in single trials, then use these
variables as the basis to predict behavioral outputs. Such methods
have improved estimation in brain-computer interfaces28,29 and
predicted behavioral properties such as reaction time7, indecision
and hesitation23.

In this study, we develop a variant of latent space dynamical
system (LDS) models to uncover information from complex,
temporally heterogenous neural recordings. We assumed popu-
lation activity in single trials can be explained by the evolution in
time of a lower dimensional dynamical system learned from the
data. The state of these learned dynamics represents shared
activity across neurons30. We leverage the conceptual and com-
putational simplicity of LDS models but extend their efficacy by
allowing the underlying dynamics to change over time. Impor-
tantly, switches between distinct dynamical systems occur at cued
times corresponding to the transitions between trial epochs when
population dynamics are known to change9–11. This approach
represents a compromise between two extremes: assuming the
underlying population dynamics are linear and fixed across
time14–17,24–26 versus using nonlinear dynamical models that
allow switches between sets of linear dynamics at any given
time18,27,31. Striking a middle ground is important. Static models
fail to capture the complexity of neural dynamics, whereas
dynamical models that require tracking of combinatorial num-
bers of past switching options, are difficult to fit.

We reveal previously unrecognized structure within the
population dynamics of ALM during a two-alternative-forced
choice task. In this task, mice presented with one of two sensory
stimuli during a sample period were required to execute a specific
action matched to each sensory stimulus, but only after a delay,
during the response period.

We analyzed simultaneous recordings from ALM and found
that our LDS models captured a large fraction of neural varia-
bility. The low-dimensional latent variables in our model, referred
to as the shared activity space (SAS), reveal dynamics that are

robustly maintained for seconds pre-decision and post-decision,
far longer than that was required to successfully perform the task
i.e., just bridging between the sample and response periods. SAS
dynamics predicted multiple forms of single-trial behavioral
variability, such as response latency and correctness of animal
responses. Latent dynamics discovered during correct trials also
illuminated activity during error trials: SAS dynamics predicted
an animal’s error hundreds of milliseconds to seconds before the
actual action occurred.

Our results have implications for understanding the circuits
underlying slow dynamics that are associated with decision
making and short-term memory. First, we find that dynamics are
consistent across long timescales: within-epoch dynamics repe-
ated reliably across multiple consecutive trials (timescales of
minutes), demonstrating where and how long-timescale internal
states can be found in the brain. Indeed, we can infer longer
timescale behavioral measures, e.g., reward on a previous trial,
from our model. Second, we find population activity maintains
the rank order of individual trials across epochs within a trial
type, inconsistent with certain types of attractor-based models32.

In summary, we find that modes of shared population activity
reveal novel properties of circuit dynamics, allow more accurate
descriptions of the single-trial variability of dynamics, and can
yield useful quantitative measures of the neural substrate of
behavior both in single trials and on longer timescales.

Results
Epoch-dependent dynamics in anterior lateral motor cortex.
Multiple studies have established a causal link between ALM
preparatory activity and movement9–12. Here, we analyzed elec-
trophysiological recordings from mice performing a delayed
response task. In one paradigm, mice (n= 33) reported the
position of a pole (anterior or posterior) by directional licking
(lick-left or lick-right). Mice were allowed to respond after a 1.3-s
delay, when an auditory cue signaled the onset of the response
epoch. In the second paradigm, mice (n= 6) reported the fre-
quency (pitch) of an auditory cue after a 2-s delay (Fig. 1a).

ALM neurons exhibit complex, heterogeneous dynamics.
Consistent with previous studies, we observed a large proportion
of ALM neurons exhibited persistent and ramping preparatory
activity during the delay epoch before the movement9–12. This
was true across multiple levels: single-neuron or population
activity; trial-type decoding based on single-neurons, which
changed substantially over time for many neurons and at the level
of population selectivity. We defined instantaneous neuronal
selectivity as the differences between the responses, at a specific
time point, in lick-left versus lick-right trials. Tracking instanta-
neous activity across the length of the trial, we find >50% of ALM
neurons (n= 917/1743, pole task; n= 444/788, sound task)
changed their selectivity from the delay to the response epochs.
Neurons became selective at various time points during the trial,
with many changes appearing at the onset of epochs (Fig. 1b). At
the population level, we found strong switches in dynamics27

when analyzing simultaneous population activity (6–31 units
per session, 55 sessions; Supplementary Table 1). Defining
population trial-type selectivity by linear discriminant analysis
(LDA) decoders at separate times, we found that decoders were
stable within epochs, but diverged across epochs. These
observations held true for both tasks and even when neurons
were combined across sessions into a pseudo-population
(Supplementary Fig. 1).

Neural dynamics and the shared-activity space. Such complex
neural dynamics are difficult to interpret at the level of raw
population activity (i.e., a set of time series representing spikes).
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We analyzed population activity through latent dynamical system
models (LDS) that directly model the population activity8,14–27,31

effectively as a combination of a small number of shared patterns
of neurons, with a compromise between static LDS models that
do not capture the complexity of ALM activity and fully switching
linear dynamical system models (sLDS), which suffer from
combinatorial difficulties in fits. Hence, we instead assumed static
linear dynamics during each behavioral epoch but allowed
dynamics to change at cued times, i.e., switches of behavioral
epochs:

r tð Þ ¼ Wproj sð Þx tð Þ þ r0 þ v tð Þ ð1Þ

x tð Þ ¼ Wmode sð Þx t � 1ð Þ þ w t � 1ð Þ ð2Þ

We assume that neural population activity, the full-neural
space (FNS), r tð Þ 2 RN , can be modeled as a weighted sum of
neural modes, x tð Þ 2 RM M<Nð Þ, i.e., a low-dimensional latent
space, through a projection matrix Wproj. We refer to this latent
space of x as the shared activity space (SAS) since each latent
mode represents common dynamics shared by many neurons.
The model considers the difference between the observed activity
in the FNS and the activity explained by the SAS as neural
residuals, vðtÞ 2 RN , that are independent for each neuron
(Fig. 2a, top). This model can be represented as a two-layer
network: The first layer, corresponding to the SAS, is represented
by a set of implicit units with layer-internal dynamics, while the
second layer comprises units whose activation represents the
measured population activity in FNS. The activity of the second
layer is the projection up of the SAS by Wproj and the addition of
the neural residuals (Fig. 2a, bottom). In SAS, temporal dynamics
and interaction of latent modes are modeled as an LDS expressed

by the matrix Wmode that incorporates a stochastic term
ðtÞ 2 RM , which varies across time and trials. This term can
represent input from neurons in other parts of the brain, such as
sensory areas, and is often referred to as an innovation term.
Notably, both matrices that describe the dynamics, Wproj and
Wmode, are epoch-dependent (indexed by s). More generally, for
cases without explicit epoch-design, switches can be linked to
other known events, such as shifts in spatial location or changes
in the environment. We refer to these models as event-dependent
linear dynamical systems models (EDLDS). For the delayed
response task, the transitions between the epochs in each trial are
the only events that drive switches.

For a model fit to a set of population activity, we measured the
goodness of fit (R2) using a leave-one-neuron-out (LONO)
approach15, predicting the activity of a particular neuron when it
is left out of the model fitting. If the dynamics of individual neurons
are correlated and neural-mode dynamics have been well-estimated,
it should be possible to predict the activity of any neuron from the
estimation of the neural mode dynamics derived from test trials in
which the activity of that neuron was held out. Comparing the
neural activity with its LONO estimation, we found EDLDS model
explained a large fraction of variability (R2= .31, Fig. 2b, Session
#17, N= 18 neurons, M= 4 modes). For most sessions, LONO R2

initially increased with latent dimensionality and then saturated
(Fig. 2c). We compared how much variance was explained by
distinct configurations of our model, e.g., allowing only the latent
dynamics to change from epoch to epoch versus allowing only the
relation between latent dynamics and neural activity to change
across epochs. We also compared our models to a large set of other
models of varying complexity14,15,31. For a reference value, we
compared all models to a prediction based on the trial-averaged
response (i.e., a neuron’s peri-stimulus time histogram, PSTH, for a
particular trial type).
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Incorporating the epoch-dependent matrices Wproj and Wmode

yielded better fits compared to holding either constant (Fig. 2c),
consistent with the strong epoch-dependent change in dynamics. As
expected, the EDLDS model outperformed simpler models (Fig. 2d,
PSTH, Gaussian process factor analysis (GPFA), and LDS; p < .001)
and performed only marginally worse than models that allowed
switching at any time point (p= .27, sLDS2; p= .02, sLDS4; p

< .001, sLDS8 and other models; sign-rank test). In our hands, the
run time of sLDS models was 10–20 times longer; their fitting was
more complex, conceptually and algorithmically, and there were
hints of potential overfitting (i.e., switches at unexplained and
inconsistent times; Supplementary Fig. 2cd). Thus, we confirmed
the ESLDS model provided good fits to the population dynamics
that are comparable to a true sLDS, despite its simplicity.
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EDLDS models that provide good fits shared a number of
properties: across sessions, models typically had a long time
constant at the delay and the shortest one at the pre-sample
epoch (Supplementary Fig. 2e). Both properties are consistent
with our expectation of a delayed-response task. In addition, the
approximate dimensionality of the SAS was similar across
sessions, (3 or 4, pole task; 6, sound task; Supplementary Fig. 2b)
despite the number of simultaneously recorded units spanning a
fairly wide range (6–31 units per session, 55 sessions; Supple-
mentary Table 1).

Decoding behavioral variability from shared activity space.
Having extracted single-trial dynamics in the SAS, we measured
their ability to decode behavioral variables. If the SAS judiciously
pools neural activity across neurons and time, one expects better
performance in decoding behavioral variability from the SAS than
from the FNS. We first tested whether trial type could be decoded,
training behavioral-choice decoders on either the FNS or the SAS
at 300 ms before response onset. While both decoders successfully
differentiated trial types (Fig. 3a), decoders running on the SAS
were significantly more accurate (p < .001, sign-rank test, Fig. 3b;
decoding based on different times within the delay period yielded
qualitatively similar results).

Next, we considered more subtle predictions, i.e., explaining
the variability in the timing of movement7,33,34. We performed
this prediction based on the single-trial projection of population
dynamics on behavioral-choice decoders. Projection values based
on the SAS were more correlated with movement onset than
those based on the FNS (Fig. 3c; top inner, Session #17, ipsi. trials;
FNS, left, rs=−.31; p= .001, sign-rank test; SAS, right, rs=−.47;
p < .001; bottom, Session #39, contra. trials; FNS, left, rs= .21; p
= .142; SAS, right, rs= .45; p < .001; across sessions, Fig. 3d). We
note that in multiple sessions, reactions were a mix of fast (100 ±
3 ms, mean ± std.) and slow responses (>200 ms; a long-tail
distribution, Fig. 3c, top). We consider them separately; the
longer reaction times were predicted accurately in the SAS
(Fig. 3c, top; Session #09; reaction time >100 ms; FNS, left, rs=
−.24; p= .217; SAS, right, rs=−.55; p= .003), but neither FNS
nor SAS predicted fast-response trials well (p > 0.05, rs= 0, sign-
rank test). Comparing across latent space models, we found our
ESLDS model outperformed most models in both trial type and
reaction time decoding (Supplementary Fig. 3).

Inferior performance in FNS may be due to poor model fitting,
since the larger dimensionality of FNS forces decoders based on it
to have more parameters. Therefore, we experimented extensively
with regularization of FNS, yet the EDLDS-SAS performance was
superior across all regularization parameters and methods35

(Supplementary Fig. 4). Moreover, although other models had a
similar dimensionality and thus did not require more regulariza-
tion, these still yielded inferior performance to the EDLDS-SAS.

Notably, all the information to make predictions was in the FNS;
the EDLDS and other SAS models are fit without additional side
information. These models make specific assumptions regarding
an underlying model for the dynamics, however, which allows
them to perform effective denoising of signals and thus yield
better predictors7.

Long time scale single-trial signals across epochs. Successful
performance of the delayed task requires trial-type signals to
propagate from the sample to the delay epoch. Accordingly we
expect to find that trials of distinct types can be differentiated
across this period. Beyond this minimal organization of popula-
tion activity, it is not clear whether further levels of organization
can be discerned. Such organization might reflect additional
internal states that can be quantified, tracked, and potentially
related to behavior8,25.

SAS maintains a consistent relationship between trials from the
same trial-type across time while FNS does not. Visualizing the
projection of the first two principal components of the raw
population activity across behavioral epochs, the trajectories of
individual trials cross and mix (Fig. 4a). In contrast, the same type
of projection performed on the SAS trials reveals an orderly
relation within trial types (Fig. 4b). Namely, the position of a trial
in the SAS extends throughout a single trial and systematically
differs from trial to trial. Therefore, ALM population activity
maintains a neural correlate of single trial identity beyond what is
dictated by the task (since trials within the same trial-type are
identical in terms of the task).

To better understand the neural correlates of single trial
identity we tracked neural activity across time in single trials
(Fig. 4) and considered their relationship across trials (Fig. 5) by
analyzing the dynamics of the projections on decoders of trial
type, since we found them highly predictive of behaviors11. We
transformed the projection from its raw value to a relative rank
across trials (either combining both trial types or separately per
trial-type). For instance, if the projected values on trials 1–3 at a
given time were 0.5, 1.3, and 0.2 the rank at that time would be
2,1,3, respectively. In FNS, separation between trial-type was
consistent across time, but the rank within trial-type was not
consistent (Fig. 4cd). In contrast, for decoders built from SAS we
found single trial projections were both separated across trial
types and maintained their ranks across time (Fig. 4ef). That is, a
trial that ranked high at some time (high value of the projection
on the decoder) tended to maintain a high rank during the rest of
the trial. Even when averaging activity across an entire epoch to
improve signal-to-noise, the single-trial rank correlations were
significantly higher in SAS than in FNS across all epochs (p
< .001, sign-rank test, Fig. 4g). This was not simply due to
temporal smoothing in the SAS; decoders based on smoothed
activity had weaker single-trial rank continuity (Supplementary

Fig. 2 Latent dynamical system modeling of neural activity and the shared-activity space. a Schematic description of time-varying linear dynamical systems
model. Top: population activity is decomposed into a few activity modes shared across neurons. The activity of each neuron is described as a weighted sum
of the shared modes and a single neuron residual activity. Bottom: alternative representation of model as a two-layer neural network. b Model reproduces
neural activity in a leave-one-neuron-out scenario; the activity of a given neuron is estimated from the dynamics of the other simultaneously recorded
neurons. Top: Observed neuronal activity of four neurons randomly picked from Session #17, (ipsi trials red, contra trials blue). Bottom: prediction of
neuronal activity on prediction data where the activity of that neuron is unobserved. Shaded area, std. across trials. c Comparison of shared activity space
fits for different models: event-dependent dynamical systems (EDLDS, purple, our model); three variations of our model—constant dynamical systems
(LDS, blue), constantWmode (yellow) and constantWproj (pink); two simpler models—PSTH (mean activity in time for each trial type; black) and Gaussian
process factor analysis (GPFA, dark green); and three variations of switching linear dynamical systems with 2 (red), 4 (orange) and 8 (light green) hidden
states as a function of number of latent dimensionalities for 6 recording sessions (4 from pole tasks, 2 from sound tasks, note all data from simultaneous
recordings, not pseudo-populations). d Comparison of variance explained for different models for all recording sessions (n= 55). Scatter plot below shows
each single session as a dot; boxplot (center line, median; bounds of box, 25 and 75%; whiskers, 1.5 interquartile range) above, shows across-session
statistical summary; p < .001 for paired-comparisons (sign-rank test) between two models in boxplots without explicitly values
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Fig. 5c). Nor was this effect solely due to de-noising by pooling
across neurons; single-trial rank consistency in the EDLDS-SAS
was also superior to factor analysis, (Supplementary Fig. 5d),
implying that interaction among latent modes is related to the
continuity of dynamics. Comparing across models, the EDLDS
model shows a stronger consistency of single-trial rank than most
other models (Supplementary Fig. 6).

We were concerned the increased consistency in rank might
stem from the non-causal nature of fitting latent dynamical
system models, which infer the latent state at a given time based
on all time points both in the past and future. We addressed this
concern by multiple controls. First, running the EDLDS model in
a strictly causal mode (i.e., using past time only to infer the
current latent state, typically referred to as forward-pass), the
rank remained significantly more consistent across time than in
FNS (Fig. 4h, p < .001, sign-rank test). Second, if rank continuity
was merely a property the model imposed on the data, it should
be only weakly dependent on structure found in the data. In
contrast, we found that shuffling neurons across trials within a
trial type–taking the activity for each neuron and replacing it by
the activity from the same neuron but a different trial of the same

trial type–significantly reduced rank continuity (p < .001, sign-
rank test, Supplementary Fig. 7). Thus, we conclude the
persistence of the rank of a trial across epochs is an underlying
property of the data that is revealed by the de-noising offered by
the EDLDS model, not an artifact of the model.

Next, we asked whether longer timescale signals were
discernible in the structure of population dynamics. We
hypothesized that signals over multiple trials, tens of seconds,
might be revealed by similarity in the activity rank in temporally
adjacent trials (e.g., the next and previous trial). Visualizing the
rank of each trial across time and trials, we found hints of such
structure in FNS (Fig. 5a) and clear signs of rank similarity across
multiple trials in the SAS (Fig. 5b). Once again, this cannot be an
analytical artifact since the latent state in the EDLDS is estimated
separately for each trial, restricting the non-causal nature of the
model. To quantify these observed slow dynamics across trials, we
computed the linear correlation between the temporal order of
the trial (e.g., first trial, last trial) and the relative rank of its
activity (within the same trial-type). Performing this analysis
separately for each epoch, we found rank consistency in the SAS
(r= .17 ± .02, 74 contra. trials; r= .20 ± .02, 100 ipsi. trials, mean
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Full neural space decoder correlation (x-axis) versus shared neural space decoder correlation (y-axis). For each session only one trial-type is considered.
Each circle represents a session. Color of circle represents trial type; p-value presents significance that correlation is strong in SAS (sign-rank test). Session
#17, ipsi. trial type, orange circle; Session #39, contra. trial type, green circle
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± sem) was significantly stronger than those in the FNS (Fig. 5c,
p < .001, sign-rank test, for all epochs) or others (Supplementary
Fig. 8a). Interestingly, simpler models (i.e., LDS, GPFA, EDLDS)
better revealed long-time scale dynamics, perhaps because
overfitting full-switching sLDS models to short timescale
dynamics obscures longer time-scale correlations.

We next considered an additional form of long timescale
structure: consistency in how relative rank changes within an
epoch (contrast with the consistency in the average rank of a trial
considered above). For example, relative rank starts low and
increases when activity ramps up during a trial. The overall
relative rank within an epoch would differ if for instance activity
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ramps up during an epoch in some trials while remaining flat in
others. We refer to the similarity of within-epoch rank changes as
rank-dynamics consistency. We quantified rank-dynamics con-
sistency by correlating the relative rank within an epoch between
two trials:

rs i; jð Þ ¼
ranki;n � rankih in
� �

rankj;n � rankj
D E

n

� ���� ���
σ ranki;n
� �

σ rankj;n
� �

where rs(i, j) is the rank correlation of trial i and j in rank space

for epoch n in the same trial type; �h in is an average over times
in epoch n; and σð�Þ is the standard deviation. We compared
this quantity on neighboring pairs (j= i+ 1) of the same trial-
type only, which occur infrequently in a randomized trial type
design (n= 1344 pairs across 55 sessions). We found that rank-
dynamics similarity was significantly stronger than the
similarity found in the FNS (Fig. 5d; p < .001, sign-rank test,
for all four epochs). Comparing across all other models, we
found that the rank-dynamics similarity in the EDLDS was
stronger than all models in nearly all behavioral epochs.
Furthermore, all other models had at least one epoch that failed
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to show significant rank-dynamics similarity (Supplementary
Fig. 8b).

We hypothesized longer timescale features of the dynamics
may relate to recent behavioral history. Indeed, we found we
could reliably predict the previous trial’s outcome27 (inter-trial
intervals vary from 8–20 s) during the pre-sample epoch from the
SAS, but not the FNS (Fig. 5e–f; other model fits, Supplementary
Fig. 9a). This was similarly true for other behavioral variables in
previous trials, such as choice36, early lick, and stimulus37

(Supplementary Fig. 9). The even longer timescale dynamics
(tens of trials Fig. 5b) may relate to more difficult to track changes
in behavioral states such as arousal or thirst.

These results reveal rich structure in ALM dynamics on the
EDLDS latent space. Neural activity evolves in a manner such
that an individual trial can be robustly tracked from sample epoch
through delay epoch to response. Moreover, the dynamics of
population activity change slowly over timescales of many
seconds, with the dynamics seen in a particular trial more similar
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to the dynamics of a temporally-adjacent trial than trials at other
times, presumably due to the influence of a slow-changing
internal state. Finally, analysis in the SAS allowed explicit
decoding of longer timescale behavior.

Error trials. Given the unexpected degree of structure in the
neuronal population dynamics, we hypothesized it might be
relevant for understanding complex behavioral patterns such as
error trials, where an animal makes an incorrect action. Error trial
analysis can provide insight into the underlying computations22;
they offer an opportunity to view a break in the typical, learned
association between stimulus and action. Yet analyzing such trials
is challenging both because they are rare and because the diverse
causes for errors likely drive variable dynamics. Here, we com-
pared the structure of dynamics in correct and error trials in the
SAS. We hypothesized that the structure of dynamics for correct
and error trials38 differs grossly, such that error trials would be
marked by a failure of the LDS model derived from correct trials.
Surprisingly, we found that SAS built from correct trials alone
successfully predicted substantial variability in a LONO test
during error trials (Fig. 6a; captured 52 ± 7% variance of that
computed using PSTH, mean ± std.). This indicates that similar
neural dynamics underlie the formation of correct and error
trials, as in drift-diffusion models39. Additionally, although the
fraction of explained variance was smaller in error trials (p < .001,
sign-rank test; Fig. 6b), its value correlated strongly with the
explained variance in correct trials. This indicates that the better
the fit for the regular dynamics, the better the fit for the error-trial
dynamics (rs= .91, p < .001, sign-rank test), again in line with the
notion that qualitatively similar dynamics underlie correct and
error trials (Supplementary Fig. 10a, fit for other models).

If the structure of population dynamics is similar across both
correct and error trials, what makes a trial an error trial? Knowing
the behavioral contingency, one can spot error trials in motor or
decision areas by neurons having a response more similar to the
opposite behavioral contingency22. However, this schematic
description of response flipping does not always capture the
dynamics observed in many neurons and brain areas38. To
discover errors that are driven by the neural representation being
in a different state than correct trials (beyond the opposite
sensory contingency), we performed a more challenging decoding
analysis: decoding a trial’s correctness without access to its
behavioral contingency (lick left or right). This decoding was far
more effective in the SAS than in the FNS (Fig. 6c–e; p < .001,
sign-rank test). In the SAS, accurate error decoding started early
in the delay period (Fig. 6c; Session #17), whereas in the FNS
there was no successful decoding of error until the delivery of
reward. Across sessions, decoders decoded errors significantly
earlier in the SAS (p < .001, sign-rank test; Fig. 6d). Furthermore,

these results hold true when using the forward-only fit (p < .001,
sign-rank test; Fig. 6f), implying they are not artifacts of the non-
causal nature of the EDLDS model. Finally, the EDLDS model
outperformed all other models in early predictions of error trials
(Supplementary Fig. 10bc).

Comparing sessions with sufficient error trials for decoding,
we observed the temporal profile of error decodability varied
substantially from session to session (Supplementary Fig. 11).
We explored this issue using two approaches. First, we
compared the projection on decoders of trial type for correct
and error trials; second, we inspected the rank-consistency we
observed before. The average dynamics of error trials had
diverse patterns, sometimes showing intermediate values
between the trial conditions and sometimes showing a flip in
the response to the other trial type (Supplementary Fig. 11b).
The timing of the divergence in error trial dynamics to the
direction opposite to correct trials was typically consistent with
the previous decoder results (Fig. 6g). When analyzing rank
consistency, we lacked sufficient numbers of error trials to
analyze within-trial rank; therefore, we used a rank measure
that incorporates both trial types. Specifically, we compared the
rank of trials at each time point with a reference rank calculated
around the transition between sample and delay (−300 ms to 0
ms relative to delay onset, qualitatively similar results were
found for other time windows around this period). We found
clear disruption in across-epoch rank-consistency in error trials
(Fig. 6h), with rank dynamics starting to diverge between error
and correct trials after the end of the sample epoch, consistent
with the timing inferred from the other analyses (Fig. 6i). We
cannot rule out that the distinct temporal profiles of error
decodability are not the product of differential sampling of
neural selectivity across sessions, but this cannot be directly
controlled. Although we found no consistent patterns, there
were sampling differences between sessions. For example,
Session #17 has seven trial-type selective neurons (among 18
units) from sample to delay epochs, and error trial decodability
held continuously across sample-delay epochs. In contrast,
Session #13 (Supplementary Fig. 11) had one trial-type selective
neuron in the sample epoch and four neurons (among 11 units)
in the late delay, and error trial decodability broke down in the
middle of delay. Performing the same analyses in the FNS
(Fig. 6j–l), we found the divergence of error trials still agreed
with the FNS decoder results, but the rank-consistency was too
noisy to reliably compare to the timing of significant decoding
(results for other sessions, Supplementary Fig. 11). In summary,
the de-noising properties of the SAS allowed more fine-grained
analysis of error related signals, with the inferred timing of
hypothesized error generation consistent among multiple
measures.

Fig. 6 Error trials exhibit similar population dynamics to correct trials in the shared activity space. a Neuronal activity in error trials can be explained by a
dynamical system model latent space estimated from correct trial data only. Top: observed neural activity in error trials (cells identical to those in Fig. 2b);
bottom: prediction of the neural activity using leave-one-neuron-out methods based on a shared activity space fit using correct trials. Shaded area, std.
across trials. b Fraction of variance explained by shared activity space model for error trials in different sessions (y-axis) scattered against fraction of
variance explained by model on correct trials. c Decoding accuracy of trial-correctness for decoders based on shared activity space in purple, for full neural
space in black; shaded area, std. across trials. d Scatter of time in which decoding accuracy reaches a selected threshold (.65) for decoders based on full
neural space (x-axis) or shared activity space (y-axis). Green, pole task, delay starts at −1.3 s; Orange, sound task, delay starts at −2.0 s. e Scatter of
decoding accuracy of trial correctness at late delay. Across sessions, decodability of trial correctness at late delay is high in SAS. Each circle corresponds to
a session in b, d and e. f the same convention as those in c–e. except shared activity space is computed based on EDLDS forward-only pass (causal model).
g Plot of neural dynamics in shared activity space projected on decoders of trial type for correct (blue, contra.; red, ipsi. trials) and error trials (cyan, contra.;
magenta, ipsi. trials). Bold lines, averaged activity; shaded areas, sem. h Heatmaps of rank similarity in shared activity space across time averaged over
correct (left) and error (right) trials. i Similarity of instantaneous rank to that in the late sample (−300ms to 0ms at the onset of delay, gray bar) in shared
activity space averaged over correct (green) and error (magenta) trials. j–l the same convention as those in g–i, respectively, but for neural dynamics and
its rank in full neural space
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Discussion
Neural dynamics are rich and heterogeneous, with large varia-
bility in responses both within a trial and across trials. Thus,
describing the underlying computations and their relation to
behavior is challenging. Here, we revealed stable, ordered internal
representations that bridge these heterogeneities. We successfully
applied latent dynamical system models to the epoch-dependent
nature of the observed dynamics and showed these models can
serve as proxies for internal states while accurately explaining
behavior in both correct and error trials.

Our EDLDS model accurately predicted multiple features of
behavior by judiciously pooling population activity across time
and neurons into a lower dimensional representation, the shared
activity space. Although the SAS has less information than the full
neural space, it delivered superior performance compared to FNS
in predicting multiple behavioral features. Here we discuss two
explanations for this.

If the SAS captures most of the relevant information from the
FNS with fewer parameters, SAS-trained decoders will gen-
eralize better than FNS-trained ones. Importantly, latent
dynamical system models, such as EDLDS, capture information
both across neurons and time, unlike static decoders.
Attempting to capture all information without compression
requires a large number of variables, e.g., a 4-s trial subdivided
into 50-ms bins yields 80 temporal bins for the activity of a
neuron; recording 20 neurons thus resulting in 1600 variables.
The parameters of these variables are typically fit based on the
data from a few hundred trials which can lead to poor model
fitting. Regularization can alleviate some difficulties, but when a
dataset’s correlation and noise structure are unknown, choosing
effective, generally-applicable regularization methods is diffi-
cult40. In contrast, the EDLDS latent variables have lower
dimensionality and their values at any time naturally incorpo-
rate past information, even when decoders only have access to
data from a single time bin. This greatly reduces the number of
parameters and improves generalization.

SAS performance may also benefit from imposing the
assumption that population activity follows reliable dynamics,
which can alleviate the effect of measurement noise. Consider a
system for which the dynamics must a priori obey some rules. If
our expectedly noisy observations of this system produce a tra-
jectory inconsistent with known dynamics (e.g., a dropped ball
observed to fly up), observational error must have occurred; thus,
the true underlying state was not the one observed but rather
another trajectory consistent with the known dynamics (e.g.,
gravity). Discounting this presumed erroneous observation is
known as de-noising. For neural data, analyses that incorporate
de-noising are likely to be more robust since spikes induce sub-
stantial measurement noise. Since the dynamics need to be
learned from limited data, simpler models are preferred; yet if
models of dynamics are too impoverished, imposing their infer-
red dynamics on the data will introduce bias instead of denoising.
We hypothesized that adding event-driven switches to linear
dynamical systems, generating the EDLDS model, would generate
a rich and robust model of dynamics and thus allow effective de-
noising even when estimating the dynamics from the data. Our
results demonstrate the EDLDS model’s ability to assimilate and
de-noise data, making it especially apt for performing single-trial
population analysis14–18,24–27,31.

Our results also illuminate how diverse population activity
models capture neural activity and relate it to behavior, an
important question given that most studies interpret neural
dynamics through statistical models of differing complexity. A
key measure of any model is its ability to fit the data, which can
be readily quantified by predictions on held-out data. As expec-
ted, we found that more complex models perform better in

explaining variance of held-out data, but these models did not
explain behavioral variance better and revealed less underlying
structure in dynamics (Fig. 7). Specifically, we observed many
cases where the inferred switches in the latent dynamics of an
sLDS model were not easily explained (Supplementary Fig. 2cd),
perhaps because these are overfit, irrelevant switches that dis-
rupted and obscured the structure of population dynamics. We
also observed a stark contrast between how easily these models
are to fit. Fitting LDS or our EDLDS models is conceptually and
algorithmically simpler than sLDS models, and it is several orders
of magnitude faster (in our hands, computation time for a typical
set of recording sessions took weeks in sLDS versus a few hours in
EDLDS). More generally, the difference between EDLDS and
sLDS can be thought of as using supervised versus unsupervised
inference of switches. In situations when a given behavioral event
is likely to lead to a switch in dynamics, e.g., a change in beha-
vioral epoch, one’s methodology should explicitly take this into
account (e.g., EDLDS). The dataset we use in the paper will
become freely available and has several interesting and non-trivial
properties that may make it a useful benchmark or reference
point for testing new models (Fig. 7).

Error trial analysis22,23,34 stands to greatly benefit from latent
space approaches that allow more powerful single trial analysis.
However, the small number of error trials renders fitting a
dynamical system model of them unfeasible. If errors are caused
by a strong change in the dimensionality of a representation38,
adopting the same underlying dynamic model from correct
trials would be inappropriate. Intuitively, at least some forms of
error, e.g., lack of alertness, would also affect the underlying
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Fig. 7 Summary of comparison across models. Results from Fig. 2 to Fig. 6
were compared across models and summarized into a pairwise comparison
table. The comparison is divided into two categories according to the
nature of the analyses. The first category emphasizes the predictability of
behavioral and neural variability from different models. The analyses in this
category includes: (1) rank dynamics: Fig. 4g, Supplementary Fig. 6; (2)
early prediction of trial type: Fig. 3b, Supplementary Fig. 3a; (3) reaction
time: Fig. 3d, Supplementary Fig. 3b; (4) early prediction of errors: Fig. 6d,
Supplementary Fig. 10b; (5) disruption shuffle trial rank dynamics:
Supplementary Fig. 7; (6) long time-scale rank dynamics: Fig. 5cd,
Supplementary Fig. 8. The second category emphasizes the variance
explained by each model. This includes the explained variance for correct
trials (Fig. 2d) and error trials (Fig. 6b, Supplementary Fig. 10a)
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computations, again rendering them distinct from correct trials.
To our surprise, the dynamical structure of population activity
is unexpectedly similar in correct and error trials. Conceptually,
this provides evidence against models that assume dynamics are
distinct in error trials while bolstering other models in which
error trial dynamics are more similar to correct trial dynamics,
such as drift-diffusion models39 and some attractor models41.
Practically, this means most latent dynamical system models
can be fit with the number of correct trials to be reliably con-
strained for the small number of error trials. Importantly, we
stress that comparing latent dynamics in correct and error trials
goes beyond (and is complementary to) single-neuron error-
trial analysis, and is only possible at the population level42.
Future experiments that allow independent analysis of whether
and when an animal is likely to make a mistake will be
important to assess the advantages of finer-grained error-trial
information revealed by latent space analysis and particularly in
the non-trial-type-conditioned error analysis we performed.

In trial-based designs, one can compare how behavior differs
across diverse trial conditions to the cognate trial-averaged
population activity. Similarly, one can perform decoding ana-
lysis to regress neural activity against measured behavioral
variables such as the instantaneous position or velocity of an
animal. Such decoding analyses are robust for aspects of
behavior that we directly impose or can reliably measure, such
as trial condition (imposed) or position (measured). Yet an
animal has additional internal states that affect behavior such as
alertness etc. that can only be partially deduced from obser-
vation, e.g., measuring pupil diameter as a proxy for alertness.
These states need not remain a black-box. Assuming they
influence neural activity, they might be identified or inferred
from population recordings43. Central hubs like decision-
making areas (e.g., ALM) are key candidates for such analyses
where long timescale dynamics might be revealed since they
likely integrate many types of information and their activity is
directly related to behaviors11.

Long timescale organization of activity is of particular interest
both due to its temporal match with internal states that are
thought to be long-lasting, and from the technical perspective of
inferring structure in limited signal-to-noise sampling. In prin-
ciple, such structure might be observed from single neurons or
population activity (particularly when a behavior is correlated
strongly with its previous trial36,37,44), but it may be obscured by
the noise induced by spikes, especially in neurons with low firing
rates. Here, we found strong evidence for such structure both
across the seconds-long timescales expected from the nature of
the task, i.e., transferring information from sample, delay to
response, and across multiple trials, at hundred seconds. This
organization can be faintly observed in the raw neural activity,
but the denoising offered by EDLDS strongly and significantly
unmasks this structure. In our study, sharp changes in neural
dynamics occur in a coordinated fashion across trials, such that a
candidate neural signature of a particular trial’s identity is
maintained. Specifically, dynamics at distinct timescales do not
interfere with each other; they also possibly reflect distinguishable
computations: short timescale ones, task-related computations;
long timescale ones, slow-varying internal brain states. This
reveals an additional level of organization in neural activity and a
potential leverage point for understanding long timescale internal
state dynamics across brain areas and for understanding longer
timescale phenomena such as learning, alertness, thirst, hunger or
motivation.

Methods
Behavior. Mice were trained to perform a delayed version of a two-alternative
forced-choice discrimination task11. Mice reported the position of a pole (anterior

or posterior) or the frequency of a sound (low or high) by directional licking (lick-
left, ipsi trial; or lick-right, contra trial) after a delay period (sample period: 1.3 s,
delay period: 1.3 s, pole task; sample period: 1.15 s, delay period: 2.0 s, sound task).
Inter-trial intervals were variable, ranging from 8–20 s from the previous trial’s go-
cue. In addition, the next trial was not initiated until at least 4 s had passed after
mice stopped licking. Mice were water restricted. Delivery of water began imme-
diately following the detection of a correct lick. Reinforcement was not delayed and
water was consumed during subsequent licking. Mice were trained to a criterion of
at least 70% correct.

Electrophysiological recordings. Electrophysiological recordings were performed
on the left-hemisphere anterior lateral motor cortex (ALM) using 32-channel
NeuroNexus silicon probes (n= 19 mice) or 64-channel Janelia silicon probes (n
= 20 mice). Details of electrophysiology and spike sorting were described in10,12,13.
Regardless some sessions were reported10,12,13, all sessions are compiled and
released to [https://doi.org/10.6084/m9.figshare.7372898]45 with codes (github.
com/zqwei/TLDS_ALM_Data) that can recreate figures in the main text.

We excluded trials with early licking. Cells were previously classified as fast-
spiking interneurons and pyramidal cells in10,13. Recording sessions were chosen
based on two criteria: each session must have more than 5 units and the number of
correct trials should be more than double the number of units (8 sessions in 32-
channel recordings; 47 sessions in 64-channel ones). Summary is shown in
Supplementary Table 1. Session #17 was used as the example session throughout
the main text. This session contained 18 simultaneously recorded neurons with 14
pyramidal cells and 4 interneurons.

Single neuron analysis. For all analyses, we binned neural activity using 67-ms
discrete time window expect for when we explicitly compared to longer windows as
a control in Fig. 4g, Supplementary Fig. 5c, where we used 250-ms bins in 10-ms
steps. To compare the single trial variability in different neural spaces, we com-
puted std. of neural dynamics within the same trial type; except for in Supple-
mentary Fig. 1g-i; m-o, where sem. are presented.

To measure the dynamics of selectivity, we performed two-sample t tests with
neural activity in each 67 ms discrete bins (Fig. 1b). We defined a neuron as
monophasic if it had consistent polarity of selectivity (p < .05) for >335 ms (5
continuous bins), a neuron as multiphasic if it had a switch of selectivity (p < .05)
with the periods of selectivity being at least 335 ms. The rest of the neurons were
considered as nonselective neurons. For monophasic-selective neurons, we
classified them into contra.- and ipsi.-preferring cells, according to the trial type for
which they had higher activity (p < .05, two-sample t-test). Instead of correcting for
multiple comparisons due to independent tests at each time bin we consider a
neuron significant only if it had a significant value at 5 consecutive bins.

Event-dependent linear dynamical system model. Our Event-Dependent Linear
Dynamical System (EDLDS) model, is an extension of a linear latent space
dynamical system model30. In such models, the full neural activity, r tð Þ 2 RNð Þ, is
modeled as a projection up from a low dimensional neural-mode space,
x tð Þ 2 RM ; M<Nð Þ by a projection matrix, Wproj. The low dimensional modes
evolve according to linear dynamics, Wmode, with Gaussian innovations (Eqs. 1
and 2). In our model the model parameters are fixed in time but are allowed to be
different for each experimental epoch, s. This model is a compromise between
models in which there is only one fixed latent model, which have dynamics that are
incapable of capturing the rich dynamics we find in ALM and models that allow
switching at any time point18, which suffer from difficulties in estimation due to
the combinatorial number of possible hidden states of transitions over time. Under
this model, the joint probability of the data and latent modes is:

P x tð Þf g; y tð Þf gð Þ ¼ P x 1ð Þð Þ
YT
t¼2

P x tð Þ xj t � 1ð Þð Þ
YT
t¼1

P r tð Þ � r0 xj tð Þð Þ; ð3Þ

where rðtÞ � r0 xj tð Þ � �r tð Þ � N WprojðsÞx tð Þ; Qext sð Þ
� �

,
xðtÞ xj t � 1ð Þ � N Wmode sð Þx t � 1ð Þ; QintðsÞ

� �
, and the initial state of the neural

mode x 1ð Þ � N x0; Q0ð Þ.
The parameter set Θ included the amplitudes of external independent inputs

QextðsÞ ¼ σ2ext nð Þ� �
onto each neuron (1 � n � N ; N, the number of neurons in

simultaneous recordings), the amplitude of internal inputs QintðsÞ ¼ σ2int mð Þ� �
onto each neural mode (1 � m � M; M <N, the latent dimension), the latent
connectivity, Wmode sð Þ 2 RM ´M , and the projection, Wproj sð Þ 2 RN ´M for each
epoch (i.e., pre-sample, sample, delay, and response), and those associated with the
initial state of the neural mode x0, Q0 in trials.
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The estimation of the EDLDS followed similar Expectation-Maximization steps
as that in ref. 14. The expectation step was identical and the maximization step was:

Wproj � sð Þ ¼ Pt sð Þ
t¼t s�1ð Þ

�rtx
T
t

 ! Pt sð Þ
t¼t s�1ð Þ

xtx
T
t �rtf g1�t�T

�� !�1

;

Q�
ext sð Þ ¼ 1

t sð Þþ1�tðs�1Þ
Pt sð Þ

t¼t s�1ð Þ
�rt �Wproj � sð Þxt
� �

�rTt ;

Wmode � sð Þ ¼ Pt sð Þ
t¼t s�1ð Þþ1

xtx
T
t�1 �rtf g1�t�T

�� !

Pt sð Þ
t¼t s�1ð Þþ1

xt�1x
T
t�1 �rtf g1�t�T

�� !�1

;

Q�
int sð Þ ¼ 1

t sð Þ�t s�1ð Þ

Pt sð Þ
t¼t s�1ð Þþ1

xtx
T
t �rtf g1�t�T

�� �Wmode � sð Þ Pt sð Þ
t¼t s�1ð Þþ1

xt�1x
T
t�1 �rtf g1�t�T

�� !
:

ð4Þ

where t(s) presents the last time point of epoch s and t(0)= 1. Here we constrained
the estimation of input matrices QextðsÞ and QintðsÞ to be diagonal after each
iteration of maximization. Further, we computed dynamics of the neural mode in
the shared activity space as xt �rtf g1�t�T

�� from the expectation step. Model
estimation was based only on correct trials.

Leave-one-neuron-out estimation. To determine the performance of model fits,
we computed the variance explained using a leave-one-out procedure in cross-
validation15. After fitting the model on training data, we take test data, remove the
activity of the i-th neuron from the data, hence leave-one-neuron-out (LONO), and
estimate the values of the shared activity space modes: xt �r�i

t

� �
1�t�T

��� ffi
xt �rtf g1�t�T

�� : We then compute the expected activity of the ith neuron as
r̂it ¼ Wproj iðsÞxt �r�i

t

� �
1�t�T

��� þ ri0, where Wproj i is the ith row of the projection
matrix Wproj. The explained variance,

R2 ¼ 1�
rit � r̂it
�� ���� ��2

2

D E
t

rit � r0j jj j22
D E

t

* +
i

ð5Þ

measured the goodness-of-fit (where �k k2, is the L2 norm of the vector; �h it , is an
average over time and trials; �h ii is an average over neurons).

To select the dimensionality of the shared activity space, M*, we performed
LONO estimation of TLDS fit using 10-fold cross-validation for each possible
dimension, 1 � M � N � 2 (Fig. 2c). The amount of the variance explained as a
function of the dimensionality of the shared activity space first increased
(corresponding to an under-fitting region) then saturated or even decreased (an
over-fitting region). To avoid overfitting we picked the minimal dimension that
reached a criterion of 90% of the maximum amount of variance explained. As a
control we also compared results to the amount of variance explained in a model
where either Wmode or Wproj was constant matrices (Fig. 2c).

As a comparison, we computed explained variance of a reference model, the
mean-activity model, where we assume that neural activity follows a random
fluctuation around its mean in each trial. Therefore, for each neuron,
r̂it sð Þ ¼ rit sð Þ

	 

i , and index s stands for the trial type: correct contra, correct ipsi,

error contra, or error ipsi trials. Computation of explained variance then follows
Equation 5.

Decoding analysis. To determine trial-type decoding we applied linear dis-
criminant analysis (LDA) on neural dynamics grouped into 67-ms non-overlapped
bins. The LDA decoder, lt , was computed separately for each time bin, t, using
correct response trials only. The neural dynamics projected onto the decoder was
then computed as st ¼ lTt rt , where rt is the vector of neural activity in time bin t.
To avoid the ambiguity of sign in the decoder we assigned a sign to the decoder so
that st < 0 in contra and st > 0 in ipsi trials. The same procedure was applied for
decoders trained on the shared activity space. The correlation of projected activity
across time, t, and, t′, was performed using Spearmen’s rank correlation, rs t; t′

� �
and that across epochs, s, and, s′, were as rs t; t′

� �	 

t2s;t′2s′ (Fig. 4g, h, Supple-

mentary Fig. 6). Epoch coding decoders were based on the neural dynamics
averaged within each behavioral epoch; trial-coding direction is based on the neural
dynamics averaged from sample to response epochs.

To achieve robust estimation given the large number of neurons, we applied a
sparse version of LDA35, with normalization that ltk k2¼ 1 (where �k k2, the L2

norm of the vector) for each time point t in a task.

lt ¼ arg min
l

�
lT rcontrat � ripsit

� �� �2
lTΣr l

þ Δ lj j1

Two parameters were used to regularize sparsity of LDA coefficients, γ (l2-
regularizer of covariance matrix of sample data Σr ¼ 1� γð ÞΣþ γΣ; γ 2 0; 1½ 	;
Σ ¼ r � rh ið Þ r � rh ið ÞT ) and Δ (l1-regularizer of covariance matrix of sample data
Δ lj j1). The optimization of these two parameters follows the standard Matlab
procedure (Supplementary Fig. 4) using cross validation (all trials were divided into
training and testing sets), and the set of parameters minimizing the validation error
were used in regularizing lt in final fit using all trials. In this case, the LDA
coefficient should be close to zero if a neuron fired at a low rate or contributed little
to coding trial type. We measured the similarity of the coding directions across
time, t, and, t′, as lTt lt′ . We did not observe any lTt lt′< 0.

Decodability. The performance of trial-type decodability was computed based on
the decoder projection in a 150-ms time bin at 300 ms before the onset of response
using 10-fold cross-validation (Fig. 3ab; error bar, std.). We computed performance
of trial-correctness decodability using two nonlinear decoders (Fig. 6c, f; Supple-
mentary Fig. 11), one based on a 2nd order polynomial-kernel support vector
machine (SVM; kernel function, G rit ; r

j
t

� �
¼ 1þ rit r

j
t

D E� �2
; i, j, neural index; r,

neural activity; �h i, average over trials), the other based on quadratic discriminant
analysis (QDA), using instantaneous neural dynamics in discrete 67-ms time bins,
following 10-fold cross-validation (shaded area, std.). The correctness signal onset
time (Fig. 4e) was computed as the first time when performance of trial-correctness
decodability was continuously >.65 for at least one behavioral epoch. We then
compared the single-trial decodability in FNS versus that in SAS using paired sign-
rank test across trials.

Reaction time correlations. We correlated decoder projection scores with reaction
time to the first lick using Spearmen’s rank correlation. The decoder projection
score was estimated by averaging over a 150-ms time bin at 300 ms before the onset
of response (Fig. 3cd; Supplementary Fig. 3b).

Data availability:
Code for this study is publicly available on Github: [https://github.com/zqwei/
TLDS_ALM_Data]. Code for Event-dependent Linear Dynamical Systems can be
separately got at [https://github.com/zqwei/Epoch-Dependent-LDS-Fit] [https://
doi.org/10.5281/zenodo.1403158]. Precompiled simultaneous recording sessions
can be obtained at45 https://doi.org/10.6084/m9.figshare.7372898.
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