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Restorative and endodontic procedures have been recently developed in an attempt to preserve the vitality of dental pulp after
exposure to external stimuli, such as caries infection or traumatic injury. When damage to dental pulp is reversible, pulp wound
healing can proceed, whereas irreversible damage induces pathological changes in dental pulp, eventually requiring its removal.
Nonvital teeth lose their defensive abilities and become severely damaged, resulting in extraction. Development of regeneration
therapy for the dentin-pulp complex is important to overcome limitations with presently available therapies. Three strategies
to regenerate the dentin-pulp complex have been proposed; regeneration of the entire tooth, local regeneration of the dentin-
pulp complex from amputated dental pulp, and regeneration of dental pulp from apical dental pulp or periapical tissues. In this
paper, we focus on the local regeneration of the dentin-pulp complex by application of exogenous growth factors and scaffolds to
amputated dental pulp.

1. Limitations of Conventional Therapy for
Preservation of Dental Pulp

Dental pulp is sometimes affected by external stimuli such
as caries infection or traumatic injury. Preservation of dental
pulp and maintenance of its viability are essential to avoid
tooth loss, and dentists carry out restorative procedures with
pulp capping to regulate inflammatory responses of dental
pulp, or cement lining on a cavity floor to block external
stimuli. Reversible damage induces pulp wound healing, and
direct pulp capping and pulpotomy with calcium hydroxide
are known to be effective to induce pulp wound healing
mechanisms.

After external stimuli such as cavity preparation, apop-
tosis of pulp cells including odontoblasts is induced [1–5],

followed by pulp wound healing including reactionary and
reparative dentinogenesis. Reactionary dentin is formed by
surviving odontoblasts, whereas reparative dentin is formed
by odontoblast-like cells that are differentiated from pulp
cells of residual dental pulp, resulting in a reduction in dental
pulp size and vitality [6–8].

When the external damage to dental pulp induces
irreversible changes of the pulp, dentists carry out pulpec-
tomy. Generally, a root canal after pulpectomy is tightly
filled with biomaterials such as gutta-percha to prevent
reinfection by bacteria. However, a tooth without vital dental
pulp has lost its defensive ability, which is often followed
by the severe damage such as the progression of deep
radicular caries or tooth facture, resulting in extraction of
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the tooth. Furthermore, a treated tooth is often reinfected
by bacteria because of its complicated anatomical structure
or inadequate treatment by a dentist, resulting in formation
of a lesion around the root apex with bone resorption. The
success rate of the endodontic retreatment is lower than that
of pulpectomy [9–12]. To overcome these limitations of the
present endodontic treatment, the preservation of dentin-
pulp complex is the clear strategy. However, when a dentin
defect and the resultant exposure of dental pulp tissue reach
a critical size, no treatments available are able to preserve
and maintain the vitality of dental pulp. It is considered
important to develop regeneration therapy for dental pulp
or the dentin-pulp complex.

2. Regeneration of the Dentin-Pulp Complex

It is well known that growth factors, such as bone mor-
phogenetic proteins (BMPs) and fibroblast growth factors
(FGFs), stem cells, and scaffolds, are essential for tissue
engineering to regenerate tissues [13]. During regeneration
processes, stem cells differentiate into specific cells for
tissue defects, growth factors such as BMPs and FGFs
induce proliferation and differentiation of stem cells, and
scaffolds with properties of extracellular matrix temporally
support structures for cell growth, differentiation, and tissue
formation. In studies to develop the regeneration therapy
of the dentin-pulp complex, three strategies that utilize
these essential three factors have been proposed; regeneration
of the entire tooth, local regeneration of the dentin-pulp
complex in dentin defect area from residual dental pulp,
and regeneration of dental pulp from apical dental pulp or
periapical tissues including the periodontal ligament and
bone (Figure 1).

2.1. Regeneration of Entire Tooth. Regeneration of the entire
tooth is accepted as a model of organ replacement and regen-
eration therapy. Recently, it was reported that tooth germs
can be bioengineered using a three-dimensional organ-germ
culture method, in which dental epithelial and mesenchymal
cells isolated from tooth germs were cultured in three-
dimensional scaffolds for the replacement therapy. Scaffolds
consisted of synthetic polymers such as poly (lactide-co-
glycolide) (PLGA) and bioceramics such as hydroxyapatite,
tricalcium phosphate and calcium carbonate hydroxyapatite
were examined in the three-dimensional organ-germ culture
[14–21]. It was also reported that bioengineered teeth
were generated from three-dimensionally arranged dental
epithelial and mesenchymal cells in collagen gels by in
vitro cell aggregate and manipulation method, and that the
bioengineered tooth germ generated a structurally correct
tooth showing penetration of blood vessels and nerve fibers
in vivo transplantation into mouse maxilla, resulting in
a successful fully functioning tooth replacement [22–25].
These bioengineered teeth, however, were reconstructed
with dental epithelial and mesenchymal cells from genuine
tooth germs. Further research will be needed to regenerate
the entire tooth from other cell sources such as induced
pluripotent stem (iPS) cells.

1 2 3
Growth
factor

Cell
(Stem cell)

Scaffold

(a) Regeneration of the entire tooth

1 2 3 4

(b) Local regeneration of dentin-pulp complex from residual dental pulp

1 2 3

(c) Local regeneration of dentin pulp from apical pulp or periapical tissues

Figure 1: Strategies for regeneration of the dentin-pulp complex
with three factors for tissue regeneration; growth factors, scaffolds,
and cells (stem cells or progenitor cells). (a) Regeneration of the
entire tooth. (b) Local regeneration of the dentin-pulp complex
in the dentin defect area from residual dental pulp. (c) Local
regeneration of dental pulp from apical dental pulp or periapical
tissues.

2.2. Local Regeneration from Residual Dental Pulp. Local
regeneration of the dentin-pulp complex from residual
dental pulp has been mainly delivered by researchers who
are engaged in clinical practice. Several studies have reported
the use of local applications of bioactive molecules such as
BMPs and recombinant fusion ameloblastin to exposed pulp
[26–28]. However, local application of bioactive molecules
without scaffolds only induces reparative dentin formation
toward residual dental pulp, which is the same result
provided by conventional therapy such as pulp capping.

Induction of appropriate pulp wound healing and for-
mation of new dentin in dentin defects are essential for
the local regeneration of the dentin-pulp complex and vital
pulp therapies to form new dentin in defects. Several papers
demonstrated the local regeneration of dentin-pulp complex
in different methods. It was reported that BMP-4 with
dentin powder induced dentinogenesis in dentin cavity with
pulp exposure [29]. In this research, stem or progenitor
cells were induced from residual pulp through the exposure
site at the bottom of the cavity. It was also reported that
ultrasound-mediated gene delivery of growth factors such
as growth/differentiation factor 11 (GDF-11)/BMP-11 into
dental pulp stem cells by in vivo sonoporation induced
reparative dentinogenesis [30–32], and that the ex vivo gene
therapy by the transplantation of pulp stem/progenitor cells
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Figure 2: Controlled release of FGF-2. Gelatin hydrogels has an
ability to incorporate growth factors such as FGF-2. After implanta-
tion of gelatin hydrogels incorporating FGF-2 with scaffolds, such as
collagen sponge, FGF-2 is gradually released from gelatin hydrogels
biodegraded by proteinase at tissue defect area. The controlled
released FGF-2 can induce tissue regeneration.

transfected with some growth factors such as GDF-11/BMP-
11 stimulated reparative dentinogenesis [33–36].

FGF-2 is known to play a role in both physiological
and pathological conditions [37–39]. It was previously
demonstrated that a gradual and continual release of bio-
logically active FGF-2 was achieved by in vivo biodegrada-
tion of gelatin hydrogels that incorporated FGF-2 [40–43]
(Figure 2). Recently, we used FGF-2, gelatin hydrogels, and
collagen sponge as a scaffold to induce local regeneration
of rat dentin-pulp complex. We implanted free FGF-2 or
gelatin hydrogels incorporating FGF-2 with collagen sponge
into dentin defects above the amputated pulp of rat molars,
and we found that a noncontrolled release of free FGF-2
only accelerated reparative dentin formation in the residual
dental pulp, whereas a controlled release of FGF-2 from
gelatin hydrogels induced formation of DMP-1-positive and
nestin-negative osteodentin in the pulp proliferating in the
dentin defects. Furthermore, the controlled release of an
appropriate dosage of FGF-2 from gelatin hydrogels induced
the formation of the dentinal bridge-like osteodentin on
the surface of the regenerated pulp (Figure 3). These results
suggest that our method inducing the regeneration of
dentin and pulp into defect area from the amputated pulp
is different from the conventional therapy that induces
reparative dentinogenesis toward the amputated pulp [44,
45].

2.3. Local Regeneration from Periapical Tissues. Studies on
regeneration of dental pulp from the apical area began
from the identification of stem cells in the apical areas of
developing teeth in which root formation is incomplete.
It is suggested the existence of a new population of mes-
enchymal stem cells residing in the apical papilla (SCAPs)
of incompletely developed teeth, and these cells have the
ability to differentiate into odontoblast-like cells [46–48].
SCAPs play important roles in continued root formation,
and they have been suggested to participate in pulp wound
healing and regeneration. It is also known that bone-
marrow-derived mesenchymal stem cells (BMMSCs) have
multipotent abilities to differentiate into several cell types

and undergo osteogenic differentiation. Periapical tissues
include periodontal ligament, and bone marrow, which is
the source of BMMSCs [49–54]. Localization of SCAPs and
BMMSCs in the apical area indicate the possibility of the
induction of these stem cells for the regeneration of the
dentin-pulp complex.

3. Scaffolds for Regeneration of
Dentin-Pulp Complex

It is important to select appropriate scaffolds for successful
tissue regeneration. It is well known that essential properties
of scaffolds are mechanical properties such as porous three-
dimension structure, and mechanical strength, as well as
biological properties such as biocompatibility and biodegra-
dation [55]. In recent research and clinical approach, the
following biomaterials are utilized for tissue regeneration
therapy; polyethylene terephthalate, poly(L-lactide-co-D, L
lactide), polylactic acid, polyglycolic acid, PLGA, polyvinyl
alcohol, collagen, hyaluronic acid, hydroxyapatite, tricalcium
phosphate, silk fibroin, bioactive glasses, and ceramic mate-
rials [56]. Of the variety of biomaterials tested, collagen
sponge has been found to be well suited for the regeneration
of bone defects, as collagen is a major component of the
extracellular matrix. Also in the research field of tooth
regeneration therapy, several lines of studies analyzed and
discussed which three-dimensional scaffolds were suitable
for the regeneration of dentin-pulp complex [57–60].

Recently, we have been focusing on the application of
hyaluronic acid for local regeneration of the dentin-pulp
complex. Hyaluronic acid is one of the glycosaminoglycans
present in the extracellular matrix and plays important
roles in maintaining morphologic organization by preserving
extracellular spaces, and it has been reported to have
excellent potential for tissue engineering [61–65]. The roles
of hyaluronic acid in some biological processes, including
inhibition of inflammation and pain, and differentiation
of osteoblastic and osteoclastic cells, were recently stud-
ied [66–68]. In addition, some researchers have reported
that intra-articular hyaluronic acid treatment for patients
with osteoarthritic knees reduced painful symptoms and
improved joint mobility [69, 70].

Dental pulp is a type of connective tissue derived
from the dental papilla, and contains large amounts of
glycosaminoglycans [71, 72]. Previously, the contribution of
hyaluronic acid to the initial development of dentin matrix
and dental pulp [73], in vivo application of hyaluronic
acid gels on the wound healing processes of dental pulp,
and the application of gelatin-chondroitin-hyaluronan tri-
copolymer scaffold to dental bud cells were reported [74, 75].

To clarify whether hyaluronic acid sponge (molecular
weight 800 kDa) is useful as a scaffold for wound healing
and regeneration of dental pulp, we compared in vitro and in
vivo effects of hyaluronic acid sponge and collagen sponge on
KN-3 odontoblast-like cell line and amputated dental pulp of
rat molars. KN-3 cells, which were established from dental
pulp of rat incisors, have odontoblastic properties such as
high alkaline phosphatase activity and calcification ability
[76]. We found that KN-3 cells adhered to both hyaluronic
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Figure 3: Local regeneration of the dentin-pulp complex in dentin defect area by implantation of gelatin hydrogels incorporating FGF-2.
(a) Gelatin hydrogels incorporating FGF-2 with collagen sponge are implanted into dentin defect area. Controlled release of FGF-2 from
biodegraded gelatin hydrogels can induce pulp stem cells or progenitor cells, as well as vessels, into collagen sponge at defect, resulting in the
regeneration of pulp in the defect area and the formation of regenerative dentin on surface of the new pulp. (b) Histological photograph of
proliferating pulp and newly regenerated dentin at surface of proliferating pulp. (c) High magnification of the regenerated dentin.

acid and collagen sponges during the culture period. In vivo
results following implantation of both sponges in dentin
defect areas above the amputated pulp showed that dental
pulp proliferation and invasion of vessels into the hyaluronic
acid and collagen sponges were well induced from the
amputated dental pulp. These results suggest that hyaluronic
acid sponge has an ability to induce and sustain dental
pulp tissue regenerated from residual amputated dental pulp.
In addition, we found that the inflammatory responses of
KN-3 cells and the amputated dental pulp to hyaluronic
acid sponge were lower than those against collagen sponge,
suggesting that hyaluronic acid sponge has biocompatibility
and biodegradation characteristics as well as an appropriate
structure to make it suitable as a scaffold for dental pulp
regeneration [77] (Figure 4).

It is also important to clarify neuronal differentiation and
neurite outgrowth during regeneration of the dentin-pulp
complex. We examined the effects of hyaluronic acid gel on
neuronal differentiation of PC12 pheochromocytoma cells,
which respond to nerve growth factor (NGF) by extending
neurites and exhibit a variety of properties of adrenal
medullary chromaffin cells. We applied diluted solutions of
800 kDa hyaluronic acid to NGF-exposed PC12 cells, and
noted inhibition of NGF-induced neuronal differentiation of
PC12 cells via inhibition of ERK and p38 MAPK activation,

caused by the interaction of hyaluronic acid to its receptor,
RHAMM [78].

Our results demonstrated that hyaluronic acid sponge
is useful for local regeneration of the dentin-pulp complex,
whereas hyaluronic acid gel inhibits the differentiation or
neurite outgrowth of neurons. In vivo, our results showed
that hyaluronic acid sponge is gradually biodegraded during
the regeneration processes, leaving soluble hyaluronic acid
in the regenerated dental pulp. Next, we intend to clarify
the biological and physiological behaviors of hyaluronic acid
throughout the regeneration the of dentin-pulp complex.

4. Future Challenges to Achieve Local
Regeneration of the Dentin-Pulp Complex

In our strategy, growth factors and scaffolds are exogenously
supplied as bioactive materials, while the source of stem cells
that are able to differentiate into odontoblast-like cells and
pulp cells is dependent on the residual dental pulp. The
vitality of the residual dental pulp is a critical point to achieve
local regeneration of the dentin-pulp complex. It is generally
accepted that the pulp wound healing proceeds well under
conditions of low inflammatory responses by the dental pulp.
In addition, regulation of dental pulp infection is another
critical point regarding the success of such regeneration
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Figure 4: Application of hyaluronic acid sponge for local regeneration of the dentin-pulp complex. (a) KN-3 cells, odontoblastic progenitor
cells, adhered to hyaluronic acid sponge, as well as collagen sponge. (b) Histological changes of amputated dental pulp after implantation of
hyaluronic acid sponge in vivo. Amputated dental pulp well proliferated into hyaluronic acid and collagen sponges. Compared with collagen
sponge, hyaluronic acid sponge significantly suppressed inflammatory reaction of dental pulp.

therapy. The resin bonding system is commonly used as
one of materials showing favorable adhesion to enamel
and dentin, and composite resin system with antimicrobial
ability was reported [79–81]. These restorative materials may
inhibit further bacterial invasion after tissue regeneration of
dentin-pulp complex. Furthermore, when we try to induce
revascularization and SCAPs and BMMSCs from the apical
area into scaffolds at the root canal to regenerate dentin-
pulp complex, disinfection of infected root canal systems, as
well as proper apical enlargement to permit the induction
from periapical tissues, should be successfully established
[82]. Local regeneration of the dentin-pulp complex will
be accomplished when the regulation mechanisms of pulp
inflammation and infection, as well as pulp wound healing
and regeneration mechanisms, are clarified.
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